气动技术概述
- 格式:doc
- 大小:746.00 KB
- 文档页数:5
气动技术培训资料气动技术培训资料(一)气动技术是一种利用压缩气体进行工程控制和传动的技术领域。
它在各个行业中广泛应用,包括生产制造、工程建设、能源管理等等。
通过学习气动技术,我们可以了解气动元件的工作原理、气动回路的设计与搭建以及气动系统的操作和维护等内容。
下面将为大家介绍一些气动技术培训资料,以帮助大家更好地理解和应用气动技术。
一、气动元件的工作原理气动元件是气动系统中重要的组成部分,它们能够实现压缩空气的输送、转换和控制。
在气动技术培训中,我们首先需要了解气动元件的工作原理。
1.1 阀门类气动元件阀门类气动元件包括单向阀、调节阀、电磁阀等,它们通过控制压缩空气的通断和流量来实现气动系统的控制。
其中,单向阀的作用是只允许空气单向流动,而调节阀则可以根据需要调整空气的流量和压力。
电磁阀通过电磁原理实现气体的通断和控制。
1.2 执行元件类气动元件执行元件类气动元件主要包括气缸和气动马达等。
气缸是将气压能转变为机械能的装置,常用于推动、拉动和升降物体。
气动马达则将气压能转化为机械能,在工程设备中常用于驱动旋转运动。
以上是气动元件的一些基本工作原理,深入学习气动元件的工作原理可以帮助我们更好地理解和应用气动技术。
二、气动回路的设计与搭建气动回路是指由气动元件组成的传动系统,用于完成特定的工作任务。
在气动技术培训中,学习气动回路的设计与搭建是必不可少的。
2.1 回路的设计气动回路的设计是根据工作任务的要求和气动元件的性能特点来确定的。
在设计气动回路时,我们需要考虑以下几个方面:首先,需要明确工作任务的要求,包括工作轨迹、推力大小等参数。
其次,根据工作任务的要求,选择适当的气动元件进行组合,包括阀门类和执行元件类。
最后,根据设计要求确定气路布置、管线布局和阀门的控制方式等。
2.2 回路的搭建回路的搭建需要根据设计图纸进行操作,包括将气动元件按照一定的布局连接好,保证气体能够在回路中正常流动。
在搭建回路时,需要注意以下几个方面:首先,确保气动元件的连接口没有漏气现象,可以使用密封圈等密封材料增加密封性能。
液压与气动技术液压与气动技术是现代工程领域中非常重要的两个技术分支,它们在各个领域的应用广泛,提高了生产效率和工作效益,为工业发展做出了巨大贡献。
首先,我们来看一下液压技术。
液压技术是利用流体的力学性质传递力量和控制信号的一种技术。
在液压系统中,通过压缩流体(一般为液体)产生的压力,实现对机械设备的传动和控制。
液压技术具有以下几个特点。
首先,液压系统具有传递力量稳定、传递效率高的特点。
液压系统中的液体可以平稳地传递力量,而且传递效率高,能够满足工程设备对于高效、稳定传动的要求。
其次,液压技术具有灵活性强、可靠性高的特点。
液压系统可以实现各种复杂的机械动作,并且具有反应速度快、控制精度高等特点,能够满足各种复杂环境下的工程需求。
此外,液压技术还具有结构简单、维修方便的特点,便于工程设备的维护和管理。
液压技术在工程领域中有着广泛的应用。
在起重机械、挖掘机械、船舶机械等工程设备中,液压技术被广泛应用于传动和控制系统中,有效提高了设备的工作效率和精度。
在航空航天领域,液压技术被应用于飞机和火箭等载具的起落架、操纵系统等关键部件中,确保了载具的安全性和可靠性。
在汽车工业中,液压技术被应用于汽车制动系统、悬挂系统等关键部件中,提高了汽车行驶的安全性和舒适性。
在冶金、矿山和化工等行业中,液压技术被应用于液压机、液压缸等设备中,实现了对原材料的压制、挤压等工艺操作,提高了生产效率和产品质量。
接下来我们来看一下气动技术。
气动技术是利用气体的力学性质传递能量和控制信号的一种技术。
在气动系统中,通过压缩气体(一般为空气)产生的压力,实现对机械设备的传动和控制。
气动技术具有以下几个特点。
首先,气动系统具有传递力量快、反应灵敏的特点。
由于气体的压缩性和可压缩性,气动系统的工作速度快,能够满足对于快速反应和高效传动的要求。
其次,气动技术具有安全性高、维护成本低的特点。
气动系统的工作介质为空气,没有易燃易爆的危险,维护成本也相对较低,便于维护和管理。
气动零部件讲解及应用一、气动基本概述空气压技术气动(PNEUMATIC)是“气动技术”或“气压传动与控制”的简称。
气动技术是以空气压缩机为动力源,以压缩空气为工作介质,进行能量传递或信号传递的工程技术,是实现各种生产控制、自动控制的重要手段。
常见的空气压气动的应用领域气动系统构成气动系统构成气动系统中最重要的三个控制因素:力的大小,运动方向,运动速度压力控制阀——控制气缸输出力的大小方向控制阀——控制气缸的运动方向速度控制阀——控制气缸的运动速度工业空气压应用二、气动基本知识、空气的压力空气的可压缩性,气体分子的冲突会产生力,这个力就是“压力”。
压力SI单位:Pa 1Pa=1N/m2;1MPa=106Pa,大气压0 . 1013MPa常用压力单位1 psi=6.89KPa1 kgf/cm2=98.07KPa1 bar=100KPa1 mmHg=133.3Pa压力表示方式空气压的基本定律波义耳定律-等温定律温度一定时,气压跟体积成反比查理定律-等容定律体积一定时,气压跟温度成正比p1/T1=p2/T2盖吕萨克定律-等压定律压力一定时,体积跟温度成正比V1/T1=V2/T2三、气动基本元件气源处理气源设备-压缩机定义:吸入空气并连续制造压缩空气的机械。
气动系统动力源气源设备-后冷却器定义:对空气压缩机流出的空气进行降温的装置。
将空压机出口的高温空气冷却至40℃以下气源设备-气罐储气罐(AT系列)1)消除压力脉动2)依靠绝热膨涨及自然冷却降温,进一步分离掉压缩空气中的水分和油分。
3)储存一定量压缩空气气源处理元件为什么对空气进行过滤?清净化的功能:1、除去固体异物和油分2、除去水滴3、除去蒸气状的水分气源处理系统过滤精度:滤芯能够捕捉的杂质的最小直径。
用μm 表示。
气源处理元件气源处理元件-自动排水器。
液压与气动技术液压与气动技术是一种相辅相成的工业技术,是现代工业领域中最重要的技术之一。
液压技术和气动技术的本质是利用流体来传递能量和控制机械运动。
这两种技术都能够将能量从一个地方传递到另一个地方,并因此拥有广泛的应用领域。
液压技术的原理是利用液体作为传动介质进行力的传递、控制和动力转换。
它通过压力控制来调整速度、转动力矩和角度,从而达到工业现场设备的控制目的。
液压系统具有动态响应快、周转高效、控制精度高等特点,因此被广泛应用于重型机器、工业机械、船舶、航空和军事等领域。
气动技术的原理是利用气体作为传动介质进行力的传递、控制和动力转换。
与液压系统相比,气动系统具有响应速度更快、动力性能较差的特点。
它的应用领域主要集中在需要简单线路和移动性强的场合,例如移动机器、工业机械、自动控制和自动化生产线等。
液压技术和气动技术的组成都是相似的。
它们都由一系列压力泵、压力控制阀、工作缸或执行元件、管路和油缸或气罐组成。
其中,压力泵将油液或气体压缩并将其传送到控制阀中,控制阀将压力分配到工作缸或执行元件中,使其产生动力,达到控制和执行的目的。
液压和气动是密封系统,它们在应用过程中非常重要。
密封技术的发展可以保持液压和气动系统的持续性能和长寿命。
当液压和气动系统发生泄漏时,它们将有效性能受到影响,并且可能会造成不必要的浪费和危险,从而造成财产和人员的损失。
近年来,液压和气动技术的应用逐渐向机器人、医疗保健、食品加工和包装等新兴领域拓展,同时液压和气动技术在现代城市的交通和港口航运中也扮演着重要的角色。
总的来说,液压和气动技术在未来的发展中将继续保持其重要地位,为人们的生活和工作提供更加高效、便利和安全的服务。
气动技术基本知识目录1. 气动技术概述 (3)1.1 气动技术的定义与应用 (4)1.2 气动技术的历史与发展 (5)2. 气动力学基础 (7)2.1 流体力学原理 (7)2.2 伯努利原理 (9)2.3 压差与流体动力 (10)3. 气动系统设计 (11)3.1 空口设计 (12)3.2 管道与管件设计 (13)3.3 阀门与调节器选择 (15)4. 气动元件 (16)4.1 气缸与活塞 (17)4.2 电磁阀与继电器 (18)4.3 空气压缩机与真空发生器 (19)5. 气动控制 (20)5.1 原理与方法 (22)5.2 逻辑控制器 (23)5.3 通讯协议与接口 (25)6. 气动应用 (26)6.1 工业自动化 (27)6.2 移动机器与机器人 (29)6.3 医疗设备 (30)7. 气动系统维护与保养 (31)7.1 日常维护 (32)7.2 故障诊断与排除 (33)7.3 更新与升级 (34)8. 安全与法规遵从 (36)8.1 气体类型与分类 (37)8.2 安全标准与规范 (38)8.3 应急措施与培训 (40)9. 节能减排 (41)9.1 气动系统的能效 (43)9.2 气动改造与效能提升 (44)9.3 环境影响与对策 (46)10. 气动技术发展趋势 (47)10.1 智能化与自动化 (48)10.2 信息化与数据管理 (50)10.3 绿色节能技术 (52)1. 气动技术概述又称航空力学,是一门研究气体流动与其周围物体的相互作用的科学,核心在于理解介于固体和流体之间的能量和力转化过程。
它涵盖了气流的本性、流动规律、力和机遇的预测以及如何应用这些原理来设计、优化和控制各种飞行器、机械设备和工程系统。
流体力学:研究流体静力学和流体力学的基本原理,包括压力、流速、粘滞性和伯努利定律等。
气流场分析:通过数值方法和实验方法,分析流体在不同形状结构周围运动的特性。
气动外形设计:根据气动原理,设计出具有良好阻力系数、升力和操控性的飞机、火箭、汽车等外形。
气动技术的应用一、气动技术简介和发展气动技术是以空气压缩机为动力源,以压缩空气为工作介质,进行能量传递或信号传递的工程技术,是实现各种生产控制、自动控制的重要手段之一。
气动技术与传统的液压技术相比,有以下优点:(1)结构简单轻便、方便安装维护;(2)输出速度一般在50~500mm/s,速度快于液压和电气方式;(3)对冲击负载和负载过载的适应能力较强;(4)可靠性高、使用寿命长、安全无污染且成本较低。
由于气动技术具有以上的使用优点,气动技术在世界工业企业得到了广泛的应用。
虽然气动技术在各工业部门已经获得了广泛应用,但是,在许多应用之间还是存在着相当大差异的。
就应用气动技术来说,最基本条件就是要有一台空气压缩机,对已有用于其它用途的空气压缩机的地方,应用气动技术就更方便些。
特别是在一些非生产加工部门,如畜牧业、种植业或服装业,情况更是如此。
在机器设备制造领域中,大多数场合都有空气压缩机,且气动技术已有应用,每个应用项目在本质上也有许多相似之处。
当然,气动技术也有一些缺点:气体的压缩性使得气动元件的动作速度,容易受到负载变化的影响。
气动设备的输出力能满足大部分的工业操作需要,但是和液动设备相比,气动设备的输出力还是要小一些。
另外,气缸在低速运动时,受摩擦力影响较大,稳定性稍差。
二、气动技术的主要应用气动技术的应用范围大, 广泛应用于各个领域, 不仅用于生产、工程自动化和机械化中, 还渗透到医疗保健和日常生活中。
气动系统具有防火、防爆等特点, 可应用于矿山、石油、天然气、煤气等设备。
还因其耐高温, 适用于火力发电设备、焊接夹紧装置等。
同时, 它容易净化, 可用于半导体制造、纯水处理、医药、香烟制造等设备。
气动系统的高速工作性能, 在冲床、压机、压铸机械、注塑机等设备中得到了广泛的应用, 还用于工件的装配生产线、包装机械、印刷机械、工程机械、木工机械和金属切削机床和纺织设备等。
下面介绍一些应用实例。
1 .汽车制造行业现代汽车制造工厂的生产线,尤其是主要工艺的焊接生产线,几乎无一例外地采用了气动技术。
气动技术的发展及在新领域中的应用
随着科技的不断发展,气动技术在各个领域中的应用越来越广泛。
气动技术是一种利用气体压力来实现机械运动的技术,它具有结构简单、运动平稳、速度快、可靠性高等优点,因此在工业、交通、医疗、军事等领域中都有着广泛的应用。
在工业领域中,气动技术被广泛应用于各种机械设备中,如气动钻、气动锤、气动砂轮等。
这些设备具有结构简单、维护方便、使用寿命长等优点,能够大大提高生产效率和产品质量。
此外,气动技术还被应用于自动化生产线中,通过气动元件的组合和控制,实现自动化生产,提高生产效率和产品质量。
在交通领域中,气动技术被广泛应用于汽车、火车、飞机等交通工具中。
例如,汽车中的制动系统、悬挂系统、空调系统等都采用了气动技术,能够提高车辆的安全性、舒适性和节能性。
火车和飞机中的制动系统、悬挂系统、起落架等也采用了气动技术,能够提高交通工具的安全性和舒适性。
在医疗领域中,气动技术被应用于各种医疗设备中,如呼吸机、手术器械、输液泵等。
这些设备具有结构简单、使用方便、安全可靠等优点,能够提高医疗效率和治疗效果。
在军事领域中,气动技术被应用于各种武器装备中,如导弹、火箭、
坦克等。
这些装备具有结构简单、使用方便、精度高等优点,能够提高作战效率和作战能力。
随着气动技术的不断发展和应用,它在各个领域中都发挥着重要的作用,为人们的生产和生活带来了便利和效益。
1、气动技术是以压缩空气为介质,以空气压缩机为动力源,实现能量传递或信号传递与控制的工程技术。
2、气动是气动技术或气压传动与控制的简称。
它是流体传动与控制的重要组成技术之一,也是实现工业自动化和机电一体化的重要途径。
3、一个较完善的机电一体化系统包括动力部分、执行部分、机械部分、检测传感部分、控制部分、信息处理部分,各部分之间通过接口相联系。
通过控制系统发送控制信号,由执行部分产生力和运动的输出。
4、气动技术的优点:简单、方便:气动装置结构简单、轻便、安装维护方便。
输出速度大:气缸动作速度一般为50~500mm/s,比液压和电气方式的速度快。
有良好的缓冲性:对冲击负载和负载过载具有较强的适应能力。
可靠性高、使用寿命长:电器元件的有效动作次数约为数百万次,而电磁阀(如SMC公司生产的电磁阀)的寿命大于3000万次,小型阀超过1亿次。
无污染:工作介质是空气,无污染。
安全性:气动压力等级低,具有防火、防爆、耐潮的能力,与液压方式相比可在高温条件下使用,同时,对于振动、腐蚀具有较强的耐受力,因而,具有很高的安全性。
在很多特殊场合具有不可比拟的优越性。
成本低:在自动化系统中,与单纯分别采用机械、电气、液压的传动与控制方式相比,气动方式成本低,经济性好。
5、气动技术的缺点:能量利用率低:电气传动的效率在90%以上,液压传动的的效率为70~80%,气压传动的的效率为30~40%。
实施精确控制的难度较大:气体的压缩性大。
6、气动元件的制造过程:精密压铸、挤压成型、精密加工、表面处理、装配、性能测试7、气源设备气源设备:空气压缩机:产生压缩空气的动力源气源处理设备:过滤器:清除压缩空气中的水分、油污和灰尘;干燥器:进一步清除压缩空气中的水分;自动排水器:自动排除冷凝水8、气动元件的类型及其功能气动执行元件:气缸:推动工件作直线运动。
摆动气缸:推动工件在一定角度范围内作摆动气马达:驱动工件作连续旋转运动。
气爪:抓取工件。
气动控制技术的原理及应用1. 气动控制技术的概述•定义:气动控制技术是指利用气体作为工作介质,通过控制气体的流动和压力来实现对工业系统中的执行器和工作过程的控制。
•特点:具有快速响应、灵活可靠、安全环保等优势,广泛应用于工业生产中的压力控制、运动控制及流体传动等领域。
2. 气动控制技术的基本原理气动控制技术的基本原理包括压缩空气的产生与处理、气源的分配与控制、信号的传送与转换以及执行器的控制与调节等方面。
2.1 压缩空气的产生与处理•压缩空气是气动控制技术的动力来源,常见的方法包括压缩机的压缩、气瓶的蓄气等。
•处理包括滤波、干燥、减压等过程,以确保供给系统中的气体质量和稳定性。
2.2 气源的分配与控制•气源分配是指将压缩空气从气源系统引出,并分配给不同的工作执行机构。
•气源控制是指通过阀门、控制元件等将压缩空气引导到相应的执行器中,以控制其动作和方向。
2.3 信号的传送与转换•信号传送是指将控制信号从控制器传送到执行器的过程,可以通过电气、气动等方式实现。
•信号转换是指将不同形式的信号进行转换,如将电气信号转换为气动信号,以配合执行器的控制要求。
2.4 执行器的控制与调节•执行器包括气缸、气动阀门等,通过气源的控制实现对工作过程的控制。
•控制与调节可通过控制阀、压力传感器等装置来实现,以达到精确的控制效果。
3. 气动控制技术的主要应用领域气动控制技术在许多工业领域中得到了广泛的应用,主要包括以下几个方面:3.1 压力控制•气动系统能够通过控制压力来实现对工作环境中气体压力的调节和控制,从而保证系统的稳定运行。
•压力控制应用广泛,如在供水系统中控制水压、在制药工艺中控制压力等。
3.2 运动控制•气动系统通过控制气缸的动作来实现对物体的运动控制,具有快速响应、灵活性好等特点。
•运动控制应用广泛,如在自动化生产线上对工件进行定位、装配等操作。
3.3 流体传动•气动技术可用于控制流体介质的传动,在液压系统受限或不适用的场合具备优势。
第一章气动技术概论1.1 气动技术的应用范围我们在日常工作和生活中经常见到各种机器,如汽车、电梯、机床等通常都是由原动机、传动装置和工作机构三部分组成。
其中传动装置最常见的类型有机械传动、电力传动和流体传动。
流体传动是以受压的流体为工作介质对能量进行转换、传递、控制和分配。
它可以分为气压传动、液压传动和液力传动。
气压传动技术简称“气动技术”,是一门涉及压缩空气流动规律的科学技术。
气动技术不仅被用来完成简单的机械动作,而且在促进自动化的发展中起着极为重要的作用。
从50年代起,气动技术不仅用于做功,而且发展到检测和数据处理。
传感器、过程控制器和执行器的发展导致了气动控制系统的产生。
近年来,随着电子技术、计算机与通信技术的发展及各种气动组件的性价比进一步提高,气动控制系统的先进性与复杂性进一步发展,在自动化控制领域起着越来越重要的作用。
气动技术可使气动执行组件依工作需要作直线运动、摆动和旋转运动。
气动系统的工作介质是压缩空气。
压缩空气的用途极其广泛,从用低压空气来测量人体眼球内部的液体压力、气动机械手焊接到气动压力机和使混凝土粉碎的气钻等,几乎遍及各个领域。
在工业中的典型应用如下:1)材料输送(夹紧、位移、定位与定向)、分类、转动、包装与计量、排列、打印与堆置;2)机械加工(钻、车削、铣、锯、成品精加工、成形加工、质量控制)3)设备的控制、驱动、进给与压力加工;4)工件的点焊、铆接、喷漆、剪切;5)气动机器人;6)牙钻。
图 1.1所示的两条传送带的气动旋转分配装置,可通过气缸的伸缩使工件传输到相应的地方。
1.2 基本气动系统的组成基本的气动系统如图1.2所示,它由压缩空气的产生和输送系统及压缩空气消耗系统二个主要部分组成。
一、压缩空气产生系统各组件及其主要功能(一)压缩机:将大气压力的空气压缩并以较高的压力输给气动系统,把机械能转变为气压能。
(二)电动机:把电能转变成机械能,给压缩机提供机械动力。
(三)压力开关:将储气罐内的压力转变为电信号,用来控制电动机。
它被调节到一个最高压力,达到这个压力就使电动机停止;也被调节另一个最低压力,储气罐内压力跌到这个压力就重新激活电动机。
(四)单向阀:让压缩空气从压缩机进入气罐,当压缩机关闭时.阻止压缩空气反方向流动。
(五)储气罐:贮存压缩空气。
它的尺寸大小由压缩机的容量来决定,储气罐的容积愈大,压缩机运行时间间隔就愈长。
(六)压力表:显示储气罐内的压力。
(七)自动排水器:无需人手操作,排掉凝结在储气罐内所有的水。
(八)安全阀:当储气罐内的压力超过允许限度,可将压缩空气溢出。
(九)冷冻式空气干燥器:将压缩空气冷却到零上若干度,使大部分空气中的湿气凝结,以减少系统中的水份。
(十)主管道过滤器:它清除主要管道内灰尘、水份和油。
主管道过滤器必须具有最小的压力降和油雾分离能力。
①压缩机②电动机③压力开关④单向阀⑤储气罐⑥压力表⑦自动排水器⑧安全阀⑨冷冻式空气干燥器⑩主管道过滤器1.压缩空气的分支输出管路2.自动排水器3.空气处理组件4.方向控制阀 5.执行元件 6.速度控制阀二、压缩空气消耗系统(一)压缩空气的分支输出管路:压缩空气要从主管道顶部输出到分支管路,以便偶尔出现的凝结水仍留在主管道里,当压缩空气达到低处时,水传到管子的下部,流入自动排水器内,将凝结水去除。
(二)自动排水器:每一根下接管的末端都应有一个排水器,最有效的方法是用一个自动排水器,将留在管道里的水自动排掉。
(三)空气处理组件:使压缩空气保持清洁和合适压力,以及加润滑油到需要润滑的另件中以延长这些气动组件的寿命。
(四)方向控制阀:通过对气缸两个接口交替地加压和排气,来控制运动的方向。
(五)执行元件:把压缩空气的压力能转变为机械能。
图1.2中的执行元件是一个直线气缸,它也可以是回转执行组件或气动马达等。
(六)速度控制阀:能简便实现执行组件的无级调速。
1.3 气动系统的特点一、压缩空气的特性如下:用量:空气到处都有,用量不受限制。
输送:空气不论距离远近,极易由管道输送。
储 存:压缩空气可储存在贮气罐内,随时取用。
故不需压缩机的连续运转。
温 度:压缩空气不受温度波动的影响,即使在极端温度情况下亦能保证可靠地工作。
危 险 性: 压缩空气没有爆炸或着火的危险,因此不需要昂贵的防爆设施。
清 洁:未经润滑排出的压缩空气是清洁的。
自漏气管道或气压组件逸出的空气不会污染物体。
这一点对食品、木材和纺织工业是极为重要的。
构 造:各种工作部件结构简单,所以价格便宜。
速 度: 压缩空气为快速流动的工作介质,故可获得很高的工作速度。
可调节性:使用各种气动元部件,其速度及出力大小可无限变化。
过 载: 气动机构与工作部件,可以超载而停止不动,因此无过载的危险。
处 理:设备所使用的压缩空气不得含有灰尘和水分,因此必须进行除水与除尘的处理。
可压缩性:压缩空气的可伸缩性使活塞的速度不可能总是均匀恒定的。
出力条件:压缩空气仅在一定的出力条件下使用才经济。
在常规工作气压为6—7bar (600~700kPa),因行程和速度的不同,出力限制在20000到30000N 之间。
排气噪声:排放空气的声音很大。
现在这个问题已因吸音材料和消音器发展大部分获得解决。
成 本:压缩空气是一种比较昂贵的能量传递方法。
但可通过高性价比的气动组件得到部分补偿。
二、执行机构的特点气动执行组件包括气缸、摆缸与气马达。
气动执行组件有下列特点:1) 基本运动 (直线、摆动与转动)易于实现。
2) 多种运动便于组合。
3) 运动参数(力、速度、方向)易于控制。
4) 品种多、尺寸范围广,易于设计与选择。
5) 使用寿命长,安全可靠、灵敏。
6) 操作和安装简便,调试要求较高。
气缸是气动系统中最主要的执行组件,由于气缸价格低,便于安装,结构简单、可靠,并有各种尺寸和有效行程的组件可供使用,它已经成为一种重要的线性驱动组件。
气缸一般有下列特点:· 直径范围: 6—320 mm· 有效行程: 1—2000 mm· 活塞杆输出力:2—50000 N· 活塞速度: 0.02—1 m/s 三.气动控制系统特点气动控制系统通常采用下列方法对气动设备进行控制:1) 采用纯气动控制方式: 这种方式适用于那些不能采用电气控制的场合。
例如磁头加工设备、无静电设备等,其控制系统完全由气动逻辑阀、气动方向阀、手动控制阀组成。
这种纯气动控制系统,气路复杂,维修困难,在可以用电控的场合,一般不采用这种方法。
2) 电-气动控制系统: 这种方式适用于那些简单的气动系统控制。
如设备的气动系统只由3~4个气缸组成,相互动作之间的逻辑关系简单,可采用这种控制方式。
由于控制图1.3 气缸的外形及结构图形符号系统采用的是常规的继电-接触控制系统,因此,适用于控制系统复杂程度不高的场合。
3)PLC控制系统:这是目前气动设备最常见的一种控制方式。
由于PLC能处理相当复杂的逻辑关系,因此,可对各种类型、各种复杂程度的气动系统进行控制。
又由于控制系统采用采用软件编程方法实现控制逻辑,因此,通过改变软件就可改变气系统的逻辑功能,从而使系统的柔性增加、可靠性增加。
4)网络控制系统:当系统复杂程度不断增加,各台设备之间需相互通信来协调动作时,需要采用网络控制系统。
5)综合控制系统: 当设备的控制系统复杂,参数选择性较多,需随时了解工况时,可采用PLC+人机界面+现场网络总线的综合控制方式,使控制系统更灵活,控制能力更强,以满足设备的控制需求。
1.4 气动系统的基本构成1)采用纯气动控制方式:纯气动系统的信号流图如图1.4所示。
其水平箭头代表主气源的流动方向。
主气源通过末级控制组件驱动输出执行机构。
垂直箭头代表的控制信号的流动方向,逐级构成一条总控制路径。
其信号流向是从信号(输入)端到末级控制(输出)端。
可以用各种符号来表征系统中的各个组件及其功能。
采用图1.5所示的回路图将这些符号组合起来可以构成对一个实际控制问题的解决方案。
回路图的画法形式同上述信号流图。
不过,在执行机构部分中应加入必要的控制组件。
这些控制组件接受处理器发出的信号并控制执行机构的动作。
直接控制阀(DCV)具有检测、信号处理图1.4 纯气动系统的结构及其信号流图及实行控制的功能。
如果直接控制阀(DCV)被用来控制气缸运动,那么,它是一个执行机构的控制组件。
如果利用其处理信号的功能,它就被定义为信号处理组件。
如果用它来检测运动,则称其为传感器。
这三种角色的显著特征通常取决于阀门的控制方式及其在回路图中的位置。
图1.5 回路图及气动组件1.2、1.4─输入组件 1.3─传感器 1.6─处理器 1.1─控制组件 1.0执行元件2)采用电-气动控制方式:电气动系统的信号流图如图1.6所示。
其水平箭头代表主气源的流动方向。
主气源通过末级控制组件驱动输出执行机构。
垂直箭头代表了电源的流动方向及控制信号的流动方向,输入组件通常包括电气按钮、各种传感器。
处理组件可以是继电-接触控制电路,或者是可编程序控制器(PLC)、工控计算机等。
末级控制元件主要是各种电控方向控制阀、电控压力及流量控制阀。
输出执图1.6 电气动系统的结构及其信号流图行机构的状态通常通过电信号反馈到输入组件。
图1.7a)为某推料机构的工作原理示意图。
对于一个电-气动控制系统,应画出气动回路图(图1.7b))及电控回路图(图1.7c或图1.7d)。
图1.7 某推料机构的电、气动系统设计。