油藏数值模拟历史拟合与动态预测..
- 格式:ppt
- 大小:358.50 KB
- 文档页数:25
油藏数值模拟油藏数值模拟是随着电子计算机的出现和发展而成长的一门新学科,在国内外都取得了迅速的发展和广泛的应用。
1953年美国G..H.BUCE等人发表了《孔隙介质不稳定气体渗流的计算》后,为用数值方法计算油气藏渗流问题开辟了道路。
三十多年来,由于大型快速电子计算机的迅速发展,大大地促进了数值模拟方法的广泛应用。
20世纪60年代初期研究了多维多相的黑油模型;20世纪70年代初期研究了组分模型、混相模型和热力采油模型;20世纪70年代末期研究各种化学驱油模型。
目前,黑油、混相和热力采油模型已经投入工业性应用,并已经成为商业性软件,化学驱油模型也正日趋完善。
油藏数值模拟方法是迄今为止定量地描述在非均质地层中多相流体流动规律的惟一方法。
例如许多常规方法要假定油层为圆形的均匀介质,如油藏几何形状稍复杂一些,且为非均质介质,则求解非常困难,甚至无法求解。
而对油气藏数值模拟而言,计算形态复杂的非均质油藏和计算简单形态的均质油藏工作量几乎是一样的。
因此油藏数值模拟可解决其它方法不能解决的问题。
对于其它方法能解决的问题,用数值模拟方法可以更快、更省、更方便、更可靠地解决,并增加其它分析方法的可信度。
一个油气藏,在现实中只能开发一次。
但应用油藏数值模拟,可以很容易地重复计算不同开发方式的开发过程,因此人们可以从中选出最好的开发方法。
因此,对油藏工程师而言,数值模拟给动态分析提供了一种快速、精确的综合性方法;对管理者而言,数值模拟提供了不同开采计划的比较结果;对尚无经验的工程师而言,数值模拟则是有效的培训工具。
数值模拟研究的主要工作程序对一个油气藏进行综合的数模研究,往往需要花较大的精力和较长时间(有时会达一年甚至更长的时间),同时还对计算机硬件和技术人员有很高的要求,然而尽管在不同的项目中,面对的问题会千差万别,但大多数油藏数值模拟的基本研究过程是一样的。
为了使读者一开始就对数模研究工作有一个明确的整体概念,下面简要地介绍一下油藏数值模拟的主要工作程序。
名词解释:1油藏模拟:是用油藏模型来研究油藏的各种物理性质和流体在其中的流动规律,以便更好地认识油层,作出正确的评价,确定合理的开发方案和提高采收率的措施。
2 数值模型:用离散化方法将偏微分方程组转化为有限查分方程组,将其非线性系数线性化,得到线性方程组,然后求解。
3 油藏数值模拟:用数值方法求解油藏数学方程组,就是油藏数值模拟。
4 动态预测:在历史拟合的基础上对未来的开发指标进行计算。
5 黑油模型:黑油模型是简化的组份模型。
烃类系统只考虑两个组份:“油”组份是地层油经微分蒸发后在大气压的残存液(即黑油),而“气”组份是剩余的流体。
水相与其他两相不发生质量转移;气可以从油中出入,但油不能汽化为气相。
6 适定问题:一个问题的解存在,唯一且稳定时就称问题为适定问题。
7 三相流模型:描述有三相流体同时流动的数学模型。
8 三维模型:描述油藏流体沿三个方向上同时发生流动的数学模型。
9 气藏模型:描述天然气气藏的数学模型,有的气藏只有天然气的存在,而有的气藏不仅有天然气存在还有水存在。
10 离散化:离散化就是把整体分割为若干单元来处理。
11 有限差分法:有限差分法是对网格范围内的各点求解。
即原先表示连续的、足够光滑函数的偏微分方程,被一套对每个离散点的、与该点近似解有关的代数方程组所取代。
12 块中心网格:用网格分割成小块的中心来表示小块坐标。
13 一阶向前查商:对于函数p(x,t) ,x p p x p ii ∆-=∂∂+1 为一阶向前查商。
14 截断误差:当微商用查商表示时,把泰勒级数的余项截断,由于截断了泰勒级数的余项所产生的误差称为截断误差。
15 网格节点:网格的交点称为节点。
16 显式处理:在n+1时刻求解方程组时,若其系数直接用n 时刻的值,为显式处理。
17不均匀网格:为了模拟油藏的实际情况,划分网格时,在靠近井的附近网格取密一些,而沿径相外逐渐稀疏,这种网格称为不均匀网格。
18 IMPES 方法:是指隐式求解压力方程,显式求解饱和度方法。
历史拟合方法一、历史拟合方法的基本概念应用数值模拟方法计算油藏动态时,由于人们对油藏地质情况的认识还存在着一定的局限性。
在模拟计算中所使用的油层物性参数,不一定能准确地反映油藏的实际情况。
因此,模拟计算结果与实际观测到的油藏动态情况仍然会存在一定的差异,有时甚至相差悬殊。
在这个基础上所进行的动态预测,也必定不完全准确,甚至会导致错误的结论。
为了减少这种差异,使动态预测尽可能接近于实际情况,现在在对油藏进行实际模拟的全过程中广泛使用历史拟合方法。
所谓历史拟合方法就是先用所录取的地层静态参数来计算油藏开发过程中主要动态指标变化的历史,把计算的结果与所观测到的油藏或油井的主要动态指标例如压力、产量、气油比、含水等进行对比,如果发现两者之间有较大差异,而使用的数学模型又正确无误,则说明模拟时所用的静态参数不符合油藏的实际情况。
这时,就必须根据地层静态参数与压力、产量、气油比、含水等动态参数的相关关系,来对所使用的油层静态参数作相应的修改,然后用修改后的油层参数再次进行计算并进行对比。
如果仍有差异,则再次进行修改。
这样进行下去,直到计算结果与实测动态参数相当接近,达到允许的误差范围为止。
这时从工程应用的角度来说,可以认为经过若干次修改后的油层参数,与油层实际情况已比较接近,使用这些油层参数来进行抽藏开发的动态预测可以达到较高的精度。
这种对油藏的动态变化历史进行反复拟合计算的方法就称为历史拟合方法。
由于目前历史拟合还没有一种通用的成熟方法,经常的做法仍是靠人的经验反复修改参数进行试算,因此油藏模拟过程中历史拟合所花的时间常占相当大部分。
为了减少历史拟合所花费的机器时间,要很好地掌握油层静态参数的变化和动态参数变化的相关关系,应积累一定的经验和处理技巧,以尽量减少反复运算的次数。
近年来还提出了各种自动拟合的方法,力求用最优化技术以及人工智能方法来得到最好的参数组合,加快历史拟合的速度井达到更高的精度。
但目前这种自动拟台的方法还处在探索和研究阶段,还没有得到广泛的实际应用。
油藏数值模拟的历史拟合
这是油藏模拟中的一项极其重要的工作。
因为一个油藏模型被建立起来以后,它是否完全反映油气藏实际,并未经过检验。
只有利用将生产和注入的历史数据输入模型并运行模拟器,再将计算的结果与油气藏的实际动态相比,才能确定模型中采用的油气藏描述是否是有效的。
若计算获得的动态数据与油藏实际动态数据差别甚远,我们就必须不断地调整输入模型的基本数据,直到由模拟器计算得到的动态与油藏生产的实际动态达到满意的拟合为止。
由于历史拟合调整参数的目的是为了把真实油藏的描述搞得尽可能精确,所以,它是油藏模拟中不能缺少的重要步骤。
模拟使用的模型,显然应当与实际油藏是相似的。
若描述油藏的数值模拟所采用的数据与控制油藏动态的实际数据存在明显差异,则将导致模拟结果出现严重失真。
遗憾的是,在未经试验以前,我们对模型的准确程度,以及应该修改哪些参数才能保证它与实际油藏相似,知之甚少。
在这种情况下,最有效,也是最经常采用的一种验证方法,就是模拟油藏过去的动态,并将模拟计算结果与油藏的过去实际动态作对比,这就是历史拟合工作。
历史拟合能帮助我们发现和修改油藏描述数据的错误,以使模型更加完善,并验证油藏描述的可靠性。
如果修正后的模型模拟计算动态与油藏过去的历史动态能达到一致,且油藏描述又是合理的,那么,应当说,历史拟合本身就是一种有效的油藏描述方法。
一、关于“油藏数值模拟技术”(一)基本概念及作用(二)数据准备(三)模型初始化(四)生产史拟合(五)生产动态预测二、油藏数值模拟的主流软件系统简介三、油藏数值模拟技术的进展及发展方向(一)进展(二)发展方向一、关于“油藏数值模拟技术”油藏数值模拟技术是一门将油田开发重大决策纳入严格科学轨道的关键技术。
从油田投产开始,无论是单井动态,还是整个油田动态,都要进行监测与控制。
油藏数值模拟是油田开发最优决策的有效工具。
油藏数值模拟技术从20世纪50年代开始研究至今,已发展成为一项较为成熟的技术,在油气藏特征研究、油气田开发方案的编制和确定、油气田开采中生产措施的调整和优化以及提高油气藏采收率方面,已逐渐成为一种不可欠缺的主要研究手段。
油藏数值模拟技术经过几十年的研究有了大的改进,越来越接近油气田开发和生产的实际情况。
油藏数值模拟技术随着在油气田开发和生产中的不断应用,并根据油藏工程研究和油藏工程师的需求,不断向高层次和多学科结合发展,将得到不断的发展和完善。
(一)基本概念及作用(1)基本概念油藏数值模拟:从地下流体渗流过程中的本质特征出发,建立描述渗流过程基本物理现象、并能描述油藏边界条件和原始状况的数学模型,借助计算机计算求解渗流数学模型,结合油藏地质学、油藏工程学重现油田开发的实际过程,用来解决实际问题。
油藏数学模型的分类,一般有四种方法:1)按流体中相的数目,划分为:单相流模型、两相流模型、三相流模型。
2)按空间维数,划分为:零维模型、一维模型、二维模型、三维模型。
3)按油藏特性类型,划分为:气藏模型、黑油模型、组分模型。
气藏模型按其组分的贫富,可以用黑油数值模型模拟,也可以用组分类型的数值模拟模型模拟。
所以,气藏模型也可以划进黑油或组分模型。
故数学模型一般分为黑油型和组分型两类模型。
4)按油藏结构特点、开采过程特征,分类为:裂缝模型、热采模型、化学驱模型、混相驱模型、聚合物驱模型等。
其中:数学模型:通过一组方程组,在一定假设条件下,描述油藏真实的物理过程。
扶正器(1.45m)+Ф165.1mm钻铤1根(9.68m)+Ф214mm扶正器(1.45m)+Ф165.1mm钻铤7根(65.29m)+Ф127mm加重钻杆14根(131.64m)+Ф127mm钻杆。
3 现场应用情况(3)气举情况 首先用清水将泥浆替出,然后开始分两段气举。
第一次气举:气举井深1018.17m,历时1h30min。
第二次气举:下钻至井深1636.52m开始第二次气举,历时1h40min。
最后注空气干燥井筒,立压1MPa,空气流量120m3/min,历时4h40min。
(2)空气钻进情况 钻井参数:空气排量120m3/min,立压1.26~1.37MPa,钻压15~40kN,转速50~65r/min。
空气钻进:井段1637.00~2152.50m,进尺515.50m,钻头1只,纯钻时间58h10min,平均机械钻速8.86m/h。
空气钻井终止原因:钻进至2152.50m,见气测异常,立压从1.28MPa升至1.30MPa,空气排量120m3/min,全烃从0.0086%升至0.0302%,C1从0升至0.0245%,C2~nC5:0%,集气点火未燃。
现场结合钻时、岩屑、邻井资料、气测资料综合分析,判断该段为含气层。
停止空气钻井,全井空气替换为氮气,改为氮气钻井。
(3)氮气钻进情况 钻井参数:氮气排量120m3/min,立压1.31~1.34MPa,钻压30~40kN,转速60r/min。
氮气钻进:井段2152.50~2280.00m,进尺127.50m,钻头2只,纯钻时间26h30min,平均机械钻速4.81m/h。
氮气钻井终止原因:钻进至井深2225.92m,发现水眼被堵,起钻检查钻具并更换三牙轮钻头。
下钻完毕,继续氮气钻进至2280.00m,钻达龙马溪组顶部预定层位,氮气钻井结束,全井替换为油基泥浆,改为常规钻井。
4 认识(1)长宁XX井在韩家店~龙马溪顶部采用了气体钻井技术,井段1637.00~2280.00m,进尺643.00m,纯钻时间84h40min,平均机械钻速7.59m/h。