分层压裂技术
- 格式:pdf
- 大小:1.27 MB
- 文档页数:31
油田井下压裂技术要点分析1油田井下压裂施工技术工艺分析1.1分隔分层压裂工艺作为油田井下压裂施工中较为常用的压裂施工技术,分隔分层压裂工艺的工艺成本较高且工艺流程相对复杂。
封隔器作为该工艺重要设备主要由单封隔型、双封隔型以及滑套型三种。
其中,单封隔型多用于大型油井与中型油井中,主要应用在油井的最下层。
而双封隔型的应用较为广泛,可以适应任何种类的油井,同时,压裂施工受到油井层限制较小。
对于滑套性封隔器来说,则可以用于反复压裂、较深的油井中。
在应用滑套性封隔器压裂过程中,首先应保证压裂机喷砂仪上有滑套,其原因在于能够确保内部压力、压裂较大,能够实现迅速喷射。
现阶段,该项技术应用在国内油田中应用较为广泛。
1.2限流分层压裂工艺当压裂施工技术要求较高且较为复杂时,多采用限流分层压裂工艺。
主要应用于压开层数多、压裂所需压力差异性较强的施工中。
限流分层压裂工艺在实际的应用过程中需要针对具体情况进行高速喷射口的改变,也就是利用随时改变高速喷射口直径的方式有效改变喷射压力,从而进一步提升单位时间内的注入量。
施工时,首先需要采用直径相对较小的喷射口,逐渐提高井下的压力,直到压力高于油井所能承受的最大负荷后,再进行直径的改变,采用较大直径口径的喷射口。
针对不同油井层的压力,确保油井层产生裂缝能够顺利流出原油。
除此之外,对于水平油井来说,限流分层压裂工艺的应用能够依据油层厚度的不同,采取施加不同压力的方式,使得压裂能够纵向产生裂缝,进而提高工艺水平。
但同时,需要注意的是,限流分层压裂工艺往往对高速喷射井口的直径与密度有着较高的要求,所以仅适合满足其条件的油井。
由于局限性较强,在实际应用中受到了制约。
1.3注蜡球选择型压裂工艺在进行油田井下压裂时,注蜡球选择型压裂工艺的施工原理在于改变原有的堵塞剂,并将其更换为注蜡球进行后续的压裂。
一般来说,最先受压的为具有高渗透层的油井,随着蜡球不断封堵高渗透层,会导致井下压力不断增强,一旦压力到达相应程度时,油层便会随之产生裂缝。
浅析水平井分段压裂工艺技术及展望摘要:随着油田开发进入后期,产油量下降,含水量大幅上升,开采难度增大。
大力开采低渗透油气藏成为增加产量的主要手段。
而水平井分段压裂增产措施是开采低渗透油气藏的最佳方法。
水平井分段压裂技术的应用可以大幅提高油田产量,增加经济效益,实现油气的高效低成本开发。
本文介绍国内水平井分段压裂技术,并对水平井分段压裂技术进行展望。
关键词:水平井;分段压裂;工艺技术1水平井技术优势目前水平井已成为一种集成化定向钻井技术,在油田开发方面发挥着重要作用。
通过对现有文献进行调研,发现水平井存在以下技术优势:水平井井眼穿过储层的长度长,极大地增加了井筒与储层接触面积,提高了储层采收率;仅需要少数的井不但可以实现最佳采收率,而且在节约施工场地面积的同时降低生产成本,以此提高油田开发效果;水平井压力特征与直井相比,压力降低速度慢,井底流压更高,当压差相同时,水平井的采出量是直井采出量的4~7倍;当开发边底水油气藏时,若采用直井直接进行开采虽然初期产量高但后期含水上升快,而水平井泄油面积大,加上生产压差小,能够很好的控制含水上升速度,有效抑制此类油藏发生水锥或气锥;能够使多个薄层同时进行开采,提高储层的采出程度。
2水平井压裂增产原理水平井压裂增产的过程:利用高压泵组将高黏液体以大大超过地层吸液能力的排量由井筒泵送至储层,当达到地层的抗张强度时,地层起裂并形成裂缝,随着流体的不断注入,裂缝不断扩展并延伸,使得储层中裂隙结构处于沟通状态,从而提高储层的渗流能力,达到增产的目的。
水平井压裂增产原理主要包括以下四方面:增加了井筒与储层的接触面积,提高了原油采收率;改变了井底附近渗流模式,将压裂前的径向流改变为压裂后的双线性流,使得流体更容易流人井筒,降低了渗流阻力;沟通了储层中的人造裂缝和天然裂缝,扩大了储层供油区域,提高了储层渗流能力。
降低了井底附近地层污染,提高了单井产量。
3国内水平井分段压裂技术3.1水平井套管限流压裂对于未射孔的新井,应采用限流法分段压裂技术。
机械分层压裂技术在纯梁薄互层油藏的应用摘要分层压裂技术是多年来发展成熟的油层改造技术之一,是适合低渗透多薄层油藏改造的一项重要手段,其中机械分层压裂具有针对性强,施工难度小,成功率高,压后效果好的特点。
本文重点介绍了纯梁采油厂机械分层压裂技术的优化应用及效果。
关键词低渗透;多薄层;分层压裂;机械分层中图分类号te357 文献标识码a 文章编号 1674-6708(2013)86-0138-02低渗透多薄层油藏具有渗透率低、物性差、层多而薄、自然产能低、层间地应力差异大等特点。
常规的笼统压裂方式不能完全打开所有的储层,经常出现部分压裂目的层打不开、支撑缝长短、窄、加砂困难等问题,改造效果差,因此分层压裂比较适合该类储层的压裂改造。
直井分层压裂技术又可细分为机械分层压裂、投球分层压裂及限流分层压裂三种。
而机械分层压裂技术近两年来在纯化油田、樊家油田、小营油田等区块都有广泛应用,并取得了良好的效果。
1 机械分层压裂技术介绍1.1 工艺原理机械分层是借助封隔器将目的层与其上下层段分隔出来成为一个独立的压裂单元,通过投放不同直径的钢球,打掉滑套,实现对压裂目的层压裂。
1.2 技术特点1)不动管柱、不压井、不放喷,一次施工分压多层,操作简单;2)操作局限:每个射孔段之间的距离有一定的要求;为保证封隔器坐封位置准确,需要磁定位校深;管柱结构较复杂,存在砂卡风险。
1.3 管柱配备2012年,根据纯梁采油厂油井的具体井况,对井下管柱进行了优化改进,主要是采用“水力锚+k344”封隔器的组合模式,具体见图1:1.4 压裂施工过程1.4.1 验管验管时投入合适直径的钢球,等待40分钟后,缓慢向油管内注水打压,在10mpa、18mpa(最高不超过20mpa),时分别稳压10min,确认管柱无漏点。
1.4.2 封隔器的座封与分层压裂的实施施工正式开始时,先缓慢升压,当压力达到30mpa~40mpa时即可将验封滑套打开,此时应快速加大排量到2.5m3/min以上,使封隔器保持坐封状态,继续保持排量向井内注入前置液,以后按压裂泵注程序进行压裂施工(注:油管建立25mpa压力后,套管打平衡压力8mpa~15mpa)。
分层压裂技术前言1、油藏开发特征文南油田属于深层、高压、低渗的复杂断块油气藏。
油层埋藏深,一般埋深范围在2210-3800m之间,平均油藏深度3100m;油层压力高,破裂压力在45-85MPa之间,大部分油层破裂压力在60Mpa以上;油层物性复杂,渗透率低,空气渗透率范围4.3-208×10-3um2,平均空气渗透率在25×10-3um2,渗透率差别较大;断块复杂,断层分布较多。
经过多年的开发,大部分油井射孔井段较长,油层跨度较大。
由于油层跨度大,射孔段油层较多,且油层之间物性差异较大,长期的多油层合采使得好油层大面积水淹,差油层注水开发困难,动用程度很低,因此有很大挖潜空间。
2、开展分层压裂的目的意义以往的长井段笼统压裂目的层段较长,一次施工不能压开尽可能多的油层,部分油层改造不彻底,已经不适应压裂工作的需要。
而分层压裂压裂层段跨度小且比较集中,压裂目的层比较明确,一次施工能够压开较多的油层,能有效改造差油层,因此推广分层压裂工艺技术对于提高二、三类油层的动用程度,提高压裂的整体效果,具有重要的意义。
一、分层压裂工艺技术特点分层压裂就是针对油层跨度较大的油井,根据油层潜力及工艺可行性分析,选出潜力较大的油层,采用限流、投球暂堵、卡单封、卡双封等分层方式,有针对性的开展压裂施工。
与长井段笼统压裂相比,分层压裂具有以下特点:1、压裂层段跨度相对较小分层压裂根据压裂油层的不同情况,采用不同的分层方式,可以有效减少压裂层跨度及总厚度,分层压裂层段的总厚度一般控制在50m以内,这样可以比较彻底的改造油层。
2、降低压裂施工风险,提高压裂成功率由于分层压裂有效减少了压裂目的层的跨度,这样在施工中就可以减少压裂液的滤失,有利于在井底憋起高压,形成有效的裂缝,减少压裂砂堵的可能,有效的降低了压裂施工风险。
3、能有效挖掘物性较差油层的潜力由于分层压裂采用工艺或机械的方式有效分层,这样大大提高了压裂目的层的针对性,能够有效改造物性较差油层的潜力,在一次压裂中可以压开尽可能多的油层,是对油层物性层间差异较大油井的有效压裂方式。
压裂方法分类及选择条件一、压裂设计的原则和方法压裂设计的原则是最大限度的发挥油层潜能和裂缝的作用,是压裂后油气井和注入井达到最佳状态,同时还要求压裂井的有效期和稳定期长。
压裂设计的方法是根据油层特性和设备能力,以获取最大产量和经济效益为目标,在优选裂缝几何参数基础上,设计合适的加砂方案。
二、压裂技术2.1合层压裂2.1.1油管压裂油管压裂就是压裂液自油管泵入油层。
其特点是施工简单,且油管截面小、流速大,其压裂液的携带能力强,又不会增加液流阻力和设备负荷,降低了有效功率。
2.1.2 套管压裂套管压裂液是井内不下入油管,从套管里直接泵入压裂液进行压裂。
其特点是施工简单,可最大限度的降低管道摩阻,从而相应的提高了排量和降低了泵压,但携带能力差,一旦造成砂堵,无法进行循环解堵。
2.1.3 环形空间压裂环形空间压裂是压裂液从套管和油管的环形空间泵入油层。
它与前两种方法相比,具有阻力损失小,适应抽油井不起泵压裂的特点,但流速低,携砂能力低。
2.1.4 油、套管同时进行压裂油、套管同时进行压裂是在井里下入油管,压裂时油管接一台压裂车。
施工时,压裂液从油、套管同时泵入,支撑剂从套管加进。
其特点是利用油管泵入的液体从油管谢出来时改变流向,可以防止支撑剂下沉,若一旦发生砂堵,进行反循环也比较方便。
因此,这种压裂适宜于中深井压裂。
2.2 分层压裂2.2.1 球堵法分层压裂如果同时开采渗透率不同的多层,当压裂液泵入井里后,液体首先进入高渗层,一般低渗层是压裂的目的层,这时就将若干赌球随液体泵入井中,赌球将高渗层的孔眼堵住,等压力憋起即可将低渗层压开。
这种方法可在一口井中多次使用,一次施工可压开多层。
对于射孔井,可用尼龙球,随压裂液进入井内并坐在高渗透层部位的炮眼上,以堵塞炮眼,即可将井内压力憋起,从而压开低渗透层的裂缝,此法可在一次压裂中多次重复使用,施工结束后,井底压力降低,堵球在压差的作用下,可以反排出来。
2.2.2 选择性压裂在同一开发层系中,由于地质上的非均质性,也存再高渗和低渗层段的差别。
多级分层压裂酸化技术研究摘要常规多油层全井酸化压裂只能对其中的某一薄弱层进行改造,分层酸化压裂工艺技术,由多级压裂封隔器和滑套喷砂器组成,通过自下而上的处理方式可以实现不动管柱酸化压裂 3 层或对其中任意 1 层进行施工改造。
关键词压裂;多级管柱;封隔器;配套;工具中图分类号te3 文献标识码a 文章编号1674-6708(2010)23-0163-02分层压裂用在多层或厚层的油气井中,由于各层段渗透率差别较大,需要分层进行压裂,以保证压开渗透率低的层段。
目前,使用的工艺有暂时堵塞剂分层压裂、封堵球分层压裂、封隔器压裂等。
如何保证多层同时被压开是要解决的一个重要问题。
针对上述情况,开发一种单趟管柱压裂多层,提高成功率,节省作业成本,成为必然选择。
1 多级分层压裂酸化工艺管柱研究该工艺管柱由多级扩张式压裂封隔器、喷砂器、滑套密封器、底部球座等工具组成,通过自下而上的处理方式可以实现不动管柱酸化压裂 3 层或对其中任意1层进行施工造。
多级分层压裂酸化工艺管柱自上而下组成工具有:安全接头、上级带锚定扩张封隔器(简称上封锚)、上级喷砂器(简称上喷器)、扩张封隔器、中级带锚定扩张封隔器(简称中封锚)、中间喷砂器(简称中喷器)、扩张封隔器、下级带锚定扩张封隔器(简称下封锚)、滑套密封器、下级喷砂器(简称下喷器)、底部球座等。
1.1 带锚定扩张式封隔器的研制mk344-114型封隔器由接箍、短接、o型圈、缓冲座、壳体、锚爪、弹簧、螺钉、压板、筛管、上胶筒座、胶筒、中心管、下胶筒座、球座、剪环、剪钉、滑套、下接头等部件组成。
缓冲座可有效减轻高速携砂液通过时对工具的涡流冲蚀;滑套上部的球座由氧化硅陶瓷构成,有效减少冲蚀;胶筒肩部有钢丝连线与橡胶硫化。
并上、下连接套与胶筒细脖子处留有一定间隙,防止胶筒肩部突出时被啃坏、滑动接头在胶筒砂卡时,上提一定负荷下,有强制恢复胶筒原状功能。
工作原理为:压裂管柱下至井内预定位置后,在一定压差情况下封隔器分隔油层,同时锚定器锚爪伸出抓住套管防止油管蠕动,压裂液通过喷砂器的喷砂孔进入油层,经过试挤、压裂加砂,替挤等工艺后,完成压裂工序,然后上提管柱起出压裂管柱。
油田分层压裂(酸化)工艺技术探讨摘要:在油田勘探开采的发展中,常规石油中有诸多工艺技术,而分层压裂液液、酸化液工艺是中国油田试油作业中不可缺少的过程,也是从钻井步骤一直到油田生产过程中承上启下的关键工艺,同时也是油田开发工程中工艺技术服务的重要组成部分。
本文阐述了我国油田的压裂液工艺技术以及酸化液工艺技术,并进一步研究这两种技术在油田施工过程中的应用、效果分析。
关键词:油田分层压裂液酸化液工艺技术效果分析油田试油技术在广义上就是指试油施工的整个过程,其中包括了各方面的工艺技术例如:地层的测试、常规试油的工艺技术程序、试井测试和技术改造措施,这些工作全部是为了取得油田实际储油参数而进行的,压裂液工艺技术以及酸化液工艺技术,在中国石油集团渤海钻探工程技术研究院的工作学习中,我对石油技术做过颇多分析,本文就针对油田分层压裂酸化工艺技术展开探讨,分析压裂液技术与酸化液技术在我国油田种的应用、效果。
一、压裂技液术与酸化液技术的概述1.压裂液技术油田压裂液工艺技术应用上主要是压力将地层压开,形成裂缝并用支撑剂将它支撑起来,以减小流体流动阻力的增产、增注措施。
压裂液主要有前置液、携砂液、顶替液组成的。
压裂液的性能要求:黏度高,润滑性好,滤失量小,低摩阻,对被压裂的流体层无堵塞及损害,对流体矿无污染,热稳定性及剪切稳定性能好、低残渣、配伍性好、破胶迅速、货源广,便于配制,经济合理。
压裂液主要作用在概括来说有以下几方面:1、携带支撑剂到地层;2、压开裂缝;3、降低地层温度。
2.酸化液技术酸化液技术分为压裂酸化工艺技术和基质酸化工艺技术两种,主要是利用酸液解决生产井和注水井周围污染问题,进一步的清除缝隙中的堵塞物质,达到扩大地层裂缝,提高渗透率的一种工艺技术。
压裂酸化技术指的是在酸化的基础上压裂,将天然裂缝加宽、扩大、延伸,或是通过压裂岩石形成新的岩缝。
形成之后的岩缝凹凸不平,在施工后形成槽油、沟油等流通道,改善了之前的汽油景田流渗状况,提高产油量。
分层压裂技术在纯26区块研究应用摘要:低渗透多薄层油藏具有渗透率低、层多、层薄、自然产能低、层间地应力差异等特点,需要有针对性的油层改造来提高其采收率。
分层压裂技术可以实现一趟管柱对地层压裂改造来提高单井单层产量。
对分层压裂技术进行研究分析,在纯26区块的压裂改造中对投球分层及机械分层进行了现场应用,结果表明机械分层压裂优于投球分层,其压后效果好。
为低渗透多薄层的开采提供了新的方法。
主题词:低渗透多薄层分层压裂现场应用中图分类号:te3481 多薄层油藏压裂改造特点低渗透多薄层油藏具有渗透率低、物性差、层多、层薄、自然产能低,层间地应力差异大等特点,在开采过程中表现出“采油速度低、采出程度低、单井产量低、稳产难度大”等特点。
在压裂改造过程中,单一小层压裂难以形成一定生产能力,且成本高。
而笼统压裂时经常出现部分压裂目的层打不开、支撑缝长短、缝窄、加砂困难等问题。
目前直井分层压裂技术可以达到节省成本、缩短作业周期[1],提高了储层的改造程度达到增产目的。
该类储层物性差,要求压裂改造较长的裂缝以形成较大的泄油面积,达到提高油井产能的目的;泥质含量高,裂缝开启难度大,加砂困难;层多,跨度大,需要分层压裂改造措施。
例如纯26-斜80井9个层,跨度在38m左右,笼统压裂缝高控制难度大,很难实现每层都有较好的改造,层多、物性差异大,不能保证每层都能压开,分层压裂是此类储层改造的最佳选择。
当前井多为斜井,斜度大,封隔器座封难度较大,压裂改造过程中容易产生多裂缝[2];隔层厚度小,机械分层难度大,需要优化射孔工艺以达到分层改造的目的。
2 分层压裂技术工艺原理及特点2.1机械分层压裂技术机械分层压裂是借助封隔器将目的层与其上下层段分隔出来成为一个独立的压裂单元来实现单层改造。
其机械分层的原理[3]:多级封隔器各自具有不同的座封压力来完成层间密封;第一层压裂时,其它层压裂开关处于关闭状态,当第一层压裂结束后,打开第二层滑套开关,同时封闭下层通道,进行第二层压裂。
压裂的技术种类压裂就是利用水力作用,使油层形成裂缝的一种方法,又称油层水力压裂。
油层压裂工艺过程是用压裂车,把高压大排量具有一定粘度的液体挤入油层,当把油层压出许多裂缝后,加入支撑剂(如石英砂等)充填进裂缝,提高油层的渗透能力,以增加注水量(注水井)或产油量(油井)。
常用的压裂液有水基压裂液、油基压裂液、乳状压裂液、泡沫压裂液及酸基压裂液5种基本类型。
1.滑套式分层压裂技术采用水力扩张式封隔器和滑套式喷砂器组成的压裂管柱,自下而上不动管柱施工,完成对1~3个层段的压裂。
适用于高、中、低渗油层。
2.选择性压裂技术压裂施工时利用暂堵剂对井段内渗透率高的层进行临时封堵后,再压裂其它层,以达到选择油层压裂的目的。
该技术适用于层内不均质的厚油层或层间差异大的油层。
3.多裂缝压裂技术在施工时用高强度暂堵剂对已压开层进行临时封堵后,再压裂其它层。
一趟管柱可以压裂3~4个层段,每层段可以形成2~3条裂缝。
适用于油层多、隔层小、高密度射孔的油水井。
4.限流法压裂技术压裂时通过低密度射孔、大排量供液,形成足够的炮眼磨阻,实现一次压裂对最多 5 个破裂压力相近的油层进行改造。
适用于油层多、隔层小、渗透率低、可以定点低密度射孔的油水井完井压裂。
5.平衡限流法压裂技术采用与油层相邻的高含水层射孔的方法,使其与目的层成为统一的压力系统,平衡高含水层,以实现对低密度射孔部位油层的压裂,压后将高含水层炮眼堵死。
适用于油层与高含水层隔层为0.4~0.8m的井的压裂完井。
一次压裂可以实现最多5个层的改造6.定位平衡压裂技术在压裂施工时利用定位压裂封隔器和喷砂器控制目的层吸液炮眼数量和位置,平衡高含水层,实现一次压裂3~5个目的层的改造。
该技术适用于高密度射孔井的薄互层、目的层与水淹层隔层厚度在0.8~1.2m之间的薄油层及厚油层低含水部位的挖潜。
7.水平缝脱砂压裂工艺技术在压裂时控制前置液量、排量、滤失速度,使携砂液在裂缝尖端或其附近脱砂,阻止裂缝继续向前延伸,以形成一条高导流能力裂缝。
浅述油田多层压裂工艺技术针对文南油田层间矛盾突出的情况,合层压裂难以实现各层均匀改造。
为了缓解层间矛盾,实现油田长期稳产、高效开发,提高最终采收率,必须实施分层压裂工艺,分层治理。
同时,通过不动管柱分单层、多层压裂,可节约成本,缩短作业时间,降低油层污染,实现油田经济高效开发。
1 封隔器分层压裂管柱(1)“Y241(221、211)-114(110)”封隔器分层压裂管柱主要由φ89mm喇叭口、Y221封隔器、滑套喷砂器及水力锚总成、反循环洗井阀、安全接头、φ89mm外加厚油管等组成。
管柱下到设计位置后,上提管柱合适高度后正轉管柱4-6圈,下放管柱撑开下卡瓦,继续加压8-12吨压缩封隔器胶筒,达到密封油套环型空间的目的。
(2)“Y221 -114(110)+ Y111 – 114(110)”封隔器分层压裂管柱主要由φ89mm喇叭口、Y221封隔器、水力锚、滑套喷砂器、伸缩补偿器、Y111封隔器、反循环洗井阀、安全接头、φ89mm外加厚油管等组成。
管柱下到设计位置后,上提管柱合适高度后正转管柱4-6圈,下放管柱撑开下卡瓦,继续加压8-12吨压缩下部封隔器胶筒,继续下放,上部封隔器得到支撑后压缩胶筒,从而实现密封油套环型空间的目的。
(3)“Y221(211)-114(110)+ Y241 – 114(110)”封隔器双封三层压裂管柱主要由φ89mm喇叭口、Y221封隔器、滑套喷砂器、水力锚、伸缩补偿器、Y241封隔器、滑套喷砂器、水力锚、反循环洗井阀、安全接头、φ89mm外加厚油管等组成。
封隔器管柱坐封方式为依次上提、右旋、下放管柱,使下级Y221封隔器坐封。
上级封隔器依靠压裂施工第一层时的正压差来坐封。
基本施工工序为直接压裂第一层,投钢球后压裂第二层(投球Φ40m m憋压将水力锚喷砂器滑套总成的滑套打开),投钢球后压裂第三层(投球Φ46mm憋压将水力锚喷砂器滑套总成的滑套打开)。
封隔器管柱解封方式为直接上提管柱。
分层压裂方法引言近年来,随着工业的全面发展,油气开采在各种行业中逐渐成为了一个热门的话题。
对于石油工业来说,为了提高油气开采效率,降低成本,越来越多的采用了分层压裂方法。
本文将对分层压裂方法进行相关介绍。
一、分层压裂方法概述所谓分层压裂方法,是指在油气开采中,首先在状态良好的地层中打孔,将压缩空气或压缩液压输送至孔中,利用高压力将石层裂开,并将其中的石油或天然气排放,这样可以提高储层渗透性,提高采油气效率,从而达到经济效益上的优化。
分层压裂方法包括:“单段压裂”、“连续压裂”、“多段压裂”等多种类型。
“单段压裂”是指在指定位置进行单次操作,通过极高压力创造短暂的裂缝使得地下油气释放出来。
而“连续压裂”则是指在不同位置依次进行操作以达到一定的开采效益,这种方式比较适合较深的石层。
而“多段压裂”则是将孔洞按一定的比例分段操作,比较适合物探范围较大的情况。
二、分层压裂方法原理1,深度:分层压裂中,油气成藏一般都在深度1000米到5000米之间,而分层压裂的实施了解深度有关。
若是深度在1000米以下,则采用单段压裂比较合适;而在1000米以上则宜采用连续压裂和多段压裂。
2、孔径:油气储藏石层的开采孔径是一个重要的参数。
一般来说,孔径越大,分段压裂的效果就越好。
但是孔径过大就会导致裂缝分布不均,而且会产生较大的强度反作用力,对石层的破坏也越大。
选择合适的孔径大小应根据具体的钻井深度和地层特点来确定。
3、密度:地下储层的密度通常为1.0-4.0g/cm³之间,而确保分层压裂效果的密度应在2.2~2.5g/cm³之间。
如果密度不够,则分层压裂时,即使施加很大的压力都不能将石层完全裂开,导致油气不能顺利释放,影响采油效率。
三、分层压裂方法的实施步骤1、确定开采目标层的信息,钻出开采孔。
2、对井孔进行钻探,取样分析,选定井孔的指定地层。
3、装置压裂设备,将压缩气体或压缩液体输送至孔中。
4、通过压缩气体或压缩液体创造大量的液力压力,在指定位置将石层裂开。