圆锥曲线的定义及其应用
- 格式:doc
- 大小:209.00 KB
- 文档页数:3
圆锥曲线的统一定义圆锥曲线的统一定义:1. 什么是圆锥曲线:圆锥曲线是指满足特定条件的曲线,它利用三角函数与立体几何图形结合生成。
简言之,当一条曲线贯穿一个圆孤和一个平面,并在圆上和平面上满足有关关系时,它就是圆锥曲线。
2. 圆锥曲线的数学特征:圆锥曲线是一种曲线,它满足特定的约束关系,可以由方程组表示:r=z/cosθ或r=1/sinθ。
其中,r为曲线上任意点到圆锥的拱顶的距离,z为曲线上任意点到圆锥的中心的距离,θ为曲线上任意点到拱顶的夹角。
3. 圆锥曲线的物理应用:圆锥曲线是多方面用途,在工程应用中有着重要地位,主要是因为圆锥曲线可用来表示周向和纵向的形变,它们也经常用于航空、船舶和汽车的设计。
例如,它可以用来表示飞机机翼的形状。
4. 圆锥曲线的构成:圆锥曲线由一个圆锥和一个平面构成,所以它也常被称为圆锥-平面曲线,是指当一条曲线贯穿一个圆锥和一个平面,并在圆锥上和平面上满足有关关系(且这两个关系上的函数要满足l次可积方程)时,它就称为圆锥曲线。
5. 相关几何定义:圆锥曲线通过以下几何定义确定:它可以由一个圆柱体和一个平面构成,其中圆柱体由一条等流线和一条垂直于它的矢量组成,平面由它的法线矢量和一条曲线组成。
该曲线(椭圆或双曲线)的一条切线扫描等流线,而另一条切线与平面的法线构成的平面垂直;这两条切线将圆柱体分成两个由圆盘和一段圆锥组成的元件。
6. 解析表达式:可以使用两个方程描述圆锥曲线:r=z/cosθ或r=1/sinθ,其中,r为曲线上任意点到圆锥的拱顶的距离;z为曲线上任意点到圆锥的中心的距离;θ为曲线上任意点到拱顶的夹角。
结合几何定义及数学特征,可以更容易地理解两个方程。
圆锥曲线在高考数学中的应用圆锥曲线在高考数学中的应用是一个广为人知的话题。
圆锥曲线是数学中非常重要的一个概念,它在几何、代数、物理等多个领域中都有着广泛的应用,同时也是高中数学中的重要知识点之一。
在高考中,圆锥曲线不仅是数学选择题中常出现的题型,而且在解析几何中也有重要的应用和指导意义。
一、圆锥曲线的定义和分类在空间直角坐标系中,对于任意给定的两个定点 F1 和 F2 ,以及一个正实数 e(离心率),设点 P(x, y,z) 在平面 F1PF2 上,且点 P 到 F1、F2 两点的距离之比为 e,则称 P(x, y,z) 所在的曲线为椭圆,当 e=1 时,称为双曲线。
以直角坐标系中的 x 轴为对称轴,离心率为 e 的曲线称为扁平椭圆,离心率为 1 的曲线称为各向同性圆;以直角坐标系中的 y 轴为对称轴,离心率为 e 的曲线称为长圆,离心率为 1 的曲线称为抛物线;直角坐标系中过 y 轴的某一条直线称为对称轴,离心率为 e 的曲线称为双曲线,当 e=1 时,曲线即为平行于对称轴的两条渐进线的双曲线。
二、圆锥曲线在高考中的应用1. 选择题中的圆锥曲线圆锥曲线作为数学中重要的知识点之一,也是高考数学试卷中出现频率较高的题型之一。
在选择题中,考生通常需要根据所给出的条件来确定所求函数方程的类型,根据曲线的性质推算出符合条件的答案。
例如:已知点 A(2,0)、B(0,1) 和抛物线 C:y=mx^2+mx-1 的顶点在直线AB 上,且交点为 D。
则一个满足 D(-2,-3) 的曲线方程式为(A)双曲线(B)椭圆(C)抛物线(D)圆这道问题主要考察考生对于曲线类型的判断能力和对于直线方程、抛物线特征等知识点的掌握能力。
2. 解析几何中的圆锥曲线在解析几何中,圆锥曲线是几何学中不可或缺的内容之一。
其中,椭圆、双曲线和抛物线最为常见,它们的数学模型、特征方程以及轨迹方程等知识点在高考中都有一定的出现概率。
例如:已知椭圆的中心在坐标原点,长轴为 10,短轴为 6,曲线经过点(8,0)和(-8,0),则该椭圆的方程是:(A)x^2/25+y^2/9=1(B)x^2/100+y^2/36=1(C)x^2/36+y^2/100=1(D)x^2 /9+y^2/25=1这个问题主要考察考生通过已知条件推导出椭圆的方程的能力,需要对于椭圆的中心、坐标轴长度等特征有较为准确的掌握。
圆锥曲线的光学性质及其应用圆锥曲线是平面几何中的重要概念,它具有许多独特的光学性质和应用。
在本文中,我们将探讨圆锥曲线的光学性质以及其在现实生活中的应用。
一、圆锥曲线的基本概念圆锥曲线是由平面上的一根直线和一个点所决定的曲线。
根据直线和点的位置关系,圆锥曲线可以分为椭圆、双曲线和抛物线三种类型。
椭圆是一种闭合曲线,它的定义是到两个定点的距离之和等于常数的点的集合。
双曲线是一种开放曲线,它的定义是到两个定点的距离之差等于常数的点的集合。
而抛物线是一种开放曲线,它的定义是到一个定点的距离等于到一条直线的距离的点的集合。
二、圆锥曲线的光学性质1.焦点和直径椭圆和双曲线都有焦点和直径的概念。
焦点是曲线上所有点到定点的距离之和等于常数的点的集合,而直径则是通过焦点的直线段。
焦点和直径是圆锥曲线的重要特征,它们在光学系统中有着重要的作用。
2.反射性质圆锥曲线具有良好的反射性质,它们可以将光线聚焦或者发散。
椭圆和双曲线可以将平行光线聚焦到焦点上,这种性质被应用在椭圆和双曲线反射镜中。
而抛物线则具有将入射光线聚焦到焦点上的性质,这种性质在抛物面反射镜中有着广泛的应用。
3.折射性质圆锥曲线也具有良好的折射性质,它们可以将光线聚焦或者发散。
这种性质被应用在折射镜和透镜中,可以用来调节光线的聚焦和散射。
4.散焦性质圆锥曲线还具有散焦性质,这种性质在光学系统中有着重要的应用。
椭圆和双曲线反射镜可以将平行光线聚焦到焦点上,这种性质被应用在望远镜和激光器中。
而抛物线反射镜可以将平行光线聚焦到焦点上,并使其散开成平行光线,这种性质被应用在卫星天线和抛物面反射镜中。
三、圆锥曲线在现实生活中的应用1.光学系统圆锥曲线在许多光学系统中有着重要的应用,例如望远镜、显微镜、相机镜头等。
这些光学系统都利用了圆锥曲线的焦距和聚焦性质,来实现光线的聚焦和成像。
2.通讯设备圆锥曲线也被广泛应用在通讯设备中,例如卫星天线和天线反射器。
这些设备利用了抛物线反射镜的散焦性质,来实现对信号的接收和发送。
高考数学中的圆锥曲线知识高考数学中的圆锥曲线是一道重要的考题,也是很多学生容易失分的一道难题。
圆锥曲线是指平面上坐标系中的一种特殊的曲线,也是数学的重要分支之一。
本文将介绍圆锥曲线的基本概念,分类和应用,希望能对广大考生有所帮助。
一、圆锥曲线的基本概念1.圆锥圆锥是一个由一个圆绕着它的直径周而复始地旋转而成的立体物体,其中:该直径是铅锤线,圆锥的底面是这个圆,圆锥的顶点是铅锤线的另一端。
2.圆锥曲线的概念在平面直角坐标系中,将一个固定的点F(称为焦点)与一个固定的直线L(称为直角准线)连接。
在平面上,连结点P到直线L的距离为PF和P到点F的距离的比等于定值e(e>0)。
这样得到的曲线称为圆锥曲线。
圆锥曲线分为三种情况:椭圆、双曲线和抛物线。
二、圆锥曲线的分类1.椭圆椭圆是平面上与两个焦点F1,F2的距离之和等于定值2a(a>0)的点P的轨迹。
椭圆是圆锥曲线中最简单的一种形式。
椭圆可以通过平移、伸缩、旋转对平面上的圆形进行简单的变换。
2. 双曲线双曲线是平面上与两个焦点F1,F2的距离之差等于定值2a (a>0)的点P的轨迹。
双曲线有两条渐进线,即切射线和渐进线。
3. 抛物线抛物线是平面上焦点F到直线L的距离等于点P到焦点F的距离的平方与定值a(a>0)成正比例的点P的轨迹。
抛物线的形状像一个平翻的碗,有上凸抛物和下凸抛物两种。
三、圆锥曲线的应用1. 物理学圆锥曲线在物理学中得到广泛的应用。
例如,在宇宙空间中,行星的轨迹可以用椭圆来描述。
在天体力学中,利用双曲线描绘有关天体的相对运动情况。
抛物线则可用于描述抛体的轨迹。
2. 工程学圆锥曲线在工程学中也有重要的应用,特别是在光学的设计中。
例如,望远镜的光学系统用到的镜面都是椭圆形的;飞机的机翼、车轮和机器的轮子都是利用圆锥的形状进行设计的。
3. 数学研究圆锥曲线在数学研究中的应用也是相当广泛的,例如,利用双曲线求解微积分中的积分问题;还可以用抛物线中的特殊几何性质证明三次方程有一个实根。
圆锥曲线知识点总结圆锥曲线,是由平面上一个动点到两个定点的距离之比为定值的点的轨迹。
圆锥曲线是解析几何的重要内容,广泛应用于数学、物理、工程等领域。
本文将对圆锥曲线的相关知识进行总结,帮助读者更好地理解和掌握这一概念。
一、基本概念1. 定义:圆锥曲线是平面上一个动点到两个定点的距离之比为定值的点的轨迹。
2. 定点:圆锥曲线的两个定点分别称为焦点。
3. 对称轴:通过两个焦点并垂直于准线的直线称为对称轴。
4. 准线:通过两个焦点的直线段称为准线。
二、椭圆1. 定义:椭圆是圆锥曲线的一种,其离心率小于1,且焦点不重合的曲线。
2. 方程:椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1,其中a和b分别是椭圆的半长轴和半短轴。
3. 性质:椭圆具有对称性、渐近线和切线性质等。
4. 应用:椭圆在天文学、建筑学和电子等领域应用广泛。
三、双曲线1. 定义:双曲线是圆锥曲线的一种,其离心率大于1的曲线。
2. 方程:双曲线的标准方程为x^2/a^2 - y^2/b^2 = 1,其中a和b分别是双曲线的半长轴和半短轴。
3. 性质:双曲线具有渐近线和切线性质,且有两个分支。
4. 应用:双曲线在物理学、天文学和通信等领域有重要应用。
四、抛物线1. 定义:抛物线是圆锥曲线的一种,其离心率等于1的曲线。
2. 方程:抛物线的标准方程为y^2 = 4ax,其中a是抛物线的焦点到准线的距离。
3. 性质:抛物线具有对称性、渐近线和切线性质等。
4. 应用:抛物线在物理学、工程学和天文学等领域有广泛应用。
五、圆1. 定义:圆是圆锥曲线的一种,其离心率等于0的曲线。
2. 方程:圆的标准方程为(x-h)^2 + (y-k)^2 = r^2,其中(h, k)是圆心的坐标,r是半径长度。
3. 性质:圆具有对称性、切线性质和切圆定理等。
4. 应用:圆在几何学、物理学和工程学等领域有广泛应用。
总结:圆锥曲线是解析几何的重要内容,包括椭圆、双曲线、抛物线和圆。
圆锥曲线的性质及推广应用圆锥曲线的性质及推广应用摘要:在高中阶段,学生对圆锥曲线性质的掌握及应用,是现今我国高考数学的考查重点。
作为高中数学教师,我们要积极探究圆锥曲线在解析几何下的分类,然后利用这些平面解析几何的知识以及数形结合的数学思考模式,对圆锥曲线的基本性质及推广应用进行总结、证明,并将其应用于对学生的解题教学中。
关键词:高中数学;圆锥曲线;性质;推广;应用;解题圆锥曲线是解析几何的重要内容,其对于几何问题的研究却是利用代数的解题方法。
而且,对于高中生来说,圆锥曲线的性质掌握及其推广应用是目前我国高考数学的重点考查内容。
从更深层次来讲,加强对于圆锥曲线分类与性质的研究,在一定程度上可以帮助学生打开解题思路、提高解题技巧,同时培养学生以数学思维能力、创新能力为代表的综合能力。
因此,为了使学生能够更好地掌握圆锥曲线的性质及其的推广应用,且进一步提高学生的数学学习素质,作为高中数学教师的我们,就要积极探讨圆锥曲线在解析几何下的分类及其性质,注重对学生圆锥曲线性质及其推广应用的教学。
一、圆锥曲线的定义对于圆锥曲线在解析几何下的分类及性质的研究前提,是对于圆锥曲线定义的了解及掌握。
本文,笔者从三个方面介绍圆锥曲线的定义。
1、从几何的观点出发。
我们说,如果用一个平面去截取另一个平面,然后两个平面的交线就是我们所要研究的圆锥曲线。
严格来讲,圆锥曲线包含许多情况的退化,由于学生对于数学知识学习的局限性,对于圆锥曲线的教学,我们通常包含椭圆、双曲线和抛物线,这三类的知识内容。
2、从代数的观点出发。
在直角坐标系中,对于圆锥曲线的定义就是二元二次方程的图像。
高中生在其的学习中,可以根据其判别式△的不同,分为椭圆、双曲线、抛物线以及其他几种退化情形。
3、从焦点-准线的观点出发。
在平面中有一个点,一条确定的直线与一个正实常数e,那么所有到点与直线的距离之比都为e的点,所形成的图像就是圆锥曲线。
学生在具体的圆锥曲线学习中可以了解到,如果e的取值不同,这些点所形成的具体的图像也不同。
圆锥曲线的定义与性质及其应用圆锥曲线是数学中研究的一类平面曲线,包括椭圆、双曲线和抛物线。
它们具有独特的性质和广泛的应用。
本文将对圆锥曲线的定义、性质以及一些实际应用进行介绍。
1. 圆锥曲线的定义圆锥曲线是在一个平面上,以一点为焦点,一条直线为准线,到该直线上各点的距离与到焦点的距离之比等于一个常数的点构成的曲线。
根据准线与焦点的位置关系,圆锥曲线可以分为三类:椭圆、双曲线和抛物线。
2. 椭圆的性质与应用椭圆是一种闭合的曲线,其定义为到两个焦点距离之和等于常数的点的集合。
椭圆具有以下性质:- 椭圆的长轴和短轴:椭圆的两个焦点之间的距离等于椭圆的长轴,而通过椭圆中心且垂直于长轴的线段称为椭圆的短轴。
- 焦点定理:对于椭圆上的任意一点P,其到两个焦点的距离之和等于椭圆的长轴的长度。
- 在物理学和天文学中,椭圆常用来描述行星、彗星和卫星的轨道。
3. 双曲线的性质与应用双曲线是一种开放的曲线,其定义为到两个焦点距离差的绝对值等于常数的点的集合。
双曲线具有以下性质:- 双曲线的渐近线:双曲线有两条渐近线,其与曲线的距离趋近于零,且曲线无限延伸。
- 双曲线的离心率:双曲线的离心率大于1。
离心率是描述焦点与准线距离关系的重要参数。
- 在物理学中,双曲线常用来描述电磁波的传播和光学系统中的折射现象等。
4. 抛物线的性质与应用抛物线是一种开放的曲线,其定义为到焦点距离等于到准线的距离的点的集合。
抛物线具有以下性质:- 抛物线的对称性:抛物线以焦点为中心,与焦点到准线垂直的线段称为对称轴。
抛物线上的任意一点到焦点和准线的距离相等。
- 抛物线的焦距:焦点到对称轴的距离称为抛物线的焦距,是抛物线性质研究和计算的重要参数。
- 在物理学中,抛物线常用来描述抛射物的运动轨迹,以及天文学中的天体运动等。
5. 圆锥曲线的应用举例圆锥曲线在科学和工程领域具有广泛的应用,以下举几个例子:- 天体运动:行星、彗星和卫星的轨道通常用椭圆来描述,能够帮助科学家研究它们的运动规律。
研究圆锥曲线的参数方程和应用圆锥曲线是数学中一类重要的曲线形式,具有广泛的应用价值。
其中,参数方程是圆锥曲线研究中非常重要的工具,可以将曲线的表达式转化为方便求解的参数形式。
本文将介绍圆锥曲线的参数方程以及它们在实际应用中广泛的使用情况。
1. 圆锥曲线的定义圆锥曲线是由一个直接的平面截过一个圆锥体而形成的曲线。
圆锥曲线包括三种基本形式:椭圆、双曲线和抛物线。
椭圆:指的是圆锥体上大于一个圆的平面截面。
在椭圆中,所有到两个焦点距离之和相等的点构成了曲线。
双曲线:指的是圆锥体上小于一个圆的平面截面。
在双曲线中,所有到两个焦点距离之差相等的点构成曲线。
抛物线:指的是圆锥体上与底面平行的平面截面。
在抛物线中,所有到定点距离等于焦距的点构成曲线。
这三种基本形式的圆锥曲线向往往都有许多重要的应用,比如在椭圆轨道问题、天文学、工程建筑等。
2. 圆锥曲线的参数方程一般情况下,我们用代数方程来表示曲线,但是在某些情况下,采用参数方程能够更好地揭示曲线的性质。
圆锥曲线也可以用参数方程来表示。
以椭圆为例,它的参数方程为:x=a*cosθy=b*sinθ其中,a、b分别表示椭圆在x轴和y轴上的半轴长度,θ是参数,通常取值范围为[0, 2π]。
参数θ确定了曲线上的每一个点,这个点的坐标(x,y)可以通过参数θ计算出来。
同理,对于双曲线和抛物线,也可以采用参数方程来表示。
以双曲线为例,其参数方程为:x=a*coshθy=b*sinhθ同样,a、b表示双曲线在x 轴和y轴上的半轴长度,θ为参数。
抛物线的参数方程则为:x=a*ty=bt²其中,a和b为常数,t为参数。
不同的a和b可以绘制出不同的抛物线。
3. 圆锥曲线的应用圆锥曲线在科学和技术领域中都有广泛的应用。
以下是圆锥曲线在不同领域的应用:(1)数学:圆锥曲线是数学中重要的研究对象,它们不仅具有许多美妙的性质,还可以被用于解决科学和工程中的各种问题。
通过求解参数方程,我们可以推导出圆锥曲线的各种性质,例如面积、周长、离心率、焦距以及抛物线的焦点等。
一、圆锥曲线的光学性质及其应用-人教A版选修2-1教案一、圆锥曲线的定义圆锥曲线是指在平面直角坐标系中,一个圆锥侧面被一个平面所截得的曲线,它包括三种类型:椭圆、双曲线和抛物线。
二、圆锥曲线的光学性质1. 椭圆的光学性质椭圆是对光线最有用的,因为它的平面镜像完美呈现。
这的确使它成为一种有用的光学形状,能够聚焦平行的光线。
椭圆形可以将光线聚到一个焦点上,焦点也可以在椭圆的另一侧。
光线与椭圆的长轴平行,则经过椭圆后聚焦到焦点上。
光线与椭圆的短轴平行,则经过椭圆后聚焦到焦点的对侧。
2. 双曲线的光学性质可以利用双曲线将光线聚焦到一点上。
这是一个非常重要的特性,因为这在许多光学设备中都得到应用,如天文望远镜和摄影望远镜等。
双曲线的光学性质是焦点成对出现,其中一个为真实焦点,另一个为虚点。
当光线平行于双曲线的一条渐近线时,经过双曲线后就会聚焦到真实焦点上;当光线穿过双曲线的另一条渐近线时,经过双曲线后就会发散。
3. 抛物线的光学性质抛物线形可以将光线聚到一个焦点上,这种光学性质在从点光源发出的光线聚焦到一个点上的情况下被广泛应用。
抛物线的焦点在抛物线的对称轴上,与焦点距离为顶点到焦点的距离,这个距离被称为焦距。
对于发散光线,抛物线会使光线变得平行;对于汇聚光线,则在焦点处到达聚焦状态。
三、圆锥曲线的应用1. 圆锥曲线在望远镜中的应用望远镜是一种典型的利用圆锥曲线的光学仪器。
在折射望远镜中,主反射面和次反射面通常以椭圆、抛物线和双曲线的形状构成,并且采用这些曲线会使聚焦更加精确。
椭圆和双曲线曲面反射镜因具有纵、横焦距而具对焦范围更广,因此常用于望远镜的主反射面中。
抛物面镜更具有高度的球面照准精确度标准,因此常用于摄影望远镜中。
2. 圆锥曲线在卫星通信中的应用圆锥曲线也可用于卫星通信中,这是因为这些曲线可以用来描述无线电波的广角和狭窄角信号。
抛物线反射面可以用来聚集天线所发出的光,以便将其收集到接收器中。
3. 圆锥曲线在太阳能热能利用中的应用太阳能热能利用是一种有效的太阳能利用方式,可以充分利用可再生的太阳能资源。
完整版)圆锥曲线知识点归纳总结1.圆锥曲线的定义和构造圆锥曲线是在平面上由一个固定点(焦点)和一个固定直线(准线)决定的点集。
三种经典的圆锥曲线分别为椭圆、抛物线和双曲线。
构造圆锥曲线需要确定焦点和准线的位置以及确定参数值。
2.椭圆的特性椭圆是圆锥曲线中最常见的一种形式,由两个焦点和一个大于等于焦距的参数决定。
椭圆的离心率小于1,且离心率等于焦点到准线的距离除以准线长度。
椭圆的焦缩比为焦点到椭圆上某一点的距离与该点到准线的距离的比值。
重要公式:椭圆的标准方程为(x^2/a^2) + (y^2/b^2) = 1;焦缩比为e = c/a,其中c^2 = a^2 – b^2.3.抛物线的特性抛物线是圆锥曲线中的一种形式,由一个焦点和一个参数决定。
抛物线的离心率为1,焦缩比为1.抛物线的轴是准线,顶点是焦点和准线的交点。
重要公式:抛物线的标准方程为(x^2/4a) = y。
4.双曲线的特性双曲线是圆锥曲线中的一种形式,由两个焦点和一个焦距决定。
双曲线的离心率大于1,离心率等于焦点到准线的距离除以准线长度。
双曲线的焦缩比为c^2 = a^2 + b^2.重要公式:双曲线的标准方程为(x^2/a^2) – (y^2/b^2) = 1.5.圆锥曲线的应用圆锥曲线在数学和物理学中都有广泛的应用。
椭圆的应用包括轨道运动、天体力学以及密码学等领域。
抛物线的应用包括抛物面反射器、人工卫星的轨道设计等。
双曲线的应用包括电磁波的传播、双曲线钟的标定等。
6.圆锥曲线的性质圆锥曲线有许多共同的性质,如对称性、切线性质和焦点性质等。
对称性:椭圆和双曲线关于x轴和y轴都有对称性,抛物线关于y轴有对称性。
切线性质:圆锥曲线上任意一点的切线与焦点到该点的连线垂直。
焦点性质:圆锥曲线上的任意一点到焦点的距离与焦缩比成正比。
此文档总结了圆锥曲线的定义、特性、应用和性质等重要知识点,并提供了相关公式和图示。
熟悉了这些知识后,我们可以更加深入地理解和应用圆锥曲线的概念。
圆锥曲线定义的应用一、基本知识概要1、 知识精讲:涉及圆锥曲线上的点与两个焦点构成的三角形,常用第一定义结合正余弦定理; 涉及焦点、准线、圆锥曲线上的点,常用统一的定义。
椭圆的定义:点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};双曲线的定义:点集M={P|︱|PF 1|-|PF 2|︱=2a , |)|2(21F F a < }的点的轨迹。
抛物线的定义:到一个定点F的距离与到一条得直线L的距离相等的点的轨迹.统一定义:M={P|e dPF=,}0<e <1为椭圆,e>1为双曲线,e =1为抛物线 重点、难点:培养运用定义解题的意识 2、 思维方式:等价转换思想,数形结合 特别注意:圆锥曲线各自定义的区别与联系 二、例题选讲例1 、 已知两个定圆O 1和O 2,它们的半径分别为1和2,且|O 1O 2|=4,动圆M 与圆O 1内切,又与圆O 2外切,建立适当的坐标系,求动圆心M 的轨迹方程,并说明轨迹是何种曲线。
解:以O 1O 2的中点O 为原点,O 1O 2所在直线为轴建立平面直角坐标系。
由|O 1O 2|=4有O 1(-2,0),O 2(2,0)。
设动圆的半径为r 。
由动圆M 与圆O 1内切有|MO 1|=|r-1|. 由动圆M 与圆O 2内切有|MO 2|=r+2。
∴|MO 1|+|MO 2|=3或|MO 1|-|MO 2|=-3,∵|O 1O 2|=4∴|MO 1|-|MO 2|= -3∴M 的轨迹是以O 1、O 2为焦点,长轴为3的双曲线的左支。
所以M 的轨迹方程为1749422=-y x (x<0) [思维点拔]利用圆锥曲线定义求轨迹是一种常用的方法变式练习:F 1、F 2是椭圆12222=+by a x (a>b>0)的两焦点,P 是椭圆上任一点, 从任一焦点引∠F 1PF 2的外角平分线的垂线,垂足为Q 的轨迹为( )A .圆B .椭圆C .双曲线D .抛物线延长垂线F 1Q 交F 2P 的延长线于点A等腰三角形APF 1中,a PF PF PF AP AF AP PF 221221=+=+==∴从而a AF OQ ==∴221选A 例2:已知双曲线12222=-by a x (a >0,b >0),P为双曲线上任一点,∠F 1PF 2=θ, 求ΔF 1PF 2的面积.解:在ΔF 1PF 2中,由三角形面积公式和余弦定理得SΔF1PF2=21|PF1|·|PF2|sin θ ①(2c)2=|PF1|2+|PF2|2-2|PF1|·|PF2|cos θ ②由双曲线的定义可得|PF1|-|PF2|=2a, 即|PF1|2+|PF2|2-2|PF1|·|PF2|=4a 2③ 由②③得|PF1|·|PF2|=θcos 122-b ④ 将④①代入得SΔF1PF2=b 2θθcos 1sin -=b 2cot 2θ,所以双曲线的焦点三角形的面积为b 2cot 2θ.[思维点拔]焦点三角形中,通常用定义和正余弦定理例3:已知A(211,3)为一定点,F为双曲线127922=-y x 的右焦点,M在双曲线右支上移动,当|AM|+21|MF|最小时,求M点的坐标. 解:∵过M作MP准线于点P,则21|MF|=|MP|,∴|AM|+21|MF|=|AM|+|MP|≤|AP|.当且公当A、M、P三点共线时,|AM|+21|MF|最小。
圆锥曲线知识点总结圆锥曲线是代数几何中重要的一部分,它由平面和一个定点的两条曲线组成。
在数学的发展历史中,圆锥曲线的研究经历了漫长的时期,涉及到众多的数学家和学者的努力。
本文将对圆锥曲线的基本概念、性质、分类以及应用等知识点进行总结。
一、圆锥曲线的基本概念1. 圆锥曲线的定义圆锥曲线是由平面与一个定点和这个定点到平面上任意一点的连线组成的图形。
2. 圆锥曲线的基本元素圆锥曲线由定点称为焦点和一条固定的直线称为准线组成。
3. 圆锥曲线的标准方程圆锥曲线可以用一般的二次方程表示,即 Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0,其中A、B、C、D、E和F为常数。
4. 圆锥曲线的焦点和准线焦点是定点到平面上各点的距离与准线到这些点距离之比的极限值。
准线是过焦点且垂直于对称轴的直线。
二、圆锥曲线的性质1. 直线和圆的特例直线是当离心率为1的圆锥曲线,圆是离心率为0的圆锥曲线。
2. 焦准属性圆锥曲线上的任意一点到焦点的距离与到准线的距离之比始终为常数,这就是焦准属性。
3. 长轴和短轴圆锥曲线的焦点和准线确定了两条互相垂直的轴线,这两条轴线分别称为长轴和短轴。
4. 离心率圆锥曲线的离心率是一个反映离心程度的量,离心率为0时曲线为圆,离心率为1时曲线为直线。
5. 对称性圆锥曲线具有平移和对称性,即曲线在对称轴两侧具有相同的形状。
三、圆锥曲线的分类1. 椭圆圆锥曲线的离心率小于1,且大于0,形状近似于椭圆的曲线称为椭圆。
2. 抛物线圆锥曲线的离心率等于1,形状类似于抛物线的曲线称为抛物线。
3. 双曲线圆锥曲线的离心率大于1,形状类似于双曲线的曲线称为双曲线。
四、圆锥曲线的应用1. 天文学圆锥曲线在天文学中有广泛的应用,例如行星和彗星的轨道可以用圆锥曲线描述。
2. 工程学在工程学中,圆锥曲线被用于设计天桥、隧道、公路弯道等工程项目。
3. 经济学圆锥曲线在经济学中有重要的应用,例如需求曲线和供给曲线可以用圆锥曲线表示。
高中数学第八章圆锥曲线知识点第八章圆锥曲线是高中数学的一个重要章节,本章内容涵盖了圆锥曲线的基本定义、性质和相关的解题方法。
在本文档中,我们将详细介绍圆锥曲线的相关知识点,帮助同学们更好地理解和掌握这一部分内容。
一、圆锥曲线的基本定义1. 圆锥曲线的定义圆锥曲线是由一个固定点(焦点)和一个动点(在直线上移动)确定的几何图形。
根据焦点的位置和直线与曲线的交点情况,圆锥曲线分为椭圆、双曲线和抛物线三种情况。
2. 椭圆的定义椭圆是平面上与两个固定点的距离之和等于常数的点(焦点),构成的几何图形。
3. 双曲线的定义双曲线是平面上与两个固定点的距离之差等于常数的点(焦点),构成的几何图形。
4. 抛物线的定义抛物线是平面上与一个固定点的距离等于另一个固定点到直线的距离,构成的几何图形。
二、圆锥曲线的性质1. 椭圆的性质椭圆的离心率小于1,焦点在椭圆的内部。
椭圆有两个主轴,相互垂直,长度分别为2a和2b,其中2a是椭圆的长轴,2b是椭圆的短轴。
椭圆的面积为πab。
2. 双曲线的性质双曲线的离心率大于1,焦点在双曲线的外部。
双曲线有两个虚轴和两条实轴,相互垂直。
双曲线的面积无限大。
3. 抛物线的性质抛物线的离心率等于1,焦点在抛物线的内部。
抛物线有一个对称轴,与焦点和顶点的距离相等。
抛物线的面积为2/3 × a × h,其中a是焦点到顶点的距离,h是对称轴的长度。
三、圆锥曲线的解题方法1. 椭圆的解题方法(1)求解椭圆的标准方程,确定椭圆的中心、长轴和短轴;(2)求解椭圆的焦点和离心率;(3)利用椭圆的性质解题,例如求点到椭圆的距离或求椭圆上一点的坐标。
2. 双曲线的解题方法(1)求解双曲线的标准方程,确定双曲线的中心、虚轴和实轴;(2)求解双曲线的焦点和离心率;(3)利用双曲线的性质解题,例如求点到双曲线的距离或求双曲线上一点的坐标。
3. 抛物线的解题方法(1)求解抛物线的标准方程,确定抛物线的顶点、对称轴和焦点;(2)利用抛物线的性质解题,例如求点到抛物线的距离或求抛物线上一点的坐标。
圆锥曲线知识点整理圆锥曲线是解析几何中的重要内容,它是由圆(或椭圆、双曲线、抛物线)在一个平面上的投影形成的一类曲线。
在数学和物理学等领域,圆锥曲线有着广泛的应用。
下面将对圆锥曲线的相关知识点进行整理和说明。
一、圆锥曲线的定义及基本概念1. 圆锥曲线的定义:圆锥曲线是平面上的一条曲线,它是由一个固定点(焦点)和一个固定直线(准线)所确定的点的集合。
2. 圆锥曲线的焦点和准线:焦点是确定圆锥曲线形状的重要参数,准线是直线,在圆锥曲线的定义中起着重要作用。
3. 圆锥曲线的形状:圆锥曲线有四种形状,分别是圆、椭圆、双曲线和抛物线。
它们的形状由焦点、准线和离心率等参数确定。
二、圆锥曲线的方程及性质1. 圆的方程:圆的方程可以用一般式表示为(x-a)²+(y-b)²=r²,其中(a,b)表示圆心的坐标,r表示半径。
2. 椭圆的方程:椭圆的方程可以用标准方程表示为(x-h)²/a²+(y-k)²/b²=1,其中(h,k)表示椭圆中心的坐标,a和b分别表示椭圆在x轴和y轴上的半轴长度。
3. 双曲线的方程:双曲线的方程可以用标准方程表示为(x-h)²/a²-(y-k)²/b²=1,或(x-h)²/a²-(y-k)²/b²=-1。
其中(h,k)表示双曲线中心的坐标,a和b分别表示双曲线在x轴和y轴上的半轴长度。
4. 抛物线的方程:抛物线的方程可以用标准方程表示为y²=4ax,其中a表示抛物线的焦点到准线的距离。
5. 圆锥曲线的性质:圆锥曲线具有许多重要的性质,如对称性、离心率、焦点与准线的关系等。
这些性质对于理解和分析圆锥曲线的形状起着重要作用。
三、圆锥曲线在实际应用中的意义1. 圆锥曲线在物理学中的应用:在物理学中,圆锥曲线被广泛应用于描述物体的运动轨迹、电场和磁场分布等问题。
圆锥曲线方程及其应用1. 圆锥曲线的定义圆锥曲线是平面上点的集合,满足一个固定的距离比率的条件。
圆锥曲线分为三种类型:圆、椭圆和双曲线。
每种类型都具有不同的数学特性和应用领域。
2. 圆的方程圆是一种特殊的圆锥曲线,它是所有到圆心距离相等的点的集合。
圆的方程可以用两种形式表示:标准方程和一般方程。
2.1 标准方程圆的标准方程为 `(x - h)^2 + (y - k)^2 = r^2`,其中 `(h, k)` 为圆心的坐标,`r` 为半径的长度。
2.2 一般方程圆的一般方程为 `x^2 + y^2 + Dx + Ey + F = 0`,其中 `D`、`E`、`F` 分别为方程的系数。
3. 椭圆的方程椭圆是圆锥曲线中的一种,具有两个焦点和一个长轴和短轴的特点。
椭圆的方程可以用两种形式表示:标准方程和一般方程。
3.1 标准方程椭圆的标准方程为 `(x-h)^2/a^2 + (y-k)^2/b^2 = 1`,其中 `(h, k)` 为椭圆中心的坐标,`a` 和 `b` 分别为椭圆长轴和短轴的长度。
3.2 一般方程椭圆的一般方程为 `Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0`,其中 `A`、`B`、`C`、`D`、`E`、`F` 分别为方程的系数。
4. 双曲线的方程双曲线是圆锥曲线中的一种,具有两个焦点和两条渐近线的特点。
双曲线的方程可以用两种形式表示:标准方程和一般方程。
4.1 标准方程双曲线的标准方程为 `(x-h)^2/a^2 - (y-k)^2/b^2 = 1`,其中 `(h, k)` 为双曲线中心的坐标,`a` 和 `b` 分别为双曲线的参数。
4.2 一般方程双曲线的一般方程为 `Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0`,其中 `A`、`B`、`C`、`D`、`E`、`F` 分别为方程的系数。
5. 圆锥曲线的应用圆锥曲线在数学和工程领域中有广泛的应用。
高三数学圆锥曲线知识点在高中数学中,圆锥曲线是一个重要的概念。
它由圆、椭圆、双曲线和抛物线四种曲线构成。
掌握圆锥曲线的知识对于解决各种数学问题和应用是至关重要的。
本文将介绍高三数学圆锥曲线的知识点。
一、圆锥曲线的定义和性质圆锥曲线是一个平面上到一个定点和一个定直线的距离之比保持不变的点的轨迹。
圆锥曲线分为四种类型:圆、椭圆、双曲线和抛物线。
1. 圆:圆是所有到一个点的距离相等的点的轨迹。
圆的特点是中心坐标为(h, k),半径为r。
2. 椭圆:椭圆是所有到两个定点之和的距离之比为定值的点的轨迹。
椭圆的特点是有两个焦点F1和F2,两个焦点之间的距离为2a,离心率为e,长轴的长度为2a,短轴的长度为2b。
3. 双曲线:双曲线是所有到两个定点之差的距离之差为定值的点的轨迹。
双曲线的特点是有两个焦点F1和F2,两个焦点之间的距离为2a,离心率为e,离心率小于1。
4. 抛物线:抛物线是所有到一个定直线的距离与到一个定点的距离相等的点的轨迹。
抛物线的特点是焦点为F,准线为L,焦距为p,焦点到准线的距离为x,焦点到点P的距离为y。
二、圆锥曲线的方程1. 圆的方程:$(x-h)^2 + (y-k)^2 = r^2$,其中(h, k)为圆心的坐标,r为半径。
2. 椭圆的方程:$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$,其中(h, k)为椭圆中心的坐标,a和b分别为椭圆长半轴和短半轴的长度。
3. 双曲线的方程:$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} =1$,其中(h, k)为双曲线中心的坐标,a和b分别为双曲线长半轴和短半轴的长度。
4. 抛物线的方程:$y^2 = 4ax$,其中焦点为原点,准线为x轴,焦距为p。
三、圆锥曲线的性质和应用1. 圆的性质:圆的切线与半径垂直,圆的弦与半径垂直于弦的中点。
2. 椭圆的性质:椭圆的离心率介于0和1之间,焦点和对称轴平行。
圆锥曲线知识点总结圆锥曲线是二维平面上的几何图形,由直角圆锥与一个平面相交而产生。
它在数学、物理、工程和计算机图形等领域具有广泛的应用。
本文将对圆锥曲线的基本概念、方程、性质和应用进行总结。
一、基本概念1. 定义:圆锥曲线可以分为三种类型,即椭圆、抛物线和双曲线。
它们的定义分别是:- 椭圆:平面上到两个定点的距离之和等于常数的点的集合。
- 抛物线:平面上到一个定点的距离等于定直线的距离的点的集合。
- 双曲线:平面上到两个定点的距离之差等于常数的点的集合。
2. 方程形式:圆锥曲线可以以各种形式的方程表示。
常见的方程形式包括标准方程、参数方程和极坐标方程。
二、椭圆1. 基本性质:椭圆是一个闭合的曲线,两个焦点之间的距离是常数,而离心率小于1。
椭圆对称于两个坐标轴,并且具有两个主轴和两个焦点。
2. 椭圆的方程:椭圆的标准方程是(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)是椭圆的中心坐标,a和b分别是两个半轴的长度。
3. 参数方程:椭圆的参数方程是x = h + a*cos(t),y = k + b*sin(t),其中t是参数的角度。
4. 极坐标方程:椭圆的极坐标方程是r = (a*b) / sqrt((b*cos(t))² + (a*sin(t))²),其中r是极径,t是极角。
5. 应用:椭圆在日常生活中有多种应用,例如天体运动的轨道、水平仪和椭圆形浴缸等。
三、抛物线1. 基本性质:抛物线是一个开放的曲线,焦点和直线称为准线。
抛物线对称于准线,并且具有一个顶点。
2. 抛物线的方程:抛物线的标准方程是y = a*x² + b*x + c,其中a、b和c是常数。
3. 参数方程:抛物线的参数方程是x = t,y = a*t² + b*t + c,其中t是参数。
4. 极坐标方程:抛物线没有显式的极坐标方程。
5. 应用:抛物线在物理学、工程学和天文学中有多种应用,例如抛物线反射器、天体运动的近似模型和喷泉水流的轨迹等。
圆锥曲线知识点总结圆锥曲线是解析几何中的重要内容,由平面与一个双曲面、椭圆面或者抛物线面相交而得到。
在高中数学课程中,学习圆锥曲线是必不可少的。
本文将对圆锥曲线的定义、基本方程、性质和应用进行总结。
一、圆锥曲线的定义圆锥曲线就是平面与一个双曲面、椭圆面或者抛物线面相交而得到的曲线,在平面上的图像可以呈现出不同的形状。
二、圆锥曲线的基本方程1. 双曲线:双曲线的基本方程为:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$。
其中,a和b分别为椭圆的两个半轴。
2. 椭圆:椭圆的基本方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$。
其中,a和b分别为椭圆的两个半轴。
3. 抛物线:抛物线的基本方程为:$y^2=2px$。
其中,p为抛物线的焦距。
三、圆锥曲线的性质1. 双曲线的性质:双曲线的两个分支镜像对称于原点,焦点到曲线的距离之差为常数。
双曲线还具有渐近线,即曲线趋近于两根直线。
2. 椭圆的性质:椭圆的两个焦点在椭圆的长轴上,且焦点到任意点的距离之和为常数。
此外,椭圆也具有主轴、短轴和焦距等重要概念。
3. 抛物线的性质:抛物线的焦点位于抛物线的顶点上,且焦点到抛物线上任意点的距离等于焦点到该点的法线距离。
四、圆锥曲线的应用1. 双曲线的应用:双曲线在电磁学中有广泛的应用,例如电磁波的传播、天线的辐射以及电磁场分布等方面。
2. 椭圆的应用:椭圆在力学、天文学和导航等领域有着重要的应用。
例如椭圆轨道运动的物体、天体运动规律的研究以及导航系统中的卫星轨道等。
3. 抛物线的应用:抛物线在物理学和工程学中有着广泛的应用。
例如自由落体运动、射击运动以及卫星的发射轨道等。
综上所述,圆锥曲线是解析几何中的重要内容,通过本文的总结,我们了解了圆锥曲线的定义、基本方程、性质和应用。
在学习过程中,我们需要深入理解每个曲线的特点和应用领域,为解决实际问题提供有力的数学工具。
希望本文对你对圆锥曲线的学习有所帮助。
圆锥曲线的光学性质及其应用圆锥曲线是平面上一类重要的数学曲线,它们在光学领域中具有重要的应用。
本文将分析圆锥曲线的光学性质以及它们在光学领域中的应用。
第一部分:圆锥曲线的定义及其光学性质圆锥曲线是在一个平面上与两个定点焦点F1和F2的距离之和等于常数2a的所有点P的轨迹。
这两个焦点和常数2a定义了一个圆锥曲线的形状。
常见的圆锥曲线包括椭圆、双曲线和抛物线。
在光学领域中,圆锥曲线具有以下一些重要的光学性质:1.焦距:圆锥曲线的焦距是指从焦点到曲线的任意一点的距离。
焦距是光学中用来描述圆锥曲线形状的一个重要参数。
2.反射性质:圆锥曲线具有良好的反射性质,即光线经过圆锥曲线反射后能够聚焦到焦点上。
这种反射性质在光学仪器中有广泛的应用。
3.折射性质:当光线穿过圆锥曲线时,会根据曲线的形状和光线入射的角度发生折射现象。
这种折射性质在透镜和光学元件中有重要的应用。
4.光学成像:圆锥曲线具有良好的成像性质,可以用来设计出具有特定功能的光学元件,如凸透镜、凹透镜和椭圆反射面。
以上是圆锥曲线的一些光学性质,这些性质对于理解和设计光学系统非常重要。
第二部分:圆锥曲线在光学领域中的应用1.凸透镜:椭圆形凸透镜是一种常用的光学元件,它可以实现对光线的聚焦和成像。
利用椭圆形凸透镜的焦距和反射性质,可以设计出能够产生清晰的像的光学系统。
2.凹透镜:双曲线形凹透镜可以用来调制和分离光线,具有广泛的应用。
双曲线形凹透镜能够对光线进行折射和散射,可用于太阳能集热器和激光设备中。
3.抛物面反射器:抛物面反射器是一种利用抛物线形状的曲面进行光学反射的设备。
抛物面反射器可以产生平行入射光线的焦点,可用于望远镜和抛物面反射天线中。
4.光学成像系统:圆锥曲线在光学成像系统的设计中有重要的应用。
通过合理选择椭圆、抛物线和双曲线形状的曲面,可以设计出具有不同聚焦特性的光学成像系统,满足不同的光学需求。
5.光学测量仪器:圆锥曲线可以用来设计各种光学测量仪器,如激光测距仪、光学显微镜和激光雷达。
空间几何中的圆锥曲线在空间几何中,圆锥曲线是一类重要而且有趣的曲线形状。
它们由一个固定点(焦点)和一个固定直线(准线)确定,具有很多独特的性质和应用。
本文将介绍圆锥曲线的定义、分类和一些重要的特性。
一、圆锥曲线的定义圆锥曲线是由一个动点P和一个定直线l(准线)确定的一类曲线。
点P到准线上所有点的距离与点P到焦点F的距离之比始终保持不变,这个比值称为离心率。
离心率小于1的圆锥曲线是椭圆,离心率等于1的圆锥曲线是抛物线,离心率大于1的圆锥曲线是双曲线。
二、椭圆椭圆是最基本的圆锥曲线之一,由一个固定点F和一个固定线段AB(准线)确定。
椭圆的定义是:对于椭圆上的任意一点P,它到焦点F的距离与到准线AB的距离之和是一个常量。
椭圆具有很多有趣的性质,比如焦准定理(椭圆上的任意一点P,焦点到P的距离之和等于焦准距离)、椭圆的离心率等于焦准距离比等于焦点与准线之间的距离之比等等。
三、抛物线抛物线是另一种常见的圆锥曲线,由一个焦点F和一个准线l确定。
抛物线的定义是:对于抛物线上的任意一点P,它到焦点F的距离等于到准线l的距离。
抛物线具有很多独特的性质,比如焦准定理(对于抛物线上的任意一点P,焦点到P的距离等于焦准距离)、抛物线关于准线对称等等。
四、双曲线双曲线是圆锥曲线中的另一种重要形式,由一个焦点F和一个准线l确定。
双曲线的定义是:对于双曲线上的任意一点P,它到焦点F的距离与到准线l的距离之差是一个常量。
双曲线具有很多有趣的性质,比如焦准定理(双曲线上的任意一点P,焦点到P的距离之差等于焦准距离)、双曲线的离心率等于焦准距离比等等。
五、圆锥曲线的应用圆锥曲线作为几何学的一个重要分支,具有广泛的应用。
在物理学中,椭圆轨道描述了行星和人造卫星在太阳系中的运动;在天文学中,抛物线轨道描述了彗星的运动;在工程学中,圆锥曲线的光学性质被应用于天文望远镜、抛物面反射器等设备的设计。
此外,圆锥曲线还在计算机图形学、建筑设计等领域中有着重要的应用。
圆锥曲线的定义及其应用
一、教学目标:
1.进一步明确圆锥曲线定义,并用定义解决有关问题;
2.通过发散思维和创新思维的训练,培养学生的探究能力;
3.培养学生用运动变化的观点分析和解决问题. 二、教学重点、难点:圆锥曲线定义的灵活应用. 三、教学方法:教师引导启发与学生自主探索相结合. 四、教学过程: (一)引入:
问题1:平面内到定点12(3,0),(3,0)F F -的距离之和为8的点P 的轨迹是什么?
121286PF PF F F +=>=
∴P 的轨迹是以12(3,0),(3,0)F F -为焦点的椭圆,方程是22
1167
x y +
= 问:(1)若到两定点距离之和为改为6,则点P 的轨迹是什么? ( 以12,F F 为端点的线段)
(2)若改为到两定点距离之差为2,则P 点的轨迹是什么? (以12,F F 为焦点的双曲线的一支)
(3)若改为到两定点距离之差为6,则P 点的轨迹是什么? (以12,F F 为端点的射线)
(通过提问,让学生对圆锥曲线的第一定义进行回顾,并且进一步明确定义中所含的限制条件)
由学生总结椭圆和双曲线的定义 问题2:已知定点F (1,0),定直线:1l x =-,设一动点P 到直线l 的距离为d ,若有PF d =,则P 点的轨迹是什么?
(F l ∉,∴P 点的轨迹是以F (1,0)为焦点,以直线:1l x =-为准线的抛物线。
) 问:(1)若点F 改为(-1,0),则点P 的轨迹是什么? (2)当
PF
d
为何值时,所求轨迹是椭圆? (3)当PF
d
为何值时,所求轨迹是双曲线?
(通过提问,让学生对圆锥曲线的统一定义进行回顾和巩固,注意圆锥曲线第二定义的联系和区别)
由学生总结圆锥曲线的统一定义,。
(二)圆锥曲线定义的应用 1、利用圆锥曲线定义求轨迹
例1.设动圆M 过定点A (-3,0),并且在定圆B :2
2
(3)64x y -+=的内部与其内切,试求动圆圆心M 的轨迹方程.
(轨迹为椭圆:
22
1167
x y +=) 探究1:将圆B 的半径改为2,动圆M 与定圆B 内切,则有26MA MB AB -=<=
探究2:将圆B 的半径改为2,动圆M 与定圆B 相切,则有||26MA MB AB -=<= 探究3:动圆M 与圆A :2
2(3)
1x y ++=外切,与圆B :22(3)64x y -+=内切,求
动圆圆心M 的轨迹方程.
(通过学生的探究可以进一步熟练利用圆锥曲线在求轨迹中的应用,并且培养学生的探究与联想能力)
(引导学生小结:例1是圆锥曲线的第一定义的应用在求轨迹方程时先利用定义判断曲线形状可避免繁琐的计算,但需注意范围).
2、利用圆锥曲线定义求最值
例2.已知椭圆22
143
x y +=,定点A (1,1),12,F F 是其左右焦点,P 是椭圆上一点。
求:(1)1PF PA +的最大值及最小值; (2)22PA PF +的最小值. 分析:(1)
1PF PA +=4-2PF +PA
=4+2()PA PF -
24AF ≤+=5
1PF PA +=4-2PF +PA
=4-2()PF PA - 3≥
(2)设P 点到右准线的距离为d ,
21
2
PF e d ==22d PF ⇒=,
22PA PF PA d ∴+=+2
A a x c
≥-=3
探究1:若点A 的坐标为(3,4),F 为抛物线x y 42
=的焦点,点P 是抛物线上一动点,求PF PA +的最小值.
探究2:若点A 的坐标为(3,2),F 为抛物线x y 42=的焦点,点P 是抛物线上一动点,求PF PA +的最小值.
探究3:若点A 的坐标为(3,2),F 为双曲线
112
42
2=-y x 的右焦点,点P 是双曲线右支上一动点,求PF PA +的最小值.
探究4:若点A 的坐标为(3,2),F 为双曲线
112
42
2=-y x 的右焦点,点P 是双曲线右支上一动点,求1
2
PA PF +
的最小值. 五、小结反思
1.正确理解圆锥曲线的定义,注意定义中的限制条件;
2.在求轨迹时先利用圆锥曲线定义判断曲线形状可避免繁琐的计算;
3.利用圆锥曲线的定义求最值问题时,注意圆锥曲线定义的化归;
4.涉及焦点,准线,离心率上的点的问题,常用统一定义解决.。