结构力学第1章习题及参考答案
- 格式:doc
- 大小:686.50 KB
- 文档页数:14
《结构力学》第01章在线测试第一题、单项选择题(每题1分,5道题共5分)1、对结构进行强度计算的目的,是为了保证结构A、既经济又安全B、不致发生过大的变形C、美观实用D、不发生刚体运动2、结构的刚度是指A、结构保持原有平衡形式的能力B、结构抵抗失稳的能力C、结构抵抗变形的能力D、结构抵抗破坏的能力3、杆系结构中的构件的长度A、等于截面的高和宽B、与截面的高和宽是同一量级C、远远小于截面的高和宽D、远远大于截面的高和宽4、对结构进行强度计算目的是为了保证结构A、既经济又安全B、不致发生过大的变形C、美观实用D、不发生刚体运动5、固定铰支座有几个约束反力分量A、一个B、两个C、三个D、四个第二题、多项选择题(每题2分,5道题共10分)1、下列哪种情况不是平面结构A、所有杆件的轴线都位于同一平面内,荷载也作用在该平面内B、所有杆件的轴线都位于同一平面内,荷载与该平面垂直C、所有杆件的轴线都位于同一平面内,荷载与该平面平行D、所有杆件的轴线都不位于同一平面内E、荷载不作用在结构的平面内2、铰结点的约束特点是A、约束的各杆端不能相对移动B、约束的各杆端可相对转动C、约束的各杆端不能相对转动D、约束的各杆端可沿一个方向相对移动E、约束的各杆端可相对移动3、刚结点的约束特点是A、约束各杆端不能相对移动B、约束各杆端不能相对转动C、约束的各杆端可沿一个方向相对移动D、约束各杆端可相对转动E、约束各杆端可相对移动4、可动铰支座的特点是A、约束杆端不能移动B、允许杆端转动C、只有一个约束力偶D、允许杆端沿一个方向移动E、只有一个反力5、固定端支座的特点是A、不允许杆端移动B、只有一个反力C、允许杆端转动D、不允许杆端转动E、有两个反力和一个反力偶第三题、判断题(每题1分,5道题共5分)1、结构是建筑物和构筑物中承受荷载起骨架作用的部分。
正确错误2、板壳结构的厚度远远小于其它两个尺度。
正确错误3、为了保证结构不致发生过大的变形影响了正常使用,要求结构要有足够的强度。
《结构力学》第01章在线测试第一题、单项选择题(每题1分,5道题共5分)1、对结构进行强度计算的目的,是为了保证结构A、既经济又安全B、不致发生过大的变形C、美观实用D、不发生刚体运动2、结构的刚度是指A、结构保持原有平衡形式的能力B、结构抵抗失稳的能力C、结构抵抗变形的能力D、结构抵抗破坏的能力3、杆系结构中的构件的长度A、等于截面的高和宽B、与截面的高和宽是同一量级C、远远小于截面的高和宽D、远远大于截面的高和宽4、对结构进行强度计算目的是为了保证结构A、既经济又安全B、不致发生过大的变形C、美观实用D、不发生刚体运动5、固定铰支座有几个约束反力分量?A、一个B、两个C、三个D、四个第二题、多项选择题(每题2分,5道题共10分)1、下列哪种情况不是平面结构A、所有杆件的轴线都位于同一平面内,荷载也作用在该平面内B、所有杆件的轴线都位于同一平面内,荷载与该平面垂直C、所有杆件的轴线都位于同一平面内,荷载与该平面平行D、所有杆件的轴线都不位于同一平面内E、荷载不作用在结构的平面内2、铰结点的约束特点是A、约束的各杆端不能相对移动B、约束的各杆端可相对转动C、约束的各杆端不能相对转动D、约束的各杆端可沿一个方向相对移动E、约束的各杆端可相对移动3、刚结点的约束特点是A、约束各杆端不能相对移动B、约束各杆端不能相对转动C、约束的各杆端可沿一个方向相对移动D、约束各杆端可相对转动E、约束各杆端可相对移动4、可动铰支座的特点是A、约束杆端不能移动B、允许杆端转动C、只有一个约束力偶D、允许杆端沿一个方向移动E、只有一个反力5、固定端支座的特点是A、不允许杆端移动B、只有一个反力C、允许杆端转动D、不允许杆端转动E、有两个反力和一个反力偶第三题、判断题(每题1分,5道题共5分)1、结构是建筑物和构筑物中承受荷载起骨架作用的部分。
正确错误2、板壳结构的厚度远远小于其它两个尺度。
正确错误3、为了保证结构不致发生过大的变形影响了正常使用,要求结构要有足够的强度。
5、对结构进行自由振动分析时,求()要考虑阻尼的影响。
问题反馈【教师释疑】正确答案:【计算自由振动的振幅要考虑阻尼的影响。
】1、对图示体系进行几何组成分析.答题说明:简单给出分析过程。
最后给出结论。
问题反馈【教师释疑】正确答案:【去除基础,再去除二元体后,小三角形、大三角形用三根链杆相连,故体系为无多余约束的几何不变体系。
】2、试对图示体系进行几何构造分析。
答题说明:简单给出分析过程。
最后给出结论。
问题反馈【教师释疑】正确答案:【先去掉基础在分析上部体系,上部体系为两刚片用一个铰一根杆相连,故该体系为无多余约束的几何不变体系。
】3、对图示体系进行几何组成分析。
答题说明:简单给出分析过程。
最后给出结论。
问题反馈【教师释疑】正确答案:【依次去除二元体A、B、C、D、E、F、G后剩下大地,故该体系为无多余约束的几何不变体系。
】4、试对图示体系进行几何构造分析。
问题反馈【教师释疑】正确答案:【依次去除二元体DGF,FHE,DFE,ADC,CEB后,B点少一个约束。
该体系为有一个自由度的几何常变体系】1、找出图示桁架中的零杆。
答题说明:按你的分析结果,给出零杆总数和零杆编号(以两端结点编号表示)。
问题反馈【教师释疑】正确答案:【 23、34、49、89、59、96、65、57共8根零杆。
】2、找出图示桁架中的零杆。
答题说明:按你的分析结果,给出零杆总数和零杆编号(以两端结点编号表示)。
问题反馈【教师释疑】正确答案:【 13、12、27、25、56、64、67杆为零杆。
共7根零杆。
】3、找出图示桁架中的零杆。
答题说明:按你的分析结果,给出零杆总数和零杆编号(以两端结点编号表示)。
问题反馈【教师释疑】正确答案:【 EA、EB、AF、AC、BG、GD共有6根零杆。
】1、图乘法的应用条件是什么?问题反馈【教师释疑】正确答案:【图乘法的应用条件:1)杆轴线为直线,2)杆端的EI为常数3)MP和M图中至少有一个为直线图形。
结构力学(一)·随堂练习2020秋华南理工大学网络教育答案第一章绪论第二章平面体系的机动分析1.(单选题) 计算自由度W是有意义的,若W>0,则表示体系。
A.几何常变B.几何瞬变C.几何不变D.几何可变答题: A. B. C. D. (已提交)参考答案:A问题解析:2.(单选题) 图示体系的几何组成为。
A.几何不变,无多余约束B.几何不变,有一个多余约束C.瞬变体系D.几何不变,有2个多余约束答题: A. B. C. D. (已提交)参考答案:B问题解析:3.(判断题) 瞬变体系的计算自由度可能小于0。
()答题:对. 错. (已提交)参考答案:√问题解析:4.(判断题) 图示体系为无多余约束的几何不变体系。
()答题:对. 错. (已提交)参考答案:√问题解析:5.(单选题) 图示体系为。
A.几何常变体系B.无多余约束的几何不变体系C.瞬变体系D.有多余联系的几何不变体系答题: A. B. C. D. (已提交)参考答案:C问题解析:6.(单选题) 图示体系为。
A.几何常变体系B.无多余约束的几何不变体系C.瞬变体系D.有多余联系的几何不变体系答题: A. B. C. D. (已提交)参考答案:C问题解析:7.(判断题) 若体系计算自由度W≤0,则该体系几何不变。
()答题:对. 错. (已提交)参考答案:×问题解析:8.(判断题) 下图的体系为几何不变体系。
()答题:对. 错. (已提交)参考答案:×问题解析:9.(单选题) 图示体系为。
A.几何常变体系B.无多余约束的几何不变体系C.瞬变体系D.有多余联系的几何不变体系答题: A. B. C. D. (已提交)参考答案:B问题解析:10.(单选题) 下图所示正六边形体系为。
A.几何常变体系B.无多余约束的几何不变体系C.瞬变体系D.有多余联系的几何不变体系答题: A. B. C. D. (已提交)参考答案:C问题解析:11.(判断题) 静定结构可以是瞬变体系。
构力学(一)第一章绪论第二章平面体系的机动分析1.(单选题) 计算自由度W是有意义的,若W>0,则表示体系。
A.几何常变B.几何瞬变C.几何不变D.几何可变答题: A. B. C. D. (已提交)参考答案:A问题解析:2.(单选题) 图示体系的几何组成为。
A.几何不变,无多余约束B.几何不变,有一个多余约束C.瞬变体系D.几何不变,有2个多余约束答题: A. B. C. D. (已提交)参考答案:B问题解析:3.(判断题) 瞬变体系的计算自由度可能小于0。
()答题:对. 错. (已提交)参考答案:√问题解析:4.(判断题) 图示体系为无多余约束的几何不变体系。
()答题:对. 错. (已提交)参考答案:√问题解析:5.(单选题) 图示体系为。
A.几何常变体系B.无多余约束的几何不变体系C.瞬变体系D.有多余联系的几何不变体系答题: A. B. C. D. (已提交)参考答案:C问题解析:6.(单选题) 图示体系为。
A.几何常变体系B.无多余约束的几何不变体系C.瞬变体系D.有多余联系的几何不变体系答题: A. B. C. D. (已提交)参考答案:C问题解析:7.(判断题) 若体系计算自由度W≤0,则该体系几何不变。
()答题:对. 错. (已提交)参考答案:×问题解析:8.(判断题) 下图的体系为几何不变体系。
()答题:对. 错. (已提交)参考答案:×问题解析:9.(单选题) 图示体系为。
A.几何常变体系B.无多余约束的几何不变体系C.瞬变体系D.有多余联系的几何不变体系答题: A. B. C. D. (已提交)参考答案:B问题解析:10.(单选题) 下图所示正六边形体系为。
A.几何常变体系B.无多余约束的几何不变体系C.瞬变体系D.有多余联系的几何不变体系答题: A. B. C. D. (已提交)参考答案:C问题解析:11.(判断题) 静定结构可以是瞬变体系。
()答题:对. 错. (已提交)参考答案:×问题解析:12.(判断题) 静定结构可以通过静力平衡方程求出结构所有的内力。
1-1 答:(a) 可看成11个刚片,F 、J 两个固定铰支座,想当四根链杆,再加上A 、E 处三个链杆,总计7根链杆。
B 、C 、D 、G 、H 、I 共6个连接三个刚片的复刚结点,相当于12个单铰。
因此,由计算公式()()20710h b +⋅+++=−33 113312W m g =⋅−⋅=×−×(单纯由W 的结果不能判断其是否能作为结构。
但是,显而易见,即使将ABCDEFGHIJ 整个看成一个刚片(当成一根梁),有A 、E 处三个链杆即构成“简支梁”,是静定的。
因此,W < 0体系属有多余约束的几何不变体系,是可以做结构用的,是有10个多余联系的几何不变体系(超静定结构)。
(b) 可看成1个刚片FJ 和 A 、B 、C 、D 、E 5点10根链杆(包括A 、E 处三个链杆)组成, F 、J 处两个单铰相当4根链杆,因此总链杆数为14。
由计算自由度公式可得 )()3232 =312500141W m j g h b =⋅+⋅−⋅+⋅+×+×−++=−W j单纯由W 的结果不能判断其是否能作为结构。
但是,利用减二元体规则可知体系几何不变,是有一个多余约束的超静定结构。
(c) 本题有6个结点,由31根链杆相连。
由计算自由度公式可得2216311b =⋅−332W =×−×3524332W =×−×−×=−210200W =×−=由此可确定此体系是几何可变体系,不能作为结构。
1-2 答::(a) 三个刚片:AD 、BDEF 、FC ,刚片间有两个单铰: D 、F , 三个刚结点:A 、B 、C 。
2334−×=−此体系几何不变,有4个多余约束,是超静定结构。
(b) 5个刚片:AD 、DE 、EBF 、FG 、GC ,4个单铰: D 、E 、F 、G ,三个刚结点:A 、B 、C 。
《结构力学》第01章在线测试《结构力学》第01章在线测试剩余时间:38:46答题须知:1、本卷满分20分。
2、答完题后,请一定要单击下面的“交卷”按钮交卷,否则无法记录本试卷的成绩。
3、在交卷之前,不要刷新本网页,否则你的答题结果将会被清空。
第一题、单项选择题(每题1分,5道题共5分)1、对结构进行强度计算的目的,是为了保证结构A、既经济又安全B、不致发生过大的变形C、美观实用D、不发生刚体运动2、结构的刚度是指A、结构保持原有平衡形式的能力B、结构抵抗失稳的能力C、结构抵抗变形的能力D、结构抵抗破坏的能力3、结构的强度是指A、结构抵抗破坏的能力B、结构抵抗变形的能力C、结构抵抗失稳的能力D、结构保持原有平衡形式的能力4、对结构进行强度计算目的是为了保证结构A、既经济又安全B、不致发生过大的变形C、美观实用D、不发生刚体运动5、可动铰支座有几个约束反力分量A、一个B、两个C、三个D、四个第二题、多项选择题(每题2分,5道题共10分)1、下列哪种情况不是平面结构A、所有杆件的轴线都位于同一平面内,荷载也作用在该平面内B、所有杆件的轴线都位于同一平面内,荷载与该平面垂直C、所有杆件的轴线都位于同一平面内,荷载与该平面平行D、所有杆件的轴线都不位于同一平面内E、荷载不作用在结构的平面内2、对结构进行几何组成分析,是为了A、保证结构既经济又安全B、保证结构不致发生过大的变形C、使结构美观实用D、保证结构不发生刚体运动E、保证结构中各构件不发生相对刚体运动3、铰结点的受力特点是A、可以传递轴力B、可以传递剪力C、不能传递力矩D、不能传递力E、能传递力矩4、如果在一结点处,一些杆端刚结在一起,而另一些杆端铰结一起,这样的结点称为A、刚结点B、铰结点C、组合结点D、不完全铰结点E、半铰结点5、固定端支座的特点是A、不允许杆端移动B、只有一个反力C、允许杆端转动D、不允许杆端转动E、有两个反力和一个反力偶第三题、判断题(每题1分,5道题共5分)1、结构是建筑物和构筑物中承受荷载起骨架作用的部分。
结构力学各章自测题及答案结构力学自测题(第一单元)几何组成分析姓名学号一、是非题(将判断结果填入括弧:以O 表示正确,以X 表示错误)1、图中链杆1 和2 的交点O可视为虚铰。
()O2、两刚片或三刚片组成几何不变体系的规则中,不仅指明了必需的约束数目,而且指明了这些约束必须满足的条件。
()3、在图示体系中,去掉1 —5 ,3 —5 ,4 —5 ,2 —5 ,四根链杆后,得简支梁12 ,故该体系为具有四个多余约束的几何不变体系。
()123454、几何瞬变体系产生的运动非常微小并很快就转变成几何不变体系,因而可以用作工程结构。
()5、图示体系为几何可变体系。
()6、图示体系是几何不变体系。
()7、图示体系是几何不变体系。
()二、选择题(将选中答案的字母填入括弧内)1、图示体系虽有3 个多余约束,但为保证其几何不变,哪两根链杆是不能同时去掉的。
A. a 和e ;B. a 和b ;C. a 和c ;D. c 和e 。
()e bdc a2、欲使图示体系成为无多余约束的几何不变体系,则需在A 端加入:A.固定铰支座;B.固定支座;C.滑动铰支座;D.定向支座。
()A3、图示体系的几何组成为:A.几何不变,无多余约束;B.几何不变,有多余约束;C.瞬变体系;D.常变体系。
()4、(题同上)()5、(题同上)()6、(题同上)()三、填充题(将答案写在空格内)1、图示体系是____________________________________ 体系。
2.图示体系是____________________________________ 体系。
3.图示体系是____________________________________ 体系。
四、分析图示平面体系的几何组成。
1.2.( 图中未编号的点为交叉点。
)A B CDFE3.( 图中未画圈的点为交叉点。
)五.试分析图示体系的几何组成。
结构力学自测题(第二单元)静定梁、刚架内力计算姓名学号一、是非题(将判断结果填入括弧:以O 表示正确,以X 表示错误)1、在静定刚架中,只要已知杆件两端弯矩和该杆所受外力,则该杆内力分布就可完全确定。
结构力学课程作业答案第一章绪论1、按照不同的构造特征和受力特点,平面杆件结构可分为哪几类?2、何为静定结构和超静定结构?从几何构造分析的角度看,结构必须是几何不变体系。
根据多余约束 n ,几何不变体系又分为:有多余约束( n > 0)的几何不变体系——超静定结构;无多余约束( n = 0)的几何不变体系——静定结构。
从求解内力和反力的方法也可以认为:静定结构:凡只需要利用静力平衡条件就能计算出结构的全部支座反力和杆件内力的结构。
超静定结构:若结构的全部支座反力和杆件内力,不能只有静力平衡条件来确定的结构。
3、土建、水利等工程中的荷载,根据其不同的特征,主要有哪些分类?第二章平面结构的几何组成分析作业题:1、何为平面体系的几何组成分析?按照机械运动及几何学的观点,对平面结构或体系的组成情况进行分析,称为平面体系的几何组成分析。
2、何为几何不变体系?何为几何可变体系?几何不变体系—若不考虑材料的应变,体系的位置和形状不会改变。
几何可变体系—若不考虑材料的应变,体系的位置和形状是可以改变的。
3、几何组成分析的目的是什么?1)保证结构的几何不变性,以确保结构能承受荷载和维持体系平衡.2)判别某一体系是否为几何不变,从而决定它能否作为结构.3)研究几何不变体系的组成规则,以保证所设计的结构是几何不变体系,从而能承受荷载而维持平衡.4)根据体系的几何组成分析,正确区分静定结构和超静定结构,从而选择适当的计算方法进行结构的反力和内力计算.5)通过几何组成分析,明确结构的构成特点,从而选择结构受力分析的顺序以简化计算.4、何为一个体系的自由度?知悉体系计算自由度的公式。
5、试对下图所示体系进行几何组成分析。
图1图2图3图46、试求图示各体系的计算自由度数W。
7、例2-1 例2-28、习题 2.1~2.12 试对图示体系作几何组成分析。
第三章静定梁、静定平面刚架和三角拱的计算作业题:1、单跨静定梁有简支梁、外伸梁、悬臂梁等形式。
第一章 弹性力学基础(习题解答)1-1 上端悬挂、下端自由的等厚度薄板,其厚度为1,容重为ρ。
试求在自重作用下的位移分量表达式。
解:如图1-1建立坐标系.利用x σ沿y 方向均匀分布及x 方向的力平衡条件0=∑x 可得,⎪⎩⎪⎨⎧==-= x l xyy x 00)(τσρσ 又因为1()()x y u u l x x E Eρσσ∂=-=-∂ )()(1x l Eu u E y vx y --=-=∂∂ρσσ 积分得)()21(12y f x lx u +-=Eρ)()(2x f y x l u v +--=E ρ又由对称性 0)(020=⇒==x f v y 由 2110()2xy u v f y uy y x Eτρ∂∂=+=⇒=-∂∂ 综上所述有2221)21(uy Ex lx u ρρ--=Ey x l uv )(--=Eρ(方法二:只分析出x σ,再求应力函数,然后求其他。
)1-2 写出图1-2所示平面问题的应力边界条件。
解:上表面为力边界,100=,=,=,m l q lxl X --=Y 。
代入x xyxy y l mXl mYσττσ⎧+=⎪⎨+=⎪⎩中得到上表面的边界条件为0=--=xyyxqlxlτσσ;=;下表面为自由边,边界条件为0==xyyxτσσ;=;侧面为位移边界。
1-3 矩形板厚为1。
试用应力函数22Axyϕ=求解。
(并画出面力分布图)解:应力函数22Axyϕ=满足应力函数表示的变形协调方程,可以作为解。
在无体力的情况下,矩形板的应力为22xAxyϕσ∂==∂220y xϕσ∂==∂2xyAy x yϕτ∂=-=-∂∂根据应力边界条件公式x xy xy y l m X l m Yσττσ+=+=各边的应力边界为a d 边: 0,1l m == 20A X Ay h Y ⎧=-=-⎪⎨⎪=⎩ c b 边: 0,1l m ==- 20A X Ay h Y ⎧==-⎪⎨⎪=⎩a b 边: 1,0l m =-= 0X Y Ay ⎧=⎪⎨=⎪⎩c d 边: 1,0l m == X Ax AlY Ay⎧==⎪⎨=-⎪⎩根据以上各边的应力边界条件,可画出矩形板的面力分布图如图1-3a 。
结构力学:第1-11章课后答案(第五版李廉锟上下册) 第一章:结构力学基本原理1.1 选择题1.(D)材料的流变效应是指在恒定的应力下长时间内所发生的持续性变形。
2.(C)结构力学是研究结构在受力作用下的平衡条件、变形特点以及保证结构安全可靠的一门学科。
3.(B)静力学是结构力学的基础和起点,为后续结构力学的学习打下了坚实的理论基础。
4.(D)载荷是指作用在结构上的外力或内力引起的结构内力。
5.(D)结构承受荷载时产生的内力只有两种,即剪力和弯矩。
1.2 计算题1.(略)1.3 解答题1.(略)第二章:静定结构的受力分析2.1 选择题1.(C)静定杆系是指感力作用下平衡的杆件系统。
2.(B)双铰支座在支座点允许的转动是绕一个垂直轴线。
3.(C)简支梁在跨中承受的弯矩最大。
4.(C)连续梁是指有多个支座并且跨度超过3倍的梁。
5.(A)当两个力的作用线相交于一点时,这两个力称为共点力。
2.2 计算题1.(略)2.3 解答题1.(略)第三章:约束结构的受力分析3.1 选择题1.(C)约束支座限制了结构的自由度。
2.(B)在平面约束条件下,三个约束就可以确定结构的静定条件。
3.(A)约束力分解是将复杂的约束力分解为多个简单的约束力。
4.(D)简支梁在跨中承受的弯矩最大。
5.(D)当两个力构成一个力偶时,它们可以合成一个力偶。
若力偶平行于结构截面,力偶不会在结构内产生剪力和弯矩。
3.2 计算题1.(略)3.3 解答题1.(略)第四章:图解法与力法4.1 选择题1.(D)作用在梁上的集中力可以用力的大小和作用点位置的乘积表示。
2.(B)变形图中每个单元代表一个约束力。
3.(C)悬臂梁上的力和矩可以通过力的图解法求解。
4.(D)力法是通过构造力平衡方程解得结构的内力。
5.(A)设计中常用的受力分析方法有解析法、图解法和力法。
4.2 计算题1.(略)4.3 解答题1.(略)第五章:静定系数法与弹性能力法5.1 选择题1.(C)在确定支座反力时,要根据结构属于静定结构、不完全静定结构还是超静定结构来决定求解的方程数。
《结构力学》第01章在线测试第一题、单项选择题(每题1分,5道题共5分)1、对结构进行强度计算的目的,是为了保证结构A、既经济又安全B、不致发生过大的变形C、美观实用D、不发生刚体运动2、结构的刚度是指A、结构保持原有平衡形式的能力B、结构抵抗失稳的能力C、结构抵抗变形的能力D、结构抵抗破坏的能力3、杆系结构中的构件的长度A、等于截面的高和宽B、与截面的高和宽是同一量级C、远远小于截面的高和宽D、远远大于截面的高和宽4、对结构进行强度计算目的是为了保证结构A、既经济又安全B、不致发生过大的变形C、美观实用D、不发生刚体运动5、固定铰支座有几个约束反力分量A、一个B、两个C、三个D、四个第二题、多项选择题(每题2分,5道题共10分)1、下列哪种情况不是平面结构A、所有杆件的轴线都位于同一平面内,荷载也作用在该平面内B、所有杆件的轴线都位于同一平面内,荷载与该平面垂直C、所有杆件的轴线都位于同一平面内,荷载与该平面平行D、所有杆件的轴线都不位于同一平面内E、荷载不作用在结构的平面内2、铰结点的约束特点是A、约束的各杆端不能相对移动B、约束的各杆端可相对转动C、约束的各杆端不能相对转动D、约束的各杆端可沿一个方向相对移动E、约束的各杆端可相对移动3、刚结点的约束特点是A、约束各杆端不能相对移动B、约束各杆端不能相对转动C、约束的各杆端可沿一个方向相对移动D、约束各杆端可相对转动E、约束各杆端可相对移动4、可动铰支座的特点是A、约束杆端不能移动B、允许杆端转动C、只有一个约束力偶D、允许杆端沿一个方向移动E、只有一个反力5、固定端支座的特点是A、不允许杆端移动B、只有一个反力C、允许杆端转动D、不允许杆端转动E、有两个反力和一个反力偶第三题、判断题(每题1分,5道题共5分)1、结构是建筑物和构筑物中承受荷载起骨架作用的部分。
正确错误2、板壳结构的厚度远远小于其它两个尺度。
正确错误3、为了保证结构不致发生过大的变形影响了正常使用,要求结构要有足够的强度。
第1章1-1分析图示体系的几何组成。
解 原体系依次去掉二元体后,得到一个两铰拱(图(a-1))。
因此,原体系为几何不变体系,且有一个多余约束。
1-1 (b)解 原体系依次去掉二元体后,得到一个三角形。
因此,原体系为几何不变体系,且无多余约束。
(a )(a-1)(b )(b-1)(b-2)1-1 (c)(c-2) (c-3)解 原体系依次去掉二元体后,得到一个三角形。
因此,原体系为几何不变体系,且无多余约束。
1-1 (d)(d-1) (d-2) (d-3)解 原体系依次去掉二元体后,得到一个悬臂杆,如图(d-1)-(d-3)所示。
因此,原体系为几何不变体系,且无多余约束。
注意:这个题的二元体中有的是变了形的,分析要注意确认。
(d )(c-1)1-1 (e)解 原体系去掉最右边一个二元体后,得到(e-1)所示体系。
在该体系中,阴影所示的刚片与支链杆C 组成了一个以C 为顶点的二元体,也可以去掉,得到(e-2)所示体系。
在图(e-2)中阴影所示的刚片与地基只用两个链杆连接,很明显,这是一个几何可变体系,缺少一个必要约束。
因此,原体系为几何可变体系,缺少一个必要约束。
1-1 (f)解 原体系中阴影所示的刚片与体系的其它部分用一个链杆和一个定向支座相连,符合几何不变体系的组成规律。
因此,可以将该刚片和相应的约束去掉只分析其余部分。
很明显,余下的部分(图(f-1))是一个几何不变体系,且无多余约束。
因此,原体系为几何不变体系,且无多余约束。
1-1 (g)解 原体系中阴影所示的刚片与体系的其它部分用三个链杆相连,符合几何不变体系的组成规律。
因此,可以将该刚片和相应的约束去掉,只分析其余部分。
余下的部分(图(g-1))在去掉一个二元体后,只剩下一个悬臂杆(图(g-2))。
因此,原体系为几何不变体系,且无多余约束。
(e )(e-1)ABCAB (e-2)(f )(f-1) (g ) (g-1) (g-2)1-1 (h)解 原体系与基础用一个铰和一个支链杆相连,符合几何不变体系的组成规律。
第1章1-1剖析图示系统的几何构成。
1-1(a)a〕原系统挨次去掉二元体后,获得一个两铰拱〔图〔原系统为几何不变系统,且有一个剩余拘束。
1-1(b)b〕〔b-1〕a-1〕(a-1〕〕。
所以,b-2〕解原系统挨次去掉二元体后,获得一个三角形。
所以,原系统为几何不变系统,且无剩余拘束。
1-1(c)〔c〕〔c-1 〕〔c-2〕〔c-3〕解原系统挨次去掉二元体后,获得一个三角形。
所以,原系统为几何不变系统,且无剩余拘束。
1-1(d)〔d〕〔d-1〕〔d-2〕〔d-3〕解原系统挨次去掉二元体后,获得一个悬臂杆,如图〔d-1〕-〔d-3〕所示。
所以,原系统为几何不变系统,且无剩余拘束。
注意:这个题的二元体中有的是变了形的,剖析要注意确认。
1-1(e)AAB C B〔e〕〔e-1〕〔e-2〕解原系统去掉最右侧一个二元体后,获得〔e-1〕所示系统。
在该体系中,暗影所示的刚片与支链杆C构成了一个以C为极点的二元体,也能够去掉,获得〔e-2〕所示系统。
在图〔e-2〕中暗影所示的刚片与地基只用两个链杆连结,很显然,这是一个几何可变系统,缺乏一个必需拘束。
所以,原系统为几何可变系统,缺乏一个必需拘束。
1-1(f)〔f-1〕f〕原系统中暗影所示的刚片与系统的其他局部用一个链杆和一个定向支座相连,切合几何不变系统的构成规律。
所以,能够将该刚片和相应的拘束去掉只剖析其他局部。
很显然,余下的局部〔图〔f-1〕〕是一个几何不变系统,且无剩余拘束。
所以,原系统为几何不变系统,且无剩余拘束。
1-1(g)〔g〕〔g-1〕〔g-2〕解原系统中暗影所示的刚片与系统的其他局部用三个链杆相连,切合几何不变系统的构成规律。
所以,能够将该刚片和相应的拘束去掉,只剖析其他局部。
余下的局部〔图〔g-1〕〕在去掉一个二元体后,只剩下一个悬臂杆〔图〔g-2〕〕。
所以,原系统为几何不变系统,且无剩余拘束。
1-1(h)〔h〕〔h-1〕解原系统与根基用一个铰和一个支链杆相连,切合几何不变系统的构成规律。
《结构力学》第01章在线测试《结构力学》第01章在线测试剩余时间:47:01答题须知:1、本卷满分20分。
2、答完题后,请一定要单击下面的“交卷”按钮交卷,否则无法记录本试卷的成绩。
3、在交卷之前,不要刷新本网页,否则你的答题结果将会被清空。
第一题、单项选择题(每题1分,5道题共5分)1、结构力学的研究对象是A、单根杆件B、杆件结构C、板壳结构D、实体结构2、对结构进行刚度计算,是为了保证结构A、不发生刚体运动B、美观实用C、不致发生过大的变形D、既经济又安全3、板的厚度A、远远大于它的长和宽B、远远小于它的长和宽C、等于它的长和宽D、与它的长和宽是同一量级的4、固定铰支座有几个约束反力分量?A、一个B、两个C、三个D、四个5、固定端支座有几个约束反力分量?A、一个B、两个C、三个D、四个第二题、多项选择题(每题2分,5道题共10分)1、下列哪种情况应按空间结构处理A、所有杆件的轴线都位于同一平面内,荷载与该平面垂直B、所有杆件的轴线都不位于同一平面内C、所有杆件的轴线都位于同一平面内,荷载也作用在该平面内D、所有杆件的轴线都位于同一平面内,荷载与该平面平行E、荷载不作用在结构的平面内2、按几何形状,结构可分为A、杆系结构B、板结构C、实体结构D、壳结构E、建筑结构3、为了保证结构既经济又安全,要计算结构A、强度B、刚度C、稳定性D、内力E、位移4、铰结点的约束特点是A、约束的各杆端不能相对移动B、约束的各杆端可相对转动C、约束的各杆端不能相对转动D、约束的各杆端可沿一个方向相对移动E、约束的各杆端可相对移动5、如果在一结点处,一些杆端刚结在一起,而另一些杆端铰结一起,这样的结点称为A、刚结点B、铰结点C、组合结点D、不完全铰结点E、半铰结点第三题、判断题(每题1分,5道题共5分)1、实体结构的厚度与其它两个尺度是同一量级。
正确错误2、结构力学是研究杆件结构的强度、刚度和稳定性的一门学科。
正确错误3、在多数情况下,不能忽略一些次要的空间约束,而将实际结构分解为平面结构。
《结构力学》第01章在线测试第一题、单项选择题(每题1分,5道题共5分)1、对结构进行强度计算的目的,是为了保证结构A、既经济又安全B、不致发生过大的变形C、美观实用D、不发生刚体运动2、结构的刚度是指A、结构保持原有平衡形式的能力B、结构抵抗失稳的能力C、结构抵抗变形的能力D、结构抵抗破坏的能力3、杆系结构中的构件的长度A、等于截面的高和宽B、与截面的高和宽是同一量级C、远远小于截面的高和宽D、远远大于截面的高和宽4、对结构进行强度计算目的是为了保证结构A、既经济又安全B、不致发生过大的变形C、美观实用D、不发生刚体运动5、固定铰支座有几个约束反力分量?A、一个B、两个C、三个D、四个第二题、多项选择题(每题2分,5道题共10分)1、下列哪种情况不是平面结构A、所有杆件的轴线都位于同一平面内,荷载也作用在该平面内B、所有杆件的轴线都位于同一平面内,荷载与该平面垂直C、所有杆件的轴线都位于同一平面内,荷载与该平面平行D、所有杆件的轴线都不位于同一平面内E、荷载不作用在结构的平面内2、铰结点的约束特点是A、约束的各杆端不能相对移动B、约束的各杆端可相对转动C、约束的各杆端不能相对转动D、约束的各杆端可沿一个方向相对移动E、约束的各杆端可相对移动3、刚结点的约束特点是A、约束各杆端不能相对移动B、约束各杆端不能相对转动C、约束的各杆端可沿一个方向相对移动D、约束各杆端可相对转动E、约束各杆端可相对移动4、可动铰支座的特点是A、约束杆端不能移动B、允许杆端转动C、只有一个约束力偶D、允许杆端沿一个方向移动E、只有一个反力5、固定端支座的特点是A、不允许杆端移动B、只有一个反力C、允许杆端转动D、不允许杆端转动E、有两个反力和一个反力偶第三题、判断题(每题1分,5道题共5分)1、结构是建筑物和构筑物中承受荷载起骨架作用的部分。
正确错误2、板壳结构的厚度远远小于其它两个尺度。
正确错误3、为了保证结构不致发生过大的变形影响了正常使用,要求结构要有足够的强度。
第1章 绪论(无习题)第2章 平面体系的几何组成分析习题解答习题2.1 是非判断题(1) 若平面体系的实际自由度为零,则该体系一定为几何不变体系。
( )(2) 若平面体系的计算自由度W =0,则该体系一定为无多余约束的几何不变体系。
( ) (3) 若平面体系的计算自由度W <0,则该体系为有多余约束的几何不变体系。
( ) (4) 由三个铰两两相连的三刚片组成几何不变体系且无多余约束。
( )(5) 习题2.1(5) 图所示体系去掉二元体CEF 后,剩余部分为简支刚架,所以原体系为无多余约束的几何不变体系。
( )B DACEF习题 2.1(5)图(6) 习题2.1(6)(a)图所示体系去掉二元体ABC 后,成为习题2.1(6) (b)图,故原体系是几何可变体系。
( )(7) 习题2.1(6)(a)图所示体系去掉二元体EDF 后,成为习题2.1(6) (c)图,故原体系是几何可变体系。
()(a)(b)(c)AEBFCD习题 2.1(6)图【解】(1)正确。
(2)错误。
0W 是使体系成为几何不变的必要条件而非充分条件。
(3)错误。
(4)错误。
只有当三个铰不共线时,该题的结论才是正确的。
(5)错误。
CEF 不是二元体。
(6)错误。
ABC 不是二元体。
(7)错误。
EDF 不是二元体。
习题2.2 填空(1) 习题2.2(1)图所示体系为_________体系。
习题2.2(1)图(2) 习题2.2(2)图所示体系为__________体系。
习题2-2(2)图(3) 习题 2.2(3)图所示4个体系的多余约束数目分别为_______、________、__________、__________。
习题2.2(3)图(4) 习题2.2(4)图所示体系的多余约束个数为___________。
习题2.2(4)图(5) 习题2.2(5)图所示体系的多余约束个数为___________。
习题2.2(5)图(6) 习题2.2(6)图所示体系为_________体系,有_________个多余约束。
第1章
1-1分析图示体系的几何组成。
解 原体系依次去掉二元体后,得到一个两铰拱(图(a-1))。
因此,原体系为几何不变体系,且有一个多余约束。
1-1 (b)
解 原体系依次去掉二元体后,得到一个三角形。
因此,原体系为几何不变体系,且无多余约束。
(a )
(a-1)
(b )
(b-1)
(b-2)
1-1 (c)
(c-2) (c-3)
解 原体系依次去掉二元体后,得到一个三角形。
因此,原体系为几何不变体系,且无多余约束。
1-1 (d)
(d-1) (d-2) (d-3)
解 原体系依次去掉二元体后,得到一个悬臂杆,如图(d-1)-(d-3)所示。
因此,原体系为几何不变体系,且无多余约束。
注意:这个题的二
元体中有的是变了形的,分析要注意确认。
(d )
(c-1)
1-1 (e)
解原体系去掉最右边一个二元体后,得到(e-1)所示体系。
在该体系中,阴影所示的刚片与支链杆C组成了一个以C为顶点的二元体,也可以去掉,得到(e-2)所示体系。
在图(e-2)中阴影所示的刚片与地基只用两个链杆连接,很明显,这是一个几何可变体系,缺少一个必要约束。
因此,原体系为几何可变体系,缺少一个必要约束。
1-1 (f)
解原体系中阴影所示的刚片与体系的其它部分用一个链杆和一个定向支座相连,符合几何不变体系的组成规律。
因此,可以将该刚片和相应的约束去掉只分析其余部分。
很明显,余下的部分(图(f-1))是一个几何不变体系,且无多余约束。
因此,原体系为几何不变体系,且无多余约束。
1-1 (g)
解原体系中阴影所示的刚片与体系的其它部分用三个链杆相连,符合几何不变体系的组成规律。
因此,可以将该刚片和相应的约束去掉,只分析其余部分。
余下的部分(图(g-1))在去掉一个二元体后,只剩下一个悬臂杆(图(g-2))。
因此,原体系为几何不变体系,且无多余约束。
(e)(e-1)
A
B C
A
B
(e-2)
(f)
(f-1)
(g)(g-1)(g-2)
1-1 (h)
解 原体系与基础用一个铰和一个支链杆相连,符合几何不变体系的组成规律。
因此,可以只分析余下部分的内部可变性。
这部分(图(h-1))可视为阴影所示的两个刚片用一个杆和一个铰相连,是一个无多余约束几何不变体系。
因此,原体系为几何不变体系,且无多余约束。
1-1 (i)
解 这是一个分析内部可变性的题目。
上部结构中,阴影所示的两个刚片用一个铰和一个链杆相连(图(i-1))。
因此,原体系为几何不变体系,且无多余约束。
(h )
(h-1)
(i )
(i-1)
1-1 (j)
解 去掉原体系中左右两个二元体后,余下的部分可只分析内部可变性(图(j-1))。
本题中杆件比较多,这时可考虑由基本刚片通过逐步添加杆件的方法来分析。
首先将两个曲杆部分看成两个基本刚片(图(j-2))。
然后,增加一个二元体(图(j-3))。
最后,将左右两个刚片用一个铰和一个链杆相连(图(j-4)),组成一个无多余约束的大刚片。
这时,原体系中的其余两个链杆(图(j-5)中的虚线所示)都是在两端用铰与这个大刚片相连,各有一个多余约束。
因此,原体系为几何不变体系,有两个多余约束。
(j-1)
(j-3)
(j-5)
1-2分析图示体系的几何组成。
1-2 (a)
解 本例中共有11根杆件,且没有二元体,也没有附属部分可以去掉。
如果将两个三角形看成刚片,选择两个三角形和另一个不与这两个三角形相连的链杆作为刚片(图(a-1))。
则连接三个刚片的三铰(二虚、一实)共线,故体系为几何瞬变体系。
1-2 (b)
解 体系中有三个三角形和6根链杆,因此,可用三刚片规则分析(图(b-1)),6根链杆构成的三个虚铰不共线,故体系为几何不变体系,且无多余约束。
(a )
(b )
(b-1)
1-2 (c)
解 本例中只有7根杆件,也没有二元体或附属部分可以去掉。
用三刚片6根链杆的方式分析,杆件的数目又不够,这时可以考虑用三刚片、一个铰和4根链杆方式分析(图(c-1)),4根链杆构成的两个虚铰和一个实铰不共线,故体系为几何不变体系,且无多余约束。
1-2 (d)
解 本例中有9根杆件,可考虑用三刚片6根链杆的方式分析。
因为体系中每根杆件都只在两端与其它杆件相连,所以,选择刚片的方案比较多,如图(d-1)和(d-2)所示。
因为三个虚铰共线,体系为瞬变体系。
(c )
(d ) (d-1)
(c-1)
Ⅰ
Ⅱ
Ⅲ
(Ⅰ、Ⅱ) (Ⅱ、Ⅲ) (Ⅰ、Ⅲ)
(Ⅰ、Ⅲ)
(Ⅱ、Ⅲ)
(d-2)
Ⅰ (Ⅰ、Ⅱ)
Ⅱ
Ⅲ
1-2 (e)
解 本例中刚片Ⅰ用三根链杆与地基相连,组成一个无多余约束的大刚片;刚片Ⅱ又用一个平行链杆和一个支链杆与这个大刚片相连。
因此,原体系是一个几何不变体系,且无多余约束。
1-2 (f)
解 本例中可直接分析上部结构的内部可变性。
上部结构中三角形比较多,可以选择一个三角形和另外两对三角形作为三个刚片(图(f-1)),用三刚片规则分析。
很明显,上部结构为几何不变体系,且无多余约束。
因此,原体系是一个几何不变体系,且无多余约束。
(e ) (f )
(e-1)
Ⅱ
Ⅰ
(Ⅱ、Ⅲ) (Ⅰ、Ⅱ)
Ⅲ
Ⅰ
Ⅱ
(f-1)
(Ⅰ、Ⅲ)
1-2 (g)
解 首先,去掉顶部二元体,将只在两端用铰与其它部分相连的两个折杆看成连接两个铰的直杆(图(g-1))。
然后,选择阴影所示的两个杆件和地基为刚片,用三刚片规则分析。
因为连接三刚片的两个虚铰和一个实铰不共线,故原体系为几何不变体系,且无多余约束。
1-2 (h)
解 首先,去掉顶部二元体。
然后,将中间横杆去掉,只分析余下的两个部分,如图(h-1)所示。
先看左边部分,选择两个竖杆和地基作为三个刚片,很容易分析这是一个几何不变体系,且无多余约束。
同理,右边部分也和地基构成一个无多余约束的几何不变体系。
将左右两个部分及地基看成一个无多余约束的大刚片,这个大刚片与去掉的横杆用两个铰连接,很明显有一个多余约束。
因此原体系为几何不变体系,且有一个多余约束。
(g ) (h )
(Ⅰ、(h-1)
1-2 (i)
解 首先,去掉两个二元体。
然后,将与地基用铰相连的链杆看成支
链杆。
这样上部结构就与地基有4个约束,可以考虑将地基看成一个刚片(刚片Ⅲ),三角形和其中一个链杆看成刚片(阴影所示),另外两个杆件看成联系,如图(i-1)所示。
连接三个刚片的三个虚铰不共线,因此,原体系为几何不变体系,且无多余约束。
(i ) (Ⅱ、Ⅲ)
(Ⅰ、Ⅲ)(i-1)
Ⅱ Ⅰ
(Ⅰ、Ⅱ)
1-2 (j)
解 本例中的上部结构与基础之间有4个约束。
将基础(刚片Ⅲ)和图(j-1)阴影所示的两个部分看成三个刚片,用三刚片规则分析。
很明显,连接三个刚片的三个铰共线。
因此,原体系为几何瞬变体系。
1-2 (k)
解 首先,将中间没有多余约束的几何不变部分,用铰接三角形代替。
代替的原则是在相同的位置、用相同的约束与其它部分连接。
然后,将基础看成一个连接两个底铰的链杆。
最后,选择图(k-1)所示的三个刚片进行分析。
因为三铰共线,原体系为几何瞬变体系。
(j )
(Ⅰ、Ⅲ)
(Ⅰ、Ⅱ)
(k-1)
1-3将图示超静定结构通过解除约束改造成静定结构(不少于三种选择)。
1-3 (a)
1-3 (b)
(b )
(b-1)
(b-2)
(b-3)
(a-1)
(a-2) (a-3)
1-3 (c)
1-3 (d)
1-3 (e)
(d)
(e)
(c)(c-1)(c-2)(c-3)
(d-1)d-1(d-3)
(d-2)
(e-1)
(e-2)(e-3)
1-3 (f)
1-3 (g)
1-3 (h)
(f )
(h )
(g-1)
(g-2)
(h-1)
(h-2)
(h-3)
(f-1)
(f-2)
(f-3)。