电控单体组合泵系统简介20122
- 格式:pptx
- 大小:5.14 MB
- 文档页数:22
电控单体泵系统(EUP)的技术特点电控单体泵系统是一种模块化、时间控制的单缸高压泵系统,喷油始点与喷油量分别由电磁阀关闭时刻与关闭的持续时间决定,可达到2000bar的喷射压力。
电控单休泵系统完全具备满足现行及未来排放限制、保持低油耗的技术能力。
电控单体泵系统的技术特点如下:★技术先进:现在欧洲大部分欧III、欧IV商用车采用了电控单体泵系统。
★技术成本低:电控单体泵技术加上机械喷油器即可达到欧盟排放标。
★易于升级:从欧III升级到欧IV,可通过更换电控喷油器来实现,无需对发动机的结构进行大规模修改;通过凸轮轴设计和采用电控喷油器可实现2~3次喷射。
★继承性好:对原机械喷油系统发动机结构改动小,可以共用同一个机体、缸盖等重要零部件整车厂便利、用户便利、售后维修便利且零部件更换成本低。
★喷油压力高:可满足欧III、欧IV排放所需的高压喷射(现在最新的单体泵喷射压力已达2500bar) ,大大改善了燃油经济性、提高了缸内净化程度。
★喷油规律:喷油规律先缓后急,符合理想放热规律要求,有利于降低排放与燃烧噪音。
★供油能力强:可进行各缸独立控制特别适用于升功率大的重型柴油机,对中重型来说系统零部件比共轨系统更成熟,并且有长期使用考核验证。
★适应能力强:由于内部结构特点的不同,相对于共轨系统而言单体泵系统对燃油品质的要求相对较低,对燃油灰份杂质、水分的敏感性大大优于共轨系统。
★安全可靠性好:没有持续的喷射高压源带来的安全隐患,排放稳定性好。
对中重型来说,系统零部件比共轨系统成熟,使用寿命长。
★维修成本低:可进行单缸零部件更换,机械喷油器成本较电控喷油器成本低。
★一致性控制好:缸平衡控制策略提供了很好的各缸一致性控制,单体泵自校正策略确保了生产一致性控制,电控系统自学习自诊断策略确保了寿命期内的性能一致性控制。
上述特点决定了电控单体泵系统不如高压共轨系统娇气,更适应目前中国市场的燃油品质、维修、使用环境。
目前,电控单体泵系统的主要国外生产商为德国博世和美国德尔福,两家公司的EUP系统已经被欧洲主流重型车公司作为发动机电喷系统推出市场。
电控单体泵工作原理电控单体泵是一种常见的燃油喷射系统,它采用先进的电子控制技术,能够精准地控制燃油喷射的时间和量,从而实现发动机燃烧过程的优化。
下面我们将详细介绍电控单体泵的工作原理。
首先,电控单体泵的工作原理可以分为三个主要部分,燃油供给系统、喷油系统和电控系统。
燃油供给系统是电控单体泵的基础,它主要由燃油箱、燃油泵和燃油滤清器组成。
燃油箱存储着车辆需要的燃油,燃油泵负责将燃油从燃油箱中抽送到高压油管中,而燃油滤清器则能够过滤掉燃油中的杂质和水分,确保燃油的纯净。
喷油系统是电控单体泵的核心部分,它主要由高压油泵、喷油嘴和喷油定时器组成。
高压油泵能够将燃油加压至很高的压力,以满足发动机燃烧过程的需要。
喷油嘴则能够将高压燃油喷射到发动机气缸中,实现燃烧。
而喷油定时器则能够精准地控制喷油的时间和喷油量,以适应不同工况下发动机的需求。
电控系统是电控单体泵的智能部分,它主要由电子控制单元(ECU)和传感器组成。
ECU能够接收来自各个传感器的信号,包括发动机转速、节气门开度、进气压力等,通过对这些信号的处理,ECU能够精确地计算出发动机当前的工作状态,并据此控制喷油定时器的工作,从而实现燃油喷射的精准控制。
总的来说,电控单体泵工作原理是通过燃油供给系统提供高压燃油,再通过喷油系统将燃油喷射到发动机气缸中,最后通过电控系统精确控制喷油的时间和量,从而实现发动机燃烧过程的优化。
这种工作原理能够有效提高发动机的燃烧效率,降低排放,提高动力性能和燃油经济性。
总之,电控单体泵作为一种先进的燃油喷射系统,其工作原理非常复杂,但通过对其各个部分的详细介绍,我们可以更好地理解它的工作原理,从而更好地使用和维护车辆。
希望本文能够对读者有所帮助。
道依茨(DEUTZ)电控单体泵电控发动机一、基本原理(包括系统,ECU,传感器,机械部分)1.1、电控单体泵系统简介道依茨电控单体泵系统是一个新型的全电子控制柴油机燃油喷射系统,它不再采用机械调速器(没有齿杆装置),而是通过控制电控单体泵上的电磁阀实现喷油量和喷油定时的控制。
该电控系统采用的是第二代时间控制方式,与采用位置控制的第一代电子喷射控制相比,具有响应速度快、控制精度高等优点。
并且电子控制单元(ECU)EDC16采用扭矩控制策略,可以灵活地控制发动机输出扭矩,更好地满足整车动力的需求。
因此,该系统能够满足国家第三阶段(欧3)及后续的排放法规的要求。
1.2、电控单体泵系统组成电控单体泵系统组成如下图所示:电控单体泵系统可大体地划分为两个部分:●燃油系统:低压油路、喷射模块;●电控系统:电控单元(ECU)、传感器,以及线束。
1.2.1燃油系统1.2.1.1 低压油路如下图所示,包括油箱、两级燃油滤清器(其中初燃油滤清器需带手油泵)、输油泵、溢流阀(在发动机缸体上),以及低压管路。
其作用是以一定的压力输送燃油。
1.2.1.2 喷射模块如下图所示,包括电控单体泵、机械喷油器,以及短的高压油管。
其作用是将一定量的燃油在非常精确的时刻以极高的压力喷射到燃烧室中。
道依茨电控单体泵是直接安装在发动机的缸体上,由发动机凸轮轴驱动,因此,整个系统刚度高、单体泵很容易拆装,便于维修更换。
1.2.2 电控系统如下图所示,包括电控系统的核心部件:电控单元(ECU),各种传感器:曲轴转速传感器、凸轮轴转速传感器、进气温度压力传感器、冷却水温度传感器、燃油温度传感器、机油压力传感器(可选)、油门踏板位置传感器、大气压力传感器(安装在ECU内部),以及将它们连接起来的线束。
其作用是ECU根据各传感器提供的信息,如油门踏板位置、发动机转速等,计算发动机输出的扭矩、喷油量、供油开始时刻、供油持续期等,进而通过控制电控单体泵的电磁阀的通断电,实现最终喷射。
道依茨(DEUTZ)电控单体泵电控发动机基本原理(包括系统,ECU,传感器,机械部分)1.1、电控单体泵系统简介道依茨电控单体泵系统是一个新型的全电子控制柴油机燃油喷射系统,它不再采用机械调速器(没有齿杆装置),而是通过控制电控单体泵上的电磁阀实现喷油量和喷油定时的控制。
该电控系统采用的是第二代时间控制方式,与采用位置控制的第一代电子喷射控制相比,具有响应速度快、控制精度高等优点。
并且电子控制单元ECUEDC16采用扭矩控制策略,可以灵活地控制发动机输出扭矩,更好地满足整车动力的需求。
因此,该系统能够满足国家第三阶段(欧3)及后续的排放法规的要求。
1.2、电控单体泵系统组成电控单体泵系统组成如下图所示:电控单体泵系统可大体地划分为两个部分:燃油系统:低压油路、喷射模块;电控系统:电控单元(ECU)、传感器,以及线束。
1.2.1燃油系统1.2.1.1 低压油路如下图所示,包括油箱、两级燃油滤清器(其中初燃油滤清器需带手油泵)、输油泵、溢流阀(在发动机缸体上),以及低压管路。
其作用是以一定的压力输送燃油。
1.2.1.2 喷射模块如下图所示,包括电控单体泵、机械喷油器,以及短的高压油管。
其作用是将一定量的燃油在非常精确的时刻以极高的压力喷射到燃烧室中。
道依茨电控单体泵是直接安装在发动机的缸体上,由发动机凸轮轴驱动,因此,整个系统刚度高、单体泵很容易拆装,便于维修更换。
1.2.2 电控系统如下图所示,包括电控系统的核心部件:电控单元(ECU),各种传感器:曲轴转速传感器、凸轮轴转速传感器、进气温度压力传感器、冷却水温度传感器、燃油温度传感器、机油压力传感器(可选)、油门踏板位置传感器、大气压力传感器(安装在ECU内部),以及将它们连接起来的线束。
其作用是ECU根据各传感器提供的信息,如油门踏板位置、发动机转速等,计算发动机输出的扭矩、喷油量、供油开始时刻、供油持续期等,进而通过控制电控单体泵的电磁阀的通断电,实现最终喷射。
柴油机电控高压燃油喷射系统电控高压燃油喷射系统目前主要有单体泵、泵喷嘴、共轨三种。
在我国商用车柴油机上广泛采用单体泵和共轨两种。
一个理想的喷油系统应具有以下性能:高喷油压力(1000bar以上),且喷油压力大小可根据工况需要灵活调整,精确控制喷油定时、喷油量和喷油率优化控制。
1. 电控单体泵单体泵系统是带时间控制的高压燃油喷射系统,用于直喷式柴油机。
它们具有高达2050bar的瞬时喷油压力、可变的喷油起点,并可采用预喷。
该系统由燃油供给系统的低压部分和高压部分、电控单元和传感器等组成。
单体泵是通过制成一体的电磁阀的高压柴油喷射系统来工作的。
电磁阀触发的时刻就是关闭的时刻确定供油起点。
电磁阀触发时间长短决定喷油量大小。
电控单体泵安装在每个缸体外部直接由发动机凸轮轴上的喷油凸轮驱动。
高压燃油由单体泵通过高压油管、高压短接管进入喷油器,然后喷入气缸内燃烧室。
由于这种布置对气缸盖结构变动不大,因此深受商用车和柴油机的企业欢迎。
国外如奔驰、道依茨、卡特匹勒、达夫等都采用单体泵。
我国商用柴油机企业如大柴、玉柴、潍柴等也采用单体泵来满足国Ⅲ排放标准。
2. 电控高压共轨燃油喷射系统电控高压共轨燃油喷射系统是建立在直喷技术、预喷技术和电控技术基础之上的一种全新概念的喷油系统。
它主要由高压泵、带压力传感器和调压阀的共轨管、带电磁阀或压电式的喷油器、电控单元(ECU)和传感器组成。
高压共轨燃油喷射系统的优点是:①可实现高压喷射,最高可达2000bar;②喷射压力独立于发动机转速,可改善发动机低速负荷特性;③可实现预喷和后喷,调节喷油率形状,实现理想喷油规律;④喷油定时和喷油量可自由选定;⑤具有良好喷油特性,优化燃烧过程,使发动机燃油耗、烟度、噪声和排放等综合性能指标得到明显改善,有利于改进发动机扭矩特性;⑥结构简单、可靠性好、实用性强,目前已广泛应用于各国商用车柴油机。
电控高压共轨燃油喷射系统已发展到第四代。
第一代是采用喷油压力为1350bar 的电磁阀式喷油器;第二代是采用喷油压力为1600bar的电磁阀式喷油器;第三代是采用喷油压力为1600~2000bar的压电式喷油器。
电控单体泵系统一、电控单体泵系统概述1、电控单体泵系统单体泵UPS(Unit Pump System),与泵喷嘴UIS(Unit Injector System)同属于单柱塞泵系统(独立喷射系统),每一缸对应一个柱塞式喷油泵,因此能够精确控制喷入每一气缸的喷油量。
与泵喷嘴系统不同的是,单体泵的高压泵和喷油器总成之间,通过一根很短的高压油管连接在一起。
由于主要部件彼此分离,所以在发动机上的安装布置更加自由,并且对结构紧凑化的要求可有所降低,因此单体泵主要适用于中、重型柴油车,其最大喷油压力可达200Mpa。
2、电控单体泵系统的组成图1 单体泵喷油系统的组成1-凸轮轴2-单体泵喷油泵3-高压油管4-喷油器5-滚轮挺柱二、电控单体泵系统的特点1、电控单体泵系统的优点(1)技术先进现在,欧洲大部分欧Ⅲ、欧Ⅳ商用车采用电控单体泵系统。
(2)技术成本低电控单体泵技术加上机械喷油器即可达到欧Ⅲ排放标准。
电控单体泵系统价格比电控共轨系统低1/3,国产化进度快。
(3)易于升级从欧Ⅲ升级到欧Ⅳ,可通过更换电控喷油器来实现。
通过凸轮轴设计和采用电控喷油器可实现多次喷射。
(4)继承性好对原有机械喷油系统发动机改动小。
(5)喷油压力高喷射压力可达到250MPa,可满足欧Ⅲ、欧Ⅳ排放所需的高压喷射压力,大大改善了燃油经济性,提高了排气净化性。
(6)排气净化性好达到欧Ⅲ排放,加上电控喷油器可以达到欧Ⅳ。
(7)喷油规律好喷油规律先缓后急,符合理想柴油机放热规律要求,有利于降低NOx的排放,有利于降低排放和燃烧噪声。
(8)供油能力强可进行各缸独立控制,特别适用于大功率的中、重型柴油机。
(9)适应能力强相对于电控共轨系统来说,电控单体泵系统对燃油品质的要求较低。
(10)安全可靠性高没有持续的喷射高压源带来的安全隐患,排放稳定性好。
对于中、重型柴油机来说,系统零部件比电控共轨系统成熟,使用寿命长。
(11)一致性控制好各缸平衡控制策略提供了较好的各缸供油一致性,单体泵自校正策略确保了生产一致性控制,电控系统自学习、自诊断策略确保了使用期内各缸性能一致性控制。
电控单体泵系统基础电控单体泵系统结构类似于泵喷嘴系统,所不同的单体泵与喷油器之间连接有高压管。
在我国常见的电控单体泵系统有:美国的德尔福系统、我国的成都威特单体泵系统南岳衡阳的单体泵系统等。
单体泵有外挂整体直列式单体泵,形状及结构类似于机械式直列泵,如配装玉柴的各种单体泵系统;还有一种发动机内置分体式单体泵系统,由凸轮轴直接驱动,如下图所示。
上图:大柴道依茨分体式单体泵系统上图:玉柴德尔福整体式单体泵系统下面以德尔福单体泵系统为例简单介绍一下单体泵系统的结构及工作原理:一、电控单体泵燃油系统的组成德尔福单体泵系统由:带高速电磁阀的单体泵、机械式喷油器、高压连接管、ECU和各传感器等组成。
1、单体泵将结构:单体泵由高速电磁阀、滚轮体组成,其上安装有密封圈,如下图:上图:单体泵壳体结构上图:单体泵结构2、单体泵的作用:将输油泵输送来的燃油加压,在ECU控制下定时、定量的向发动机输送高压燃油。
电磁阀线圈电阻2Ω、断电为常开状态、开启电压50V。
3、单体泵的优点:1)单体泵最大能产生2000bar的喷射压力,燃油雾化性好,燃烧更充分。
2)由于采用近似普通直列式高压泵的结构及机械式喷油器,对燃油品质适应性强,高达100万公里的耐久性。
3)由于采用电子控制系统,烟度及颗粒物排放较低,符合欧三排放标准,采用排气后处理系统可达欧四排放标准,燃油消耗量较低。
3、单体泵拆装注意事项:拆卸时应交替松开两根螺栓,时刻轻轻敲击单体泵,使单体泵松脱。
敬告:如果将螺栓全部拆下后,才开始用力拔或敲击单体泵,单体泵在弹簧的作用下会一下弹出,伤害人身安全或损坏单体泵;安装时也同样应交叉拧紧单体泵紧固螺栓。
新换的单体泵要求输入喷油量修正码,但根据经验来看:1、更换新的单体泵时也可以不输入修正码,2、待单体泵磨损后怠速不稳时再把T3、T4修正码输入进去,可以解决因单体泵轻微磨损而导致的怠速不稳。
3、泄漏回油口正常回油量很小,当该口回油量较大时一般是单体泵第二道密封圈密封不严,更换密封圈即可。
电控单体泵工作原理
电控单体泵是一种常用的柴油喷射系统,它通过电子控制单元(ECU)来控制
喷油泵的工作,从而实现燃油的高压喷射。
电控单体泵的工作原理主要包括供油、压力调节、喷油和喷油量控制等几个方面。
首先,电控单体泵的供油系统通过燃油泵将柴油从燃油箱中抽取,并送至高压
油路。
在供油过程中,油泵会根据ECU的指令来控制油量,以满足发动机的工作
需要。
其次,电控单体泵的压力调节系统会根据发动机的工况和负荷情况来调节高压
油路的压力。
在发动机负荷较大时,需要增加高压油路的压力,以保证喷油的稳定性和喷射效果。
然后,电控单体泵的喷油系统会根据喷油正时和喷油压力来完成喷油过程。
ECU会通过传感器获取发动机转速、负荷、进气压力等参数,并根据这些参数来
计算喷油的时机和量。
最后,电控单体泵的喷油量控制系统会根据ECU的指令来控制喷油嘴的开启
时间和喷油量,以实现对发动机燃烧过程的精准控制。
这样可以确保燃油的充分燃烧,提高发动机的功率和燃油经济性。
总的来说,电控单体泵通过ECU的控制,实现了对燃油喷射过程的精准控制,从而提高了发动机的工作效率和动力性能。
同时,它还可以根据发动机的工况实时调整喷油量和喷油时机,以适应不同工况下的工作要求,从而提高了发动机的可靠性和经济性。
以上就是电控单体泵的工作原理,希望能对大家有所帮助。
电控单体泵工作原理
电控单体泵是一种常见的液压系统元件,它主要由电机、泵体和阀组等组成。
其工作原理如下:
1. 装有电机的泵通过连杆与叶轮相连,当电机启动时,通过电机的旋转驱动叶轮转动。
2. 当叶轮旋转时,泵的吸入口处形成一个真空区域,使得液体从液体储存器或液体系统的低压区域被抽入进来。
3. 吸入的液体随着叶轮的旋转被推至泵体的出口处,增加了液体的压力。
4. 在泵体的出口处,通过阀组控制液体的流动方向,并根据系统需求调整液体的流量和压力。
5. 当液体流经阀组后,进入液压系统中,通过管路传递到工作执行器或液压马达等。
液体的流动通过改变阀组中阀的开关状态来控制,以实现各种液压系统的操作。
总的来说,电控单体泵通过电机的驱动,使得液体容器中的液体被抽入泵体,并在泵体内通过叶轮的旋转增加压力,并通过阀组控制液体的流动方向和流量,最终实现对液压系统的控制。