ewb仿真部分解析
- 格式:ppt
- 大小:7.30 MB
- 文档页数:7
63第5章 EWB仿真分析方法EWB提供了14种分析工具,本章将逐一加以介绍.利用EWB提供的分析工具,可以了解电路的基本工作状态,通过虚拟仪表测量和分析电路的各种响应,比用实际仪器测量精度高,范围宽.用EWB仿真分析电子电路的过程可分为4个步骤.(1)创建电路:用户创建的待仿真电路图,输入元器件数据,选择分析方法.(2)参数设置:程序会检查电路的结构,输入数据的性质,以及电路中的阐述内容, 对分析参数进行设置.(3)电路分析:对输入信号作用下的电路进行分析,这是电路进行仿真和分析的关键一步.它将形成电路的数值解,并把所得数据送至输出级.(4)数据输出:从虚拟仪器(如示波器等)上获得仿真运行的波形,数据.也可以从"分析"栏中的"分析显示图"(Analysis Graph)中得到测量,分析的波形图和数据表.用户可以在电路仿真进行之前,根据电路分析要求,设置不同仿真参数.在菜单分析栏(Analysis)中选择"Analysis Options"后,在屏幕上出现一个分析选项对话框,如图5-1.图5-1 分析选项对话框在分析选项对话框中包括5个选择标签,每个标签含意如下.1)总体分析选择(Global)ABSTOL——电流的绝对精度.(默认设置:1.012e ,适合一般双极型晶体管和VLSI 电路)64GMIN——最小电导.该值不能设置为零,增大该值可以改善收敛性,但会影响仿真精度.(默认设置:1.012e ,一般情况不需调整)PIVREL——最大矩阵项与主元值的相对比率.该值设定在0~1之间.(默认设置: 0.001,一般情况不需调整)PIVTOL——主元矩阵项绝对最小值.(默认设置:1.013e )RELTOL——相对误差精度.改变该值会影响仿真速度和收敛性.取值在1.06e 至0.01之间.(默认设置:0.001)TEMP——仿真温度.(默认设置:27℃)VNTOL——电压绝对精度.通常小于电路中最大电压信号的6~8个数量级.(默认设置:1.06e )CHGTOL——电荷绝对精度.(默认设置:1.014e ,一般情况不需调整) RAMPTIME——斜升时间.该值是独立源,电容和电感从零至终值的变化条件.(默认设置:0)CONVSTEP——相对收敛步长限制.在求解直流工作点时,建立相对步长限制自动控制收敛.(默认设置:0.25)CONVABSSTEP——绝对收敛步长限制.在求解直流工作点时,建立绝对步长限制自动控制收敛.(默认设置:0.1)CONVLIMIT——收敛限制.用于某些元件模型内部的收敛算法.(默认设置:选用) RSHUNT——模拟节点分流电阻.在节点和地间接入电阻,该值应该较大.(默认设置:不使用)如选择该项,则电阻为1.012e在"没有直流通路至地等情况时,可以降低该数值".Mb——仿真时的临时性文件规模.当存储仿真结果的文件达到它的最大规模时,会出现对话栏,有停止仿真,使用剩余磁盘空间继续仿真和删除已有数据继续仿真三种方法供选择.(默认设置:10 MB)2)直流分析选择(DC)ITLI——工作点分析迭代极限.限制算法的迭代次数.(默认设置:100.若出现"在直流分析时不收敛"等情况,可增加该值从500~1000) GMINSTEPS——GMIN步进算法步长.适当选择该值,有助于直流工作点分析求解. (默认设置:10)SRCSTEPS——SOURCE算法步长.适当选择,有助于直流工作点分析时分解.(默认设置:10)3)瞬态分析选择(Transient)ILT4——瞬态分析每时间点迭代次数的上限.减少此值会缩短瞬态分析的时间,但过分降低该值会引起不稳定.(默认设置:10.若出现"时间步长太小"或"瞬态分析不收敛"可增大此值到15~20)MAXORD——积分方法的最大阶数.(默认设置:2,取值范围在2~6之间) TRTOL——瞬态误差精度因素.(默认设置:7,一般情况不需调整) METHOD——瞬态分析数值积分方法.(默认设置:TRAPEZOIDAL"梯形法"适合振荡电路模式,GEAR"变阶积分"适合有理想开关的电路)ACCT——打印数据.显示仿真过程的有关信息.(默认设置:无)654)器件分析选择(Device)DEFAD——MOSFET漏极扩散区面积.(默认设置:0)DEFAS——MOSFET源极扩散区面积.(默认设置:0)DEFL——MOSFET沟道长度.(默认设置:0.0001)DEFW——MOSFET沟道宽度.(默认设置:0.0001)TNOM——模型参数标称温度.(默认设置:27℃)一般情况不需调整. BYPASS——非线性模型评估器件.(默认设置:ON.若选OFF将增加仿真时间.一般情况不需调整)TRYTOCOMPACT——小型传输线数据.只用于有耗传输线的仿真.(默认设置:无) 5)仪器分析选择(Instruments)Pause after each screen——示波器每屏显示后暂停.(默认设置:不能) Generate time steps automatically——示波器自动设置时间步长.(默认设置:自动)Set to zero——设置为零.瞬态分析的初始条件.(默认设置:无)User-defined——采用用户定义的初始条件.(默认设置:无)Calculate DC operating point——计算直流工作点.(默认设置:选用) Points pre cycle ——控制波特图测试仪每周期显示的点数.减少该数能加快仿真,但精度会降低.(默认设置:100)Pre trigger samples——逻辑分析仪触发前储存的点数.(默认设置:100) Post trigger samples——逻辑分析仪触发后储存的点数.(默认设置:100) Threshold voltage——逻辑分析仪高,低电平的门限电压.(默认设置:3.5 V) 5.1 基本分析方法EWB提供6种基本分析方法,即直流工作点分析(DC Operating Point Analysis),交流频率分析(AC Frequency Analysis),瞬态分析(Transient Analysis),傅里叶分析(FourierAnalysis),失真分析(Distortion Analysis),噪声分析(Noise Analysis). 5.1.1 直流工作点分析(DC Operating Point Analysis)直流工作点分析也称静态工作点分析,电路的直流分析是在交流输入信号视为零,电路中电容视为开路,电感视为短路时,电路中数字器件视为高阻接地的情况下来计算电路的直流工作点.在电路工作时,都必须给半导体器件以正确的偏置,直流分析就是要分析半导体的偏置,分析电路在无外加交流输入信号下的静态电压和电流.了解电路的直流工作点,才能进一步分析电路在交流信号作用下电路能否正常工作.求解电路的直流工作点是电路进行交流与瞬态分析过程的基础.1)创建电路在EWB工作区构造一个单管放大电路,电路中电源电压,各电阻和电容取值如图5-2所示.如果希望修改三极管的型号或调整三极管的β值,则双击三极管,选择ComponentProperties/Models命令,修改三极管的型号.例如,将三极管型号确定为2N3904,在该栏66图5-2 直流工作点分析电路目下选择Edit/Forward Current Gain Coefficient(即β值),修改三极管的β值.2)显示节点标志(ID)选择Circuit/Schematic Options/Show/Hide栏下的Show nodes,电路中各节点标志(ID)就会显示在电路中.3)启动直流工作点分析工具启动直流工作点分析工具,即选择Analysis/DC Operating Point命令,屏幕显示出Analysis Graphs窗口,并给出DC Bias的分析结果,即所有节点电压和电源支路电流值.4)分析仿真结果直流工作点的分析结果如图5-3所示.它给出电路各个节点的电压值,并给出三极管的基极和集电极的静态电压.根据这些电压的大小,可以确定该电路的静态工作点是否合理.如果不合理,可以改变电路中的一些元件参数,例如,修改电路中某个电阻的电阻值,图5-3 直流工作点分析结果67再次进行直流工作点的分析,如此反复,直至静态工作点合理为止.利用这种方法,也可以观察电路中某个元件参数的改变对电路直流工作点的影响.5.1.2 交流频率分析(AC Frequency Analysis)交流频率分析是在交流小信号工作条件下的一种频域分析.它分析电路随交流小信号频率变化的频率响应特性,是一种线性分析方法.EWB在进行交流频率分析时,首先分析电路的直流工作点,并在直流工作点处对各个非线性元件做线性化处理,得到线性化的交流小信号等效电路;然后电路中的直流电源自动置零,使电路中的交流信号源的频率在一定范围内变化,用等效电路分析电路的交流输出信号的变化规律.在进行交流频率分析时,用户自行设置的输入信号将被忽略.也就是说,无论用户给出电路的信号源设置的是三角波还是矩形波,进行交流频率分析时,都将自动设置为正弦波信号.1)创建电路创建如图5-4所示实验电路,图中给出了电路的参数设置.图5-4 交流频率分析电路2)设置分析参数选择菜单Analysis/AC Frequency命令,屏幕显示出交流频率分析(AC Frequency Analysis)对话框,如图5-5所示.交流频率分析对话框选项内容,含意如下:Start Frequency——扫描起始频率.(默认设置:1 Hz)End Frepuency——扫描终点频率.(默认设置:10 GHz)Sweep Type——扫描形式,十进制/线性/倍频程.(默认设置:十进制)Number of Points/Points Per——显示点数.(默认设置:100)Vertical Scale ——纵向刻度,线性/对数/分贝.(默认设置:对数)68图5-5 交流频率分析对话框Nodes in circuit——电路节点.Node for Analysis——被分析的节点,为编号(ID)的节点,而不是标识(Label)的节点.首先,根据需要设置分析的起始频率,终止频率,扫描形式等内容.然后,设置分析节点(Node for analysis)——节点8,10.3)启动交流频率分析工具单击图5-5所示对话框中的Simulate按钮,则启动交流频率分析工具,屏幕显示出Analysis Graphs窗口,同时绘出AC Analysis的分析曲线如图5-6所示.图5-6 交流频率分析曲线694)分析仿真结果当采用分析对话框的默认值,图5-4所示电路的交流频率分析曲线如图5-6所示,上面曲线为幅频特性曲线,下面曲线为相频特性曲线.幅频特性和相频特性各有两条曲线:一条是电路的8号节点(电路输入端)的电压随频率变化的曲线;另一条是电路的10号节点(电路输出端)的电压随频率变化的曲线.由交流频率分析曲线可知,该电路大约在100Hz~10 MHz范围内放大电路的输出幅值不随频率变化,且相位基本恒定.在这范围之外,输出电压将会衰减,相位会改变.这样,利用仿真方法就可以知道某一放大电路正常工作的频率范围.5.1.3 瞬态分析(Transient Analysis)瞬态分析也称为暂态分析,是一种时域分析方法,是在给定输入激励情况下,分析电路中选定输出节点的瞬态响应.EWB在进行瞬态分析时,首先要计算或给出电路的初始条件,然后从初始时刻起,到某个终止时刻,计算输出各个节点在每个时间点上的输出电压.初始条件的确定方式可在分析对话框中进行选择.瞬态分析中,相邻分析采样点的时间间隔称时间步长.启动瞬态分析时,用户可以采用只定义起始时间和终止时间,而EWB在兼顾分析精度和计算所需时间的情况下自动给出合理的时间步长;用户也可以自行定义时间步长以满足一些特殊分析要求.1)创建电路创建一个单管放大器,其电路如图5-7所示.图5-7 瞬态分析电路2)设置分析参数选择Analysis/Transient命令,屏幕上显示瞬态分析(Transient Analysis)对话框,如图5-8所示.以下为对话框的设置项目及其含意.Initial conditions——初始条件,包括:Set to Zero——初始条件为零开始分析.(默认设置:不选或无)70图5-8 瞬态分析对话框User-defined——用户定义初始条件进行分析.(默认设置:不选或无) Calculate DC operating point——由直流工作点分析结果作为初始条件进行分析.(默认设置:选用)Analysis——分析,包括:Start time——进行分析的起始时间.必需大于等于0,小于终点时间.(默认设置:0秒)End time——进行分析的终点时间.必需大于起始时间.(默认设置:0.001秒) Generate time steps automatically——自动选择一个较为合理的或最大的时间步长.(默认设置:选用)Minimum number of time points——仿真输出的图上,从起始时间到终点时间的点数.(默认设置:100点)Maximum time step(TMAX)——仿真时能达到的最大时间步长.Set plotting increment——设置绘图的增量.Nodes for Analysis——被分析的节点.选择两个分析节点,如图5-8所示的5号输入节点和2号输出节点,选择合适的终止时间和对话框的其他内容.3)启动瞬态分析工具单击如图5-8所示对话框中的Simulate按钮,则启动瞬态分析工具,屏幕显示出Analysis Graphs窗口,同时绘出Transient的分析曲线如图5-9所示.71图5-9 分析曲线4)分析仿真结果瞬态分析结果的波形图,也可以通过连接在需要分析节点上的示波器(用仿真开关启动分析)进行观察,得到的结果相同.但采用瞬态分析方法(用"Simulate"按钮启动分析),可以通过设置,更仔细地观察到波形起始部分的变化情况.根据电路的积分时间常数,将起始时间设定为0 s,结束时间设定为0.001 s,其他选项采用系统的默认值,则电路瞬态分析曲线如图5-9所示.分析曲线给出输入节点5和输出节点2的电压随时间变化的波形,左侧纵轴坐标是输入电压的坐标,右侧纵轴坐标则是输出电压的坐标,横轴是时间轴. 选择Analysis Graphs窗口中工具栏的Properties命令,出现Graph Properties的对话框,在该对话框中可以调整图形中相关参数,例如各个坐标轴的单位等等.5.1.4 傅里叶分析(Fourier Analysis)傅里叶分析是分析复杂多谐波周期信号的一种数学方法.可以用来评估时间连续信号的直流,基波和各次谐波分量,把电压波形表示从时域转换到频域,得到时域信号的频谱函数.此分析是在瞬态分析结束后,对时域分析结果进行傅里叶变换.EWB进行傅里叶分析时将自动执行瞬态分析,再进行傅里叶变换,最终产生傅里叶分析结果,分析结果以直观的图形和报告形式出现.分析时必须选定输出节点,同时选择一个基频.1)创建电路用精密半波整流电路构成一个实验电路,如图5-10所示.该电路节点2的输出是一个负半波.2)设置分析参数选择Analysis/Fourier命令,屏幕显示出傅里叶分析(Fourier Analysis)对话框,如图5-11所示.72图5-10 傅里叶分析实验电路图5-11 傅里叶分析对话框对话框的设置选项及内容如下:Output node——输出变量,被分析的电路节点.(默认设置:电路中的第一个节点) Fundamental frequency——傅里叶分析的谐波基频,为交流源的频率或最小的公因数.(默认设置:1 Hz)Number of harmonics——被计算和显示的基频谐波数.(默认设置:9)Vertical scale——纵向刻度,线性/对数/分贝.(默认设置:线性)Display phase——显示相频特性曲线.(默认设置:无)Output as line graph——以连续曲线形式显示幅频特性.(默认设置:无)选择电路的输出节点2号节点电压为分析对象,再根据电路参数,设置合理的基频以及需要观察的谐波次数.本例中选择基频100 Hz,谐波次数为9.3)启动傅里叶分析工具单击如图5-11所示对话框中的Simulate按钮,则启动傅里叶分析工具,屏幕显示出73Analysis Graphs窗口,同时绘出Fourier的分析曲线,如图5-12所示.图5-12 傅里叶分析结果4)分析仿真结果图5-10所示电路的2号节点输出的波形是正弦负半波.这里给出的是该节点电压的傅里叶分析的离散幅频特性曲线,分析曲线显示出输出波形中各次谐波分量的幅值,横坐标采用的是线性坐标.傅里叶分析结果还可以给出相频特性曲线和幅频特性的连续型曲线.5.1.5 失真分析(Distortion Analysis)电路对输入信号增益的非线性会造成电路输出信号的谐波失真,电路对输入信号相移的不一致造成互调失真.如果电路有一个交流频率源,EWB的失真分析将分析电路中每一节点的二次和三次谐波的谐波失真,绘出二次和三次谐波的谐波失真曲线;如果电路有两个交流频率源(设其频率F1>F2),则失真分析将分析三个特定频率的谐波失真,这三个频率分别是:两个频率之和(F1+F2),两个频率之差(F1-F2),及较高频率的二倍与较低频率差(2F1-F2).该分析用来观察在瞬态分析中无法看到的较小失真.1)创建电路创建一个场效应分压式偏置单管放大电路,电路参数及电路结构如图5-13所示.在电路的输入端加入一个交流电压源作为输入信号,其幅度为10 V,频率为1 Hz. 2)设置分析参数选择Analysis/Distortion命令,屏幕显示出失真分析参数(Distortion Analysis)对话框,如图5-14所示.以下为失真分析参数设置内容与含意.Start frequency——扫描起始点频率.(默认设置:1 Hz)End frequency——扫描终点频率.(默认设置:10 GHz)Sweep type——扫描形式,十进制/线性/倍频程.(默认设置:十进制)Number of points/points per——在线性形式时,是频率起始至终点的点数.(默认设置:100)74图5-13 失真分析电路图5-14 失真分析参数设置对话框Vertical scale——纵坐标标度.对数/线性/分贝.(默认设置:对数)F1/F2 ratio——若信号有两个频率F1和F2,若选定该项时,在F1进行扫描时,F2被设定成该比值乘以起始频率,必需大于0,小于1.(默认设置:无)Nodes for Analysis——被分析的节点.该电路的输出节点是5号节点,选择分析节点为5号节点,其他选项用默认值.当然,也可根据需要选择其他值.3)启动失真分析工具单击如图5-14所示对话框中的Simulate按钮,则启动失真分析工具.此时,屏幕显示出Analysis Graphs窗口,同时绘出Distortion的分析曲线,如图5-15所示.75图5-15 失真分析曲线4)分析仿真结果图5-15所示为是电路图5-13的失真分析结果.由于该电路只有一个输入信号,因此,失真分析结果给出的是第二次谐波和第三次谐波失真图.5.1.6 噪声分析(Noise Analysis)在通信电路与系统中,常常需要进行噪声分析.噪声分析是定量分析电路中的电阻和半导体器件对指定输出节点噪声贡献.假设噪声源互不相关,而且这些噪声值都独立计算,输出节点总噪声等于各个噪声源对于该节点的噪声均方根之和.EWB提供的噪声分析可以检测电路输出端噪声源的大小,该分析将利用交流小信号等效电路,计算由电阻和半导体器件所产生的噪声总和.1)创建电路创建单管放大电路如图5-16所示,对这一单管放大电路进行噪声分析.图5-16 噪声分析电路762)设置分析参数选择Analysis/Noise命令,屏幕显示出Noise Analysis(噪声分析)对话框,如图5-17所示.图5-17 噪声分析对话框以下为噪声分析对话框的设置项目及内容.Input noise reference source——选择交流电压源作为输入.(默认设置:电路中的第一编号源)Output node——噪声分析的节点.(默认设置:电路第一编号节点)Reference node ——参考电压点.(默认设置:接地点)Start frequency ——扫描起始频率.(默认设置:1 Hz)End frequency ——扫描终点频率.(默认设置:10 GHz)Sweep type——扫描形式,十进制/线性/倍频程.(默认设置:十进制)Number of points——表示起始频率至终点频率的点数.(默认设置:100) Vertical scale——纵向标度,对数/线性/分贝.(默认设置:对数)Set point per summary——当选择该项时,显示被选元件噪声贡献的记录曲线.用求和的点数除以频率间隔数,会降低输出显示图的分辨率.(默认设置:无)Points per summary component——当选择该项时,选择噪声源进行求和.(默认设置:电路中的第一编号元件)本例,选择输入噪声参考源为电路中的交流电压源V1,第10节点作为噪声输出节点.为了分析电路中的电阻R1的噪声轨迹,选中Set points per summary,在该栏目下选择R1,其他设置采用对话框的默认值.3)启动噪声分析工具单击如图5-17所示对话框中的Simulate按钮,则启动噪声分析工具,屏幕显示出Analysis Graphs窗口,同时绘出Noise的分析曲线,如图5-18所示.77图5-18 噪声分析曲线4)分析仿真结果如图5-18所示,噪声分析曲线给出输入和输出噪声频谱.其横坐标是频率;左侧的纵坐标是输出噪声功率坐标;右侧的纵坐标是输入噪声功率坐标.例中,在噪声分析对话框中选择了电阻R1作为噪声源元件,噪声频谱图中除了输入和输出噪声频谱曲线外,还有第三条曲线,这是由电阻R1产生的噪声频谱曲线.5.2 扫描分析(Sweep Analysis)EWB提供了4种扫描分析,即参数扫描分析,温度扫描分析,交流灵敏度分析,直流灵敏度分析.参数扫描分析是在用户指定每个参数变化的情况下,对电路的特性进行分析;温度扫描分析是在用户指定的每个温度下对电路特性进行分析;交流灵敏度分析,直流灵敏度分析则是分析电路特性对电路参数变化的敏感程度.5.2.1 参数扫描分析(Parameter Sweep Analysis)在参数扫描分析中,可以通过某元件参数在一定范围内变化来观察电路性能改变情况.即令某一元件每次取不同值,进行多次仿真.1)创建电路这里对图5-19所示的"频分复用有源滤波电路"进行参数扫描分析,该电路由3个运算放大器和一些电阻,电容组成.它的功能可以把混在一起的高,低频信号通过VOH,VOL两个输出端分别输出.进行参数分析时,可以讨论其中任何一个元件参数的变化对电路性能的影响.这里我们只讨论R9对高通输出的影响.2)分析参数设置选择Analysis /Parameter Sweep命令,屏幕显示出参数扫描设置(Parameter Sweep)对话框,如图5-20所示.78图5-19 参数扫描分析电路图5-20 参数设置对话框参数扫描分析对话框含有以下设置项目及其内容.Component——元件,即选择要扫描的元件.(默认设置:电路中的元件) Parameter——参数,即选择要扫描的元件参数.(默认设置:元件的第一参数) Start value——扫描起始值.选择扫描参数的起始值,单位依参数而定.(默认设置:所选元件的参数值)End value——扫描终止值.选择扫描参数的终止值,单位依参数而定.(默认设置: 所选元件的参数值)Sweep type——扫描类型.扫描类型可选Decade,Linear或Octav,即:十倍/线性/倍频(默认设置:十倍)Increment step size——增量步长.适合线性扫描,单位依参数而定.(默认设置:1)Output node——输出节点:选择要观察结果的节点.(默认设置:电路中的节点) 79Sweep for——扫描形式可为:直流工作点/瞬态分析/交流频率分析.(默认设置:瞬态分析)DC Operating Point——直流工作点.选中该项,进行直流工作点的参数扫描分析. Transient Analysis——瞬态分析.选中该项,进行瞬态参数扫描分析.可以按下"SetTransient Option"键,修改瞬态分析时的参数设置.AC Frequency Analysis——交流频率分析.选中该项,进行交流频率参数扫描分析,可以按下"Set AC Option"键,修改交流频率分析时的参数设置.本例确定R9为扫描元件,选择扫描参数的起始值为0.69 k ,扫描参数的终止值为69k ,扫描类型选10倍(Decade).扫描形式为:交流频率分析.输出节点VOH(23). 3)启动参数扫描分析工具单击如图5-20所示对话框中的Simulate按钮,则启动参数扫描分析工具,屏幕显示出Analysis Graphs窗口,同时绘出参数扫描分析曲线,如图5-21所示.图5-21 参数扫描分析曲线4)分析仿真结果选择电阻R9作为扫描元件,该元件的电阻值变化的起始值为0.69 k ,终止值为69 k ,选择10倍扫描.这样,EWB就会在R9分别为0.69,6.9,69 k 时进行仿真.从而得出三条频率分析曲线,如图5-21所示,上面一组为幅频特性曲线,下面一组为相频特性曲线.从曲线中可以看出R9变化对电路高通输出性能的影响,其中当R9为6.9 k 时,特性最为理想.5.2.2 温度扫描分析(Temperature Sweep Analysis)采用温度扫描分析,可以了解到不同温度下电路的特性.我们知道,电阻阻值以及晶体管的许多模型参数值都与温度有着密切关系,而温度的变化又将通过这些元件参数的变化而最终导致电路性能的变化.如果未设定温度扫描,EWB将在固定温度27℃下对电路80进行仿真分析.EWB提供的温度扫描分析工具,实际上在每次取不同温度值后,对电路进行多次仿真.1)创建电路电路如图5-22所示,该电路是单管放大器.这里讨论当温度改变时,引起的元件参数变化对电路性能的影响.图5-22 温度扫描分析电路2)设置分析参数选择Analysis/Temperature Sweep命令,屏幕显示出温度扫描分析参数设置(Temperature Sweep)对话框,如图5-23所示.图5-23 温度扫描分析参数设置对话框81温度扫描分析对话框包含以下设置项目及内容如.Analysis——分析:Start temperature——扫描起始温度.(默认设置:27℃)End temperature——扫描终值温度.(默认设置:27℃)Sweep type——扫描类型.扫描类型可选Decade,Linear或Octave即:十倍/线性/倍频(默认设置:十倍)Increment step size——增量步长.仅适用于线性扫描形式.(默认设置:1℃) Output node——输出节点,所选要观察结果的电路节点.(默认设置:电路中节点) Sweep for——扫描形式,直流工作点/瞬态分析/交流频率分析.(默认设置:直流工作点)DC Operating Point——直流工作点.选中该项,进行直流工作点的温度扫描分析. Transient Analysis——瞬态分析.选中该项,进行瞬态温度扫描分析,可以按下"SetTransient Option"键,修改瞬态分析时的参数设置.AC Frequency Analysis——交流频率分析.选中该项,进行交流温度扫描分析,可以按下"Set AC Option"键,修改交流频率分析时的参数设置.本例,确定温度扫描的变化范围为1~50℃,线性扫描形式,增量步长50℃,分析节点4的瞬态响应.。
实验二 EWB 软件综合电路的仿真一、 实验目的 1、进一步熟悉EWB 软件的基本操作,包括电路的创建、虚拟仪器的连接与使用以及电路参数的测量等。
2、掌握复杂电路图的绘制、虚拟仪器的测量方法。
二、 实验内容用EWB 软件进行住院病人呼叫器电路的仿真。
三、 实验步骤1、根据原理框图设计电路。
原理框图如下:图1 电路工作原理框图电路工作原理说明:住院病人可通过按动自己的床位按钮通过74ls148进行编码,按照病人的情况进行优先编码。
病重者优先。
再进入译码驱动电路跟发声传呼电路,译码驱动点路是由CD4511集成译码器组成,CD4511将74ls148传输过来信号译成相应的BCD 码。
由CD4511驱动数码管,编码器(约等于5~8V )床头开关译码驱动电路数码管发声传呼电路直流稳压电源显示病人求助的床位号。
发声传呼电路是通过9013带动一个蜂鸣器,当病人按下自己的床位按钮,蜂鸣器就会发出报警信号提示。
2、利用EWB软件从元器件库里找到对应需要的开关、电阻、芯片等,并依次选择修改所需参数,绘制电路原理图。
其原理图如下:图2 住院病人呼叫器电路图3、连接好电路图后进行模拟仿真。
(1)按下仿真按钮后,电路的初始状态为七段数码管显示‘7’。
图3 电路接通后的初始状态(2)闭合开关[0],则数码管显示‘0’。
图4 闭合开关[0]后的电路状态(3)依次闭合开关[1]、[2]、[3]……[7],观察数码管是否正常显示,即电路是否能正常工作。
以下为闭合开关[1]、[2]以及[7]时的电路工作状态。
图5 闭合开关[1]后的电路状态图6 闭合开关[2]后的电路状态图7 闭合开关[7]后的电路状态通过仿真,分别闭合开关[0]到[7],数码管显示对应开关的编码。
电路工作正常。
(4)同时闭合两个开关观察电路工作情况,观察电路是否具有优先级别的显示。
如下为同时闭合开关[2]、[3]、[4]时的电路工作情况。
图8 同时闭合开关[2]、[3]、[4]的电路工作状态电路可进行优先级别的判断,若有开关同时按下显示优先级别比较高的。
7、模拟电路的EWB仿真举例7.1 晶体管基本放大电路共射极、共集电极和共基极三种组态的基本放大电路是模拟电子技术的基础,通过EWB对其进行仿真分析,进一步熟悉三种电路在静态工作点、电压放大倍数、频率特性以及输入、输出电阻等方面各自的不同特点。
7.1.1 共射极基本放大电路按图7.1—1 搭接共射极基本放大电路,选择电路菜单电路图选项(Circuit/Schematic Option)中的显示/隐藏(Show/Hide)按钮,设置并显示元件的标号与数值等。
图7.1—1共射极基本放大电路1. 静态工作点分析选择分析菜单中的直流工作点分析选项(Analysis/DC Operating Point)(当然,也可以使用仪器库中的数字多用表直接测量),电路静态分析结果如图7.1—2所示,分析结果表明晶体管Q1工作在放大状态。
图7.1—2共射极基本放大电路的静态工作点22. 动态分析用仪器库的函数发生器为电路提供正弦输入信号V i (幅值为5mV ,频率为10kHz ),用示波器观察到输入、输出波形如图7.1—3所示。
图中V A 为输入电压(电路中节点4),V B 为输出电压(电路中节点5)。
由波形图可观察到电路的输入、输出电压信号反相位关系。
由两个测试指针处(T 1、T 2)分别读得输入、输出电压峰值,估算出电压放大倍数约为100倍。
再一种直接测量电压放大倍数的简便方法是用仪器库中的数字多用表直接测得。
图7.1—3 共射极基本放大电路的输入、输出电压波形输出电压的有效值后,再转换为峰值与输入电压峰值相比求得电压放大倍数。
晶体管Q 1(2N2712)电流放大系数β的典型值为204,读者还可以利用共射极放大器电压放大倍数理论计算公式:be L I O V r R V V A /...β-=-= 求得电压放大倍数再与上两种测试方法测得结果加以比较,进一步加深对理论计算公式的理解。
3. 参数扫描分析在图7.1—1所示的共射极基本放大电路中,偏置电阻R 1的阻值大小直接决定了静态电流I C 的大小,保持输入信号不变,改变R 1的阻值,可以观察到输出电压波形的失真情况。
EWB 仿真实验指导书夏路易2011,8,5部分1 简单电路分析使用分析方法同样可以获得电路参数,只是不太直观,没有做实验的感觉。
很多分析方法的设置都需要输出节点名称,通常节点名称是Multisim 软件给出的节点序号,但为使节点名称容易记忆,同时为分析设置方便,可以人为设置节点名称,方法是双击欲改节序号的线,然后输入新的节点名称,例如,可以将集电极节点改为C ,输出节点改为Vo ,输入节点改为VI ,等等。
[例1] 三端稳压器LM7805电路的直流扫描分析 图1-29所示的是三端稳压器LM7805向20欧姆电阻供电的电路,如果要想得到该电路中LM7805芯片耗散功率与输入电压之间的关系,就需要使用直流扫描方法。
图1-29 三端稳压器7805组成的供电电路首先画好电路图,然后设置分析参数和输出变量。
分析参数设置与输出变量设置如图1-30所示,注意将流过负载电阻R1的电流加入输出变量。
分析结果如图1-31所示图1-30分析参数设置与输出变量设置窗口VregU1LM7805CT IN OUTV110VR120ohmvin00vout 0图1-31输入电压、输出电压和负载电流曲线[例2] 方波振荡器工作波形瞬态分析瞬态分析方法是常用的分析方法,例如分析图1-32所示方波振荡器的频率、输出电压波形等参数,就可以使用瞬态分析方法。
图1-32 方波振荡器 图1-33 设置分析参数首先画图1-32所示的电路图,然后选择菜单Simulate/Transient Analysis ,按照图1-33所示的设置分析参数,对于振荡器类电路一般把初始条件设置为Set to zero 。
最后再在图1-34所示的Outputs Variables 页面将节点out 、vc 和vt 设置成分析输出变量。
该振荡器的瞬态分析结果如图1-35所示。
图1-34 输出变量的设置R1R2图1-35 方波振荡器的瞬态分析结果[例3] 用交流分析方法分析反相放大器的频率特性交流分析用于分析电路的频率特性。
63第5章 EWB仿真分析方法EWB提供了14种分析工具,本章将逐一加以介绍.利用EWB提供的分析工具,可以了解电路的基本工作状态,通过虚拟仪表测量和分析电路的各种响应,比用实际仪器测量精度高,范围宽.用EWB仿真分析电子电路的过程可分为4个步骤.(1)创建电路:用户创建的待仿真电路图,输入元器件数据,选择分析方法.(2)参数设置:程序会检查电路的结构,输入数据的性质,以及电路中的阐述内容, 对分析参数进行设置.(3)电路分析:对输入信号作用下的电路进行分析,这是电路进行仿真和分析的关键一步.它将形成电路的数值解,并把所得数据送至输出级.(4)数据输出:从虚拟仪器(如示波器等)上获得仿真运行的波形,数据.也可以从"分析"栏中的"分析显示图"(Analysis Graph)中得到测量,分析的波形图和数据表.用户可以在电路仿真进行之前,根据电路分析要求,设置不同仿真参数.在菜单分析栏(Analysis)中选择"Analysis Options"后,在屏幕上出现一个分析选项对话框,如图5-1.图5-1 分析选项对话框在分析选项对话框中包括5个选择标签,每个标签含意如下.1)总体分析选择(Global)ABSTOL——电流的绝对精度.(默认设置:1.012e ,适合一般双极型晶体管和VLSI 电路)64GMIN——最小电导.该值不能设置为零,增大该值可以改善收敛性,但会影响仿真精度.(默认设置:1.012e ,一般情况不需调整)PIVREL——最大矩阵项与主元值的相对比率.该值设定在0~1之间.(默认设置: 0.001,一般情况不需调整)PIVTOL——主元矩阵项绝对最小值.(默认设置:1.013e )RELTOL——相对误差精度.改变该值会影响仿真速度和收敛性.取值在1.06e 至0.01之间.(默认设置:0.001)TEMP——仿真温度.(默认设置:27℃)VNTOL——电压绝对精度.通常小于电路中最大电压信号的6~8个数量级.(默认设置:1.06e )CHGTOL——电荷绝对精度.(默认设置:1.014e ,一般情况不需调整) RAMPTIME——斜升时间.该值是独立源,电容和电感从零至终值的变化条件.(默认设置:0)CONVSTEP——相对收敛步长限制.在求解直流工作点时,建立相对步长限制自动控制收敛.(默认设置:0.25)CONVABSSTEP——绝对收敛步长限制.在求解直流工作点时,建立绝对步长限制自动控制收敛.(默认设置:0.1)CONVLIMIT——收敛限制.用于某些元件模型内部的收敛算法.(默认设置:选用) RSHUNT——模拟节点分流电阻.在节点和地间接入电阻,该值应该较大.(默认设置:不使用)如选择该项,则电阻为1.012e在"没有直流通路至地等情况时,可以降低该数值".Mb——仿真时的临时性文件规模.当存储仿真结果的文件达到它的最大规模时,会出现对话栏,有停止仿真,使用剩余磁盘空间继续仿真和删除已有数据继续仿真三种方法供选择.(默认设置:10 MB)2)直流分析选择(DC)ITLI——工作点分析迭代极限.限制算法的迭代次数.(默认设置:100.若出现"在直流分析时不收敛"等情况,可增加该值从500~1000) GMINSTEPS——GMIN步进算法步长.适当选择该值,有助于直流工作点分析求解. (默认设置:10)SRCSTEPS——SOURCE算法步长.适当选择,有助于直流工作点分析时分解.(默认设置:10)3)瞬态分析选择(Transient)ILT4——瞬态分析每时间点迭代次数的上限.减少此值会缩短瞬态分析的时间,但过分降低该值会引起不稳定.(默认设置:10.若出现"时间步长太小"或"瞬态分析不收敛"可增大此值到15~20)MAXORD——积分方法的最大阶数.(默认设置:2,取值范围在2~6之间) TRTOL——瞬态误差精度因素.(默认设置:7,一般情况不需调整) METHOD——瞬态分析数值积分方法.(默认设置:TRAPEZOIDAL"梯形法"适合振荡电路模式,GEAR"变阶积分"适合有理想开关的电路)ACCT——打印数据.显示仿真过程的有关信息.(默认设置:无)654)器件分析选择(Device)DEFAD——MOSFET漏极扩散区面积.(默认设置:0)DEFAS——MOSFET源极扩散区面积.(默认设置:0)DEFL——MOSFET沟道长度.(默认设置:0.0001)DEFW——MOSFET沟道宽度.(默认设置:0.0001)TNOM——模型参数标称温度.(默认设置:27℃)一般情况不需调整. BYPASS——非线性模型评估器件.(默认设置:ON.若选OFF将增加仿真时间.一般情况不需调整)TRYTOCOMPACT——小型传输线数据.只用于有耗传输线的仿真.(默认设置:无) 5)仪器分析选择(Instruments)Pause after each screen——示波器每屏显示后暂停.(默认设置:不能) Generate time steps automatically——示波器自动设置时间步长.(默认设置:自动)Set to zero——设置为零.瞬态分析的初始条件.(默认设置:无)User-defined——采用用户定义的初始条件.(默认设置:无)Calculate DC operating point——计算直流工作点.(默认设置:选用) Points pre cycle ——控制波特图测试仪每周期显示的点数.减少该数能加快仿真,但精度会降低.(默认设置:100)Pre trigger samples——逻辑分析仪触发前储存的点数.(默认设置:100) Post trigger samples——逻辑分析仪触发后储存的点数.(默认设置:100) Threshold voltage——逻辑分析仪高,低电平的门限电压.(默认设置:3.5 V) 5.1 基本分析方法EWB提供6种基本分析方法,即直流工作点分析(DC Operating Point Analysis),交流频率分析(AC Frequency Analysis),瞬态分析(Transient Analysis),傅里叶分析(FourierAnalysis),失真分析(Distortion Analysis),噪声分析(Noise Analysis). 5.1.1 直流工作点分析(DC Operating Point Analysis)直流工作点分析也称静态工作点分析,电路的直流分析是在交流输入信号视为零,电路中电容视为开路,电感视为短路时,电路中数字器件视为高阻接地的情况下来计算电路的直流工作点.在电路工作时,都必须给半导体器件以正确的偏置,直流分析就是要分析半导体的偏置,分析电路在无外加交流输入信号下的静态电压和电流.了解电路的直流工作点,才能进一步分析电路在交流信号作用下电路能否正常工作.求解电路的直流工作点是电路进行交流与瞬态分析过程的基础.1)创建电路在EWB工作区构造一个单管放大电路,电路中电源电压,各电阻和电容取值如图5-2所示.如果希望修改三极管的型号或调整三极管的β值,则双击三极管,选择ComponentProperties/Models命令,修改三极管的型号.例如,将三极管型号确定为2N3904,在该栏66图5-2 直流工作点分析电路目下选择Edit/Forward Current Gain Coefficient(即β值),修改三极管的β值.2)显示节点标志(ID)选择Circuit/Schematic Options/Show/Hide栏下的Show nodes,电路中各节点标志(ID)就会显示在电路中.3)启动直流工作点分析工具启动直流工作点分析工具,即选择Analysis/DC Operating Point命令,屏幕显示出Analysis Graphs窗口,并给出DC Bias的分析结果,即所有节点电压和电源支路电流值.4)分析仿真结果直流工作点的分析结果如图5-3所示.它给出电路各个节点的电压值,并给出三极管的基极和集电极的静态电压.根据这些电压的大小,可以确定该电路的静态工作点是否合理.如果不合理,可以改变电路中的一些元件参数,例如,修改电路中某个电阻的电阻值,图5-3 直流工作点分析结果67再次进行直流工作点的分析,如此反复,直至静态工作点合理为止.利用这种方法,也可以观察电路中某个元件参数的改变对电路直流工作点的影响.5.1.2 交流频率分析(AC Frequency Analysis)交流频率分析是在交流小信号工作条件下的一种频域分析.它分析电路随交流小信号频率变化的频率响应特性,是一种线性分析方法.EWB在进行交流频率分析时,首先分析电路的直流工作点,并在直流工作点处对各个非线性元件做线性化处理,得到线性化的交流小信号等效电路;然后电路中的直流电源自动置零,使电路中的交流信号源的频率在一定范围内变化,用等效电路分析电路的交流输出信号的变化规律.在进行交流频率分析时,用户自行设置的输入信号将被忽略.也就是说,无论用户给出电路的信号源设置的是三角波还是矩形波,进行交流频率分析时,都将自动设置为正弦波信号.1)创建电路创建如图5-4所示实验电路,图中给出了电路的参数设置.图5-4 交流频率分析电路2)设置分析参数选择菜单Analysis/AC Frequency命令,屏幕显示出交流频率分析(AC Frequency Analysis)对话框,如图5-5所示.交流频率分析对话框选项内容,含意如下:Start Frequency——扫描起始频率.(默认设置:1 Hz)End Frepuency——扫描终点频率.(默认设置:10 GHz)Sweep Type——扫描形式,十进制/线性/倍频程.(默认设置:十进制)Number of Points/Points Per——显示点数.(默认设置:100)Vertical Scale ——纵向刻度,线性/对数/分贝.(默认设置:对数)68图5-5 交流频率分析对话框Nodes in circuit——电路节点.Node for Analysis——被分析的节点,为编号(ID)的节点,而不是标识(Label)的节点.首先,根据需要设置分析的起始频率,终止频率,扫描形式等内容.然后,设置分析节点(Node for analysis)——节点8,10.3)启动交流频率分析工具单击图5-5所示对话框中的Simulate按钮,则启动交流频率分析工具,屏幕显示出Analysis Graphs窗口,同时绘出AC Analysis的分析曲线如图5-6所示.图5-6 交流频率分析曲线694)分析仿真结果当采用分析对话框的默认值,图5-4所示电路的交流频率分析曲线如图5-6所示,上面曲线为幅频特性曲线,下面曲线为相频特性曲线.幅频特性和相频特性各有两条曲线:一条是电路的8号节点(电路输入端)的电压随频率变化的曲线;另一条是电路的10号节点(电路输出端)的电压随频率变化的曲线.由交流频率分析曲线可知,该电路大约在100Hz~10 MHz范围内放大电路的输出幅值不随频率变化,且相位基本恒定.在这范围之外,输出电压将会衰减,相位会改变.这样,利用仿真方法就可以知道某一放大电路正常工作的频率范围.5.1.3 瞬态分析(Transient Analysis)瞬态分析也称为暂态分析,是一种时域分析方法,是在给定输入激励情况下,分析电路中选定输出节点的瞬态响应.EWB在进行瞬态分析时,首先要计算或给出电路的初始条件,然后从初始时刻起,到某个终止时刻,计算输出各个节点在每个时间点上的输出电压.初始条件的确定方式可在分析对话框中进行选择.瞬态分析中,相邻分析采样点的时间间隔称时间步长.启动瞬态分析时,用户可以采用只定义起始时间和终止时间,而EWB在兼顾分析精度和计算所需时间的情况下自动给出合理的时间步长;用户也可以自行定义时间步长以满足一些特殊分析要求.1)创建电路创建一个单管放大器,其电路如图5-7所示.图5-7 瞬态分析电路2)设置分析参数选择Analysis/Transient命令,屏幕上显示瞬态分析(Transient Analysis)对话框,如图5-8所示.以下为对话框的设置项目及其含意.Initial conditions——初始条件,包括:Set to Zero——初始条件为零开始分析.(默认设置:不选或无)70图5-8 瞬态分析对话框User-defined——用户定义初始条件进行分析.(默认设置:不选或无) Calculate DC operating point——由直流工作点分析结果作为初始条件进行分析.(默认设置:选用)Analysis——分析,包括:Start time——进行分析的起始时间.必需大于等于0,小于终点时间.(默认设置:0秒)End time——进行分析的终点时间.必需大于起始时间.(默认设置:0.001秒) Generate time steps automatically——自动选择一个较为合理的或最大的时间步长.(默认设置:选用)Minimum number of time points——仿真输出的图上,从起始时间到终点时间的点数.(默认设置:100点)Maximum time step(TMAX)——仿真时能达到的最大时间步长.Set plotting increment——设置绘图的增量.Nodes for Analysis——被分析的节点.选择两个分析节点,如图5-8所示的5号输入节点和2号输出节点,选择合适的终止时间和对话框的其他内容.3)启动瞬态分析工具单击如图5-8所示对话框中的Simulate按钮,则启动瞬态分析工具,屏幕显示出Analysis Graphs窗口,同时绘出Transient的分析曲线如图5-9所示.71图5-9 分析曲线4)分析仿真结果瞬态分析结果的波形图,也可以通过连接在需要分析节点上的示波器(用仿真开关启动分析)进行观察,得到的结果相同.但采用瞬态分析方法(用"Simulate"按钮启动分析),可以通过设置,更仔细地观察到波形起始部分的变化情况.根据电路的积分时间常数,将起始时间设定为0 s,结束时间设定为0.001 s,其他选项采用系统的默认值,则电路瞬态分析曲线如图5-9所示.分析曲线给出输入节点5和输出节点2的电压随时间变化的波形,左侧纵轴坐标是输入电压的坐标,右侧纵轴坐标则是输出电压的坐标,横轴是时间轴. 选择Analysis Graphs窗口中工具栏的Properties命令,出现Graph Properties的对话框,在该对话框中可以调整图形中相关参数,例如各个坐标轴的单位等等.5.1.4 傅里叶分析(Fourier Analysis)傅里叶分析是分析复杂多谐波周期信号的一种数学方法.可以用来评估时间连续信号的直流,基波和各次谐波分量,把电压波形表示从时域转换到频域,得到时域信号的频谱函数.此分析是在瞬态分析结束后,对时域分析结果进行傅里叶变换.EWB进行傅里叶分析时将自动执行瞬态分析,再进行傅里叶变换,最终产生傅里叶分析结果,分析结果以直观的图形和报告形式出现.分析时必须选定输出节点,同时选择一个基频.1)创建电路用精密半波整流电路构成一个实验电路,如图5-10所示.该电路节点2的输出是一个负半波.2)设置分析参数选择Analysis/Fourier命令,屏幕显示出傅里叶分析(Fourier Analysis)对话框,如图5-11所示.72图5-10 傅里叶分析实验电路图5-11 傅里叶分析对话框对话框的设置选项及内容如下:Output node——输出变量,被分析的电路节点.(默认设置:电路中的第一个节点) Fundamental frequency——傅里叶分析的谐波基频,为交流源的频率或最小的公因数.(默认设置:1 Hz)Number of harmonics——被计算和显示的基频谐波数.(默认设置:9)Vertical scale——纵向刻度,线性/对数/分贝.(默认设置:线性)Display phase——显示相频特性曲线.(默认设置:无)Output as line graph——以连续曲线形式显示幅频特性.(默认设置:无)选择电路的输出节点2号节点电压为分析对象,再根据电路参数,设置合理的基频以及需要观察的谐波次数.本例中选择基频100 Hz,谐波次数为9.3)启动傅里叶分析工具单击如图5-11所示对话框中的Simulate按钮,则启动傅里叶分析工具,屏幕显示出73Analysis Graphs窗口,同时绘出Fourier的分析曲线,如图5-12所示.图5-12 傅里叶分析结果4)分析仿真结果图5-10所示电路的2号节点输出的波形是正弦负半波.这里给出的是该节点电压的傅里叶分析的离散幅频特性曲线,分析曲线显示出输出波形中各次谐波分量的幅值,横坐标采用的是线性坐标.傅里叶分析结果还可以给出相频特性曲线和幅频特性的连续型曲线.5.1.5 失真分析(Distortion Analysis)电路对输入信号增益的非线性会造成电路输出信号的谐波失真,电路对输入信号相移的不一致造成互调失真.如果电路有一个交流频率源,EWB的失真分析将分析电路中每一节点的二次和三次谐波的谐波失真,绘出二次和三次谐波的谐波失真曲线;如果电路有两个交流频率源(设其频率F1>F2),则失真分析将分析三个特定频率的谐波失真,这三个频率分别是:两个频率之和(F1+F2),两个频率之差(F1-F2),及较高频率的二倍与较低频率差(2F1-F2).该分析用来观察在瞬态分析中无法看到的较小失真.1)创建电路创建一个场效应分压式偏置单管放大电路,电路参数及电路结构如图5-13所示.在电路的输入端加入一个交流电压源作为输入信号,其幅度为10 V,频率为1 Hz. 2)设置分析参数选择Analysis/Distortion命令,屏幕显示出失真分析参数(Distortion Analysis)对话框,如图5-14所示.以下为失真分析参数设置内容与含意.Start frequency——扫描起始点频率.(默认设置:1 Hz)End frequency——扫描终点频率.(默认设置:10 GHz)Sweep type——扫描形式,十进制/线性/倍频程.(默认设置:十进制)Number of points/points per——在线性形式时,是频率起始至终点的点数.(默认设置:100)74图5-13 失真分析电路图5-14 失真分析参数设置对话框Vertical scale——纵坐标标度.对数/线性/分贝.(默认设置:对数)F1/F2 ratio——若信号有两个频率F1和F2,若选定该项时,在F1进行扫描时,F2被设定成该比值乘以起始频率,必需大于0,小于1.(默认设置:无)Nodes for Analysis——被分析的节点.该电路的输出节点是5号节点,选择分析节点为5号节点,其他选项用默认值.当然,也可根据需要选择其他值.3)启动失真分析工具单击如图5-14所示对话框中的Simulate按钮,则启动失真分析工具.此时,屏幕显示出Analysis Graphs窗口,同时绘出Distortion的分析曲线,如图5-15所示.75图5-15 失真分析曲线4)分析仿真结果图5-15所示为是电路图5-13的失真分析结果.由于该电路只有一个输入信号,因此,失真分析结果给出的是第二次谐波和第三次谐波失真图.5.1.6 噪声分析(Noise Analysis)在通信电路与系统中,常常需要进行噪声分析.噪声分析是定量分析电路中的电阻和半导体器件对指定输出节点噪声贡献.假设噪声源互不相关,而且这些噪声值都独立计算,输出节点总噪声等于各个噪声源对于该节点的噪声均方根之和.EWB提供的噪声分析可以检测电路输出端噪声源的大小,该分析将利用交流小信号等效电路,计算由电阻和半导体器件所产生的噪声总和.1)创建电路创建单管放大电路如图5-16所示,对这一单管放大电路进行噪声分析.图5-16 噪声分析电路762)设置分析参数选择Analysis/Noise命令,屏幕显示出Noise Analysis(噪声分析)对话框,如图5-17所示.图5-17 噪声分析对话框以下为噪声分析对话框的设置项目及内容.Input noise reference source——选择交流电压源作为输入.(默认设置:电路中的第一编号源)Output node——噪声分析的节点.(默认设置:电路第一编号节点)Reference node ——参考电压点.(默认设置:接地点)Start frequency ——扫描起始频率.(默认设置:1 Hz)End frequency ——扫描终点频率.(默认设置:10 GHz)Sweep type——扫描形式,十进制/线性/倍频程.(默认设置:十进制)Number of points——表示起始频率至终点频率的点数.(默认设置:100) Vertical scale——纵向标度,对数/线性/分贝.(默认设置:对数)Set point per summary——当选择该项时,显示被选元件噪声贡献的记录曲线.用求和的点数除以频率间隔数,会降低输出显示图的分辨率.(默认设置:无)Points per summary component——当选择该项时,选择噪声源进行求和.(默认设置:电路中的第一编号元件)本例,选择输入噪声参考源为电路中的交流电压源V1,第10节点作为噪声输出节点.为了分析电路中的电阻R1的噪声轨迹,选中Set points per summary,在该栏目下选择R1,其他设置采用对话框的默认值.3)启动噪声分析工具单击如图5-17所示对话框中的Simulate按钮,则启动噪声分析工具,屏幕显示出Analysis Graphs窗口,同时绘出Noise的分析曲线,如图5-18所示.77图5-18 噪声分析曲线4)分析仿真结果如图5-18所示,噪声分析曲线给出输入和输出噪声频谱.其横坐标是频率;左侧的纵坐标是输出噪声功率坐标;右侧的纵坐标是输入噪声功率坐标.例中,在噪声分析对话框中选择了电阻R1作为噪声源元件,噪声频谱图中除了输入和输出噪声频谱曲线外,还有第三条曲线,这是由电阻R1产生的噪声频谱曲线.5.2 扫描分析(Sweep Analysis)EWB提供了4种扫描分析,即参数扫描分析,温度扫描分析,交流灵敏度分析,直流灵敏度分析.参数扫描分析是在用户指定每个参数变化的情况下,对电路的特性进行分析;温度扫描分析是在用户指定的每个温度下对电路特性进行分析;交流灵敏度分析,直流灵敏度分析则是分析电路特性对电路参数变化的敏感程度.5.2.1 参数扫描分析(Parameter Sweep Analysis)在参数扫描分析中,可以通过某元件参数在一定范围内变化来观察电路性能改变情况.即令某一元件每次取不同值,进行多次仿真.1)创建电路这里对图5-19所示的"频分复用有源滤波电路"进行参数扫描分析,该电路由3个运算放大器和一些电阻,电容组成.它的功能可以把混在一起的高,低频信号通过VOH,VOL两个输出端分别输出.进行参数分析时,可以讨论其中任何一个元件参数的变化对电路性能的影响.这里我们只讨论R9对高通输出的影响.2)分析参数设置选择Analysis /Parameter Sweep命令,屏幕显示出参数扫描设置(Parameter Sweep)对话框,如图5-20所示.78图5-19 参数扫描分析电路图5-20 参数设置对话框参数扫描分析对话框含有以下设置项目及其内容.Component——元件,即选择要扫描的元件.(默认设置:电路中的元件) Parameter——参数,即选择要扫描的元件参数.(默认设置:元件的第一参数) Start value——扫描起始值.选择扫描参数的起始值,单位依参数而定.(默认设置:所选元件的参数值)End value——扫描终止值.选择扫描参数的终止值,单位依参数而定.(默认设置: 所选元件的参数值)Sweep type——扫描类型.扫描类型可选Decade,Linear或Octav,即:十倍/线性/倍频(默认设置:十倍)Increment step size——增量步长.适合线性扫描,单位依参数而定.(默认设置:1)Output node——输出节点:选择要观察结果的节点.(默认设置:电路中的节点) 79Sweep for——扫描形式可为:直流工作点/瞬态分析/交流频率分析.(默认设置:瞬态分析)DC Operating Point——直流工作点.选中该项,进行直流工作点的参数扫描分析. Transient Analysis——瞬态分析.选中该项,进行瞬态参数扫描分析.可以按下"SetTransient Option"键,修改瞬态分析时的参数设置.AC Frequency Analysis——交流频率分析.选中该项,进行交流频率参数扫描分析,可以按下"Set AC Option"键,修改交流频率分析时的参数设置.本例确定R9为扫描元件,选择扫描参数的起始值为0.69 k ,扫描参数的终止值为69k ,扫描类型选10倍(Decade).扫描形式为:交流频率分析.输出节点VOH(23). 3)启动参数扫描分析工具单击如图5-20所示对话框中的Simulate按钮,则启动参数扫描分析工具,屏幕显示出Analysis Graphs窗口,同时绘出参数扫描分析曲线,如图5-21所示.图5-21 参数扫描分析曲线4)分析仿真结果选择电阻R9作为扫描元件,该元件的电阻值变化的起始值为0.69 k ,终止值为69 k ,选择10倍扫描.这样,EWB就会在R9分别为0.69,6.9,69 k 时进行仿真.从而得出三条频率分析曲线,如图5-21所示,上面一组为幅频特性曲线,下面一组为相频特性曲线.从曲线中可以看出R9变化对电路高通输出性能的影响,其中当R9为6.9 k 时,特性最为理想.5.2.2 温度扫描分析(Temperature Sweep Analysis)采用温度扫描分析,可以了解到不同温度下电路的特性.我们知道,电阻阻值以及晶体管的许多模型参数值都与温度有着密切关系,而温度的变化又将通过这些元件参数的变化而最终导致电路性能的变化.如果未设定温度扫描,EWB将在固定温度27℃下对电路80进行仿真分析.EWB提供的温度扫描分析工具,实际上在每次取不同温度值后,对电路进行多次仿真.1)创建电路电路如图5-22所示,该电路是单管放大器.这里讨论当温度改变时,引起的元件参数变化对电路性能的影响.图5-22 温度扫描分析电路2)设置分析参数选择Analysis/Temperature Sweep命令,屏幕显示出温度扫描分析参数设置(Temperature Sweep)对话框,如图5-23所示.图5-23 温度扫描分析参数设置对话框81温度扫描分析对话框包含以下设置项目及内容如.Analysis——分析:Start temperature——扫描起始温度.(默认设置:27℃)End temperature——扫描终值温度.(默认设置:27℃)Sweep type——扫描类型.扫描类型可选Decade,Linear或Octave即:十倍/线性/倍频(默认设置:十倍)Increment step size——增量步长.仅适用于线性扫描形式.(默认设置:1℃) Output node——输出节点,所选要观察结果的电路节点.(默认设置:电路中节点) Sweep for——扫描形式,直流工作点/瞬态分析/交流频率分析.(默认设置:直流工作点)DC Operating Point——直流工作点.选中该项,进行直流工作点的温度扫描分析. Transient Analysis——瞬态分析.选中该项,进行瞬态温度扫描分析,可以按下"SetTransient Option"键,修改瞬态分析时的参数设置.AC Frequency Analysis——交流频率分析.选中该项,进行交流温度扫描分析,可以按下"Set AC Option"键,修改交流频率分析时的参数设置.本例,确定温度扫描的变化范围为1~50℃,线性扫描形式,增量步长50℃,分析节点4的瞬态响应.。
目录第1章EWB软件的功能介绍 (1)1.1 软件简介 (1)1.2 Electronics Workbench 软件界面 (2)1.2.1 EWB的主窗口 (2)1.2.2 元件库栏 (2)1.2.3 信号源库 (2)1.2.4 基本器件库 (3)1.2.5 二极管库 (3)1.2.6 模拟集成电路库 (3)1.2.7 指示器件库 (4)1.2.8 仪器库 (4)1.3 Electronics Workbench 基本操作方法介绍 (4)1.3.1 创建电路 (4)1.3.2 使用仪器 (6)1.3.3 元件库中的常用元件 (9)1.3.4 元器件库和元器件的创建与删除 (10)1.4 虚拟工作台方式电路仿真 (11)第2章基本分析方法 (12)2.1 实验一:直流(静态)工作点分析(DC Operating Point Analysis) (12)2.2 实验二:交流频率分析(AC Frequency Analysis) (13)2.3 实验三:瞬态分析(Transient Analysis) (16)2.4 实验四:傅里叶分析(Fourier Analysis) (19)第3章实验项目一:运算放大器的仿真分析与传输特性测绘 (22)3.1 元件原理: (22)3.2 仿真过程: (22)3.2.1 不同运算放大器的增益分析 (22)3.2.2 运算放大器传输特性测绘 (26)第4章实验项目二:二极管、稳压管的仿真模型与正反向特性测试 (27)4.1元件原理: (27)4.2 仿真过程: (27)第1章EWB软件的功能介绍1.1 软件简介EWB是一个优秀的电子技术训练工具,利用它提供的虚拟仪器可以用比实验室中更灵活的方式进行电路实验,仿真电路的实际运行情况,熟悉常用电子仪器测量方法。
1.2 E lectronics Workbench 软件界面1.2.1 EWB的主窗口1.2.2 元件库栏1.2.3 信号源库图 1.2.2-1图 1.2.1-1图 1.2.3-11.2.4 基本器件库图 1.2.4-11.2.5 二极管库图 1.2.5-11.2.6 模拟集成电路库图 1.2.6-11.2.7 指示器件库图 1.2.7-11.2.8 仪器库图 1.2.8-11.3 Electronics Workbench 基本操作方法介绍1.3.1 创建电路(1)元器件操作元件选用:打开元件库栏,移动鼠标到需要的元件图形上,按下左键,将元件符号拖拽到工作区。
第二部分、数字电路部分四、组合逻辑电路的设计与测试一、实验目的1、掌握组合逻辑电路的设计的设计与测试方法。
2、熟悉EWB中逻辑转换仪的使用方法。
二、实验内容设计要求:有A、B、C三台电动机,要求A工作B也必须工作,B工作C也必须工作,否者就报警。
用组合逻辑电路实现。
三、操作1、列出真值表,并编写在逻辑转换仪中“真值表”区域内,将其复制到下ABC 输入,输出接彩色指示灯,验证电路的逻辑功能。
将连接的电路图复制到下表中。
五、触发器及其应用一、实验目的1、掌握基本JK、D等触发器的逻辑功能的测试方法。
2、熟悉EWB中逻辑分析仪的使用方法。
二、实验内容1、测试D触发器的逻辑功能。
2、触发器之间的相互转换。
3、用JK触发器组成双向时钟脉冲电路,并测试其波形。
三、操作1、D触发器在输入信号为单端的情况下,D触发器用起来最为方便,其状态方程为n D+1nQ=其输出状态的更新发生在CP脉冲的上升沿,故又称为上升沿触发的边沿触发器。
图2.5.1为双D 74LS74的引脚排列及逻辑符号。
图2.5.1 74LS74的引脚排列及逻辑符号在EWB中连接电路如图2.5.2所示,记录表2.5.1的功能表。
图2.5.2输 入 输 出D SD RCP D 1+n Qn Q0 1 × × 1 0 × × 1 1 ↓ 0 11↓12、触发器之间的相互转换在集成触发器的产品中,每一种触发器都有自己固定的逻辑功能。
但可以利用转换的方法获得具有其它功能的触发器。
在T ′触发器的CP 端每来一个CP 脉冲信号,触发器的状态就翻转一次,故称之为反转触发器,广泛用于计数电路中,其状态方程为:1nn Q Q +=。
同样,若将D 触发器Q 端与D 端相连,便转成T ′触发器。
如图2.5.3所示。
DQCPQQ Q图2.5.3 D 转成T ′在EWB 中连接电路如图2.5.4所示,测试其功能。
图2.5.4 D 转成T ′触发器3、双向时钟脉冲电路的测试。
四,运算放大器电路辅助分析1. 仿真实验目的(1) 了解由集成运算放大器组成的比例,加法,减法和积分等基本运算电路的功能。
(2) 了解运算放大器在实际应用时应考虑的一些问题。
2.实验原理与说明in R →∞根据理想运放的特点,0R 0→,A →∞,可以得到以下两条规则。
(1)“虚断”:由于理想运放in R →∞,则0,0,a b i i ≈≈故输入端口的电流约为零,可近似视为断路,称为“虚断”。
(2)“虚短”:由于理想运放A →∞,0u 为有限量,则0u 0b b u u A -=≈,即两输入端间电压约等于零,可近似视为断路,称为“虚短”。
如图所示加法器电路的原理图图一如上图所示1230123a a a a f u u u u u u u u R R R R ----++=根据“虚短”概念,0a u =,上式变换为1230123f u u u u R R R R -++=即1230123f u u u u R R R R ⎛⎫=-++ ⎪⎝⎭3.仿真实验内容与步骤按图一在仿真软件中连接电路,如图二所示W图二进行理论分析022251310006000101010u V ⎛⎫=----= ⎪⎝⎭结果如图三所示图三仿真结果与理论结果相符合。
4.实验注意事项(1)每次要通过按下操作界面右上角的“启动/停止开关”接通电源,或者暂停来观测电表读数。
(2)要注意元件的正负极以及电表的量程。
5.仿真实验报告总结完成了运算放大器电路辅助分析的设计报告后,对所设计的电路在仿真过程中所遇到的问题做出总结。
例如:电表读数有时候为什么是负值?为什么一定要接地?。