人教版七年级上册数学学案:4.3.3余角和补角
- 格式:doc
- 大小:37.00 KB
- 文档页数:3
余角和补角【教学目标】1.知识与技能:(1)在具体的现实情境中,认识一个角的余角与补角,掌握余角和补角的概念和性质。
(2)了解方位角,能确定具体物体的方位。
(3)能运用余角、补角、方位角的知识解决一些简单的实际问题。
2.过程与方法:学会观察、分析、归纳的方法,初步学会简单的逻辑推理,培养学生简单的说理能力和运用知识分析、解决问题的能力,进一步提高学生的抽象概括能力,发展学生的空间观念。
3.情感态度与价值观:体会通过观察、归纳、推理的方法获得数学知识的重要作用体会数学推理的严谨性和数学的应用价值,通过小组合作交流活动,发展合作意识和交流能力,并在活动中体验成功的喜悦,增强学习数学的兴趣和自信心。
【教学设想】结合本节课的教学内容,我采用“问题情境——建立概念——探索性质——巩固反思——应用拓展”的模式展开教学,让学生经历知识的形成与应用过程,从而更好地理解互余、互补的概念,方位角的意义,在互余互补的性质探索中,尽可能组织学生进行观察、猜测、归纳等活动,帮助学生积累数学活动的经验,发展空间观念和推理能力。
在问题情境的设计、练习的安排上密切联系学生的知识基础和实际生活,由易到难,尽可能让所有的学生都主动参与数学活动,充分发挥每个学生的想像力和主动性,让学生在活动中体会数学与生活的密切联系,体会数学的应用价值,体会成功的喜悦,增强学习的信心。
【教材分析】余角和补角是在学生学习了角的定义、度量和比较大小的基础上,利用数量关系进一步研究两个角之间的关系。
互为余角、互为补角、方位角的概念及余角、补角的性质是求解有关角问题的重要工具。
同时,这节课也是培养学生观察分析、概括问题能力的内容,是培养学生学会简单的说理能力的入门知识,对培养学生合情的数学猜想,抽象概括能力,逻辑推理能力和发展学生的空间观念都有重要的意义。
【教学重难点】1.重点:认识角的互余、互补关系及性质,懂得确定物体的方位。
2.难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质。
人教版数学七年级上册4.3.3《余角和补角》教学设计一. 教材分析《余角和补角》是人教版数学七年级上册第4章第3节的内容,这部分内容是在学生已经掌握了角的分类、垂线的性质等基础知识的基础上进行学习的。
本节课主要让学生了解余角和补角的概念,能够判断两个角之间的关系,并能够运用余角和补角解决一些实际问题。
教材通过生动的图片和实际问题引出余角和补角的概念,让学生在解决实际问题的过程中感受数学与生活的联系。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于角的分类和垂线的性质等基础知识有一定的掌握。
但是,对于抽象的数学概念,学生的理解可能还需要通过具体的实例来辅助。
因此,在教学过程中,教师需要结合学生的实际情况,通过生活实例和直观的图形,引导学生理解余角和补角的概念,并能够运用到实际问题中。
三. 教学目标1.知识与技能目标:让学生了解余角和补角的概念,能够判断两个角之间的关系,并能够运用余角和补角解决一些实际问题。
2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生解决问题的能力。
3.情感态度与价值观目标:让学生感受数学与生活的联系,增强学生对数学的兴趣。
四. 教学重难点1.教学重点:余角和补角的概念,判断两个角之间的关系。
2.教学难点:理解余角和补角的概念,能够运用到实际问题中。
五. 教学方法1.情境教学法:通过生活实例和直观的图形,引导学生理解余角和补角的概念。
2.活动教学法:通过观察、操作、思考、交流等活动,培养学生解决问题的能力。
3.启发式教学法:引导学生通过自主学习、合作学习,发现和总结余角和补角的概念和性质。
六. 教学准备1.教学素材:准备一些生活实例和图形,用于引导学生理解和运用余角和补角的概念。
2.教学工具:准备黑板、粉笔、多媒体设备等教学工具。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的内容。
例如,展示一幅画,画中有两条直线相交,问学生这两条直线之间的角是什么关系。
第四章几何图形初步4.3 角4.3.3 余角和补角【知识与技能】(1)掌握余角、补角的概念,并能简单应用.(2)正确理解方位角,能画出方位角所表示方向的射线.【过程与方法】经历观察、操作、推理、交流等活动,发展学生的想象力,培养学生的推理能力和有条理的表达能力.【情感态度与价值观】培养学生简单的推理能力,渗透数形结合思想.余角和补角的概念及性质.运用余角和补角的性质.多媒体课件、量角器、三角尺纸板、一副三角尺cm情境:如图4-3.3-1(1),打台球时,选择适当的方向用白球击打红球,反弹后的红球会直接入袋,此时∠1=∠2.这个问题可以简单地表示为图4-3.3-1(2).其中∠EDC=90°,那么各个角与∠1有什么关系?学生进行小组合作探究.教师总结:有的角与∠1的和等于90°,如∠ADC;有的角与∠1的和等于180°,如∠ADF.今天我们来探究这些角之间的关系.一、思考探究,获取新知探究1:余角和补角的概念.教师提问:拿出准备好的三角尺纸板,将各个角剪下来,拼一拼,量一量,你能发现各个角之间有什么关系?学生自主探究、交流、讨论.教师总结:在一副三角尺中,每块都有一个角是90°,而其他两个角的和是90°.一般地,如果两个角的和等于90°(直角),就说这两个角互为余角,即其中一个角是另一个角的余角.上述问题中的∠1与∠ADC互为余角,即∠1是∠ADC的余角,∠ADC也是∠1的余角.类似地,如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角.上述问题中的∠1与∠ADF互为补角,即∠1是∠ADF的补角,∠ADF也是∠1的补角.探究2:余角和补角的性质.教师提问:问题1:如果∠1与∠2互余,∠3与∠4互余,并且∠1=∠3,那么∠2与∠4相等吗?为什么?问题2:如果∠1与∠2互补,∠3与∠4互补,并且∠1=∠3,那么∠2与∠4相等吗?为什么?学生分组讨论,说出理由,最后师生共同归纳:余角和补角的性质:同角(等角)的余角相等;同角(等角)的补角相等.探究3:方位角.教师提问:如图4-3.3-2,请指出公园、医院、法院分别在学校的什么方向?学生讨论得出结论:公园在学校的南偏西75°方向上;医院在学校的北偏东30°方向上;法院在学校的南偏东45°(东南)方向上.教师总结:与方位角有关的说法,如正东、正南、正西、正北、东南、东北、西南、西北、北偏东多少度、北偏西多少度、南偏东多少度、南偏西多少度.二、典例精析,掌握新知本节课主要学习了余角、补角的概念,余角、补角的性质,方位角的表示.教材P139习题4.3第7,8题。
100︒150︒80︒10︒30︒60︒4.3.3余角和补角执笔人:审核人:一、学习目标1、余角和补角的定义;2、掌握余角和补角的性质,并能够运用余角补角3、了解方位角,能确定具体物体的方位二、重点:认识角的互余、互补关系及其性质,确定方位是本节课的重点难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质三、学法指导:了解推理的意义和推理过程四、教学过程1、了解概念原理(1)什么是余角?(2)什么是补角?(3)余角的性质(4)补角的性质2、探究原理(1)、探究互为余角的定义:如果两个角的和是90°(直角),那么这两个角叫做互为余角,其中一个角是另一个角的余角。
即:∠1是∠2的余角或∠2是∠1的余角。
练习:图中给出的各角,那些互为余角?(2)、探究互为补角的定义:如果两个角的和是180°(平角),那么这两个角叫做互为补角,其中一个角是另一个角的补角。
即:∠3是∠4的补角或∠4是∠3的补角。
练习:1)图中给出的各角,那些互为补角?170︒120︒21432143(3)探究补角的性质:如图∠1 与∠2互补,∠3 与∠4互补 ,如果∠1=∠3,那么∠2与∠4相等吗?为什么?总结:补角性质: (4)探究余角的性质:如图∠1 与∠2互余,∠3 与∠4互余 ,如果∠1=∠3,那么∠2与∠4相等吗?为什么?总结:余角性质: 1、例题分析例1:若一个角的补角等于它的余角4倍,求这个角的度数。
解: 设这个角是x °,则它的补角是( 180°-x °),余角是(90°-x °)。
根据题意得:(180-x °)= 4 (90-x °) 解之得: x =60 答:这个角的度数是60 °。
例2:如图,∠AOB=90°,∠COD=∠EOD=90°,C,O,E 在一条直线上,且∠2=∠4,请说出∠1与∠3之间的关系?并试着说明理由?解:∠1=∠3∵ ∠1+∠2= ∠COD=90° ∠3+∠2= ∠AOB=90°北西∴ ∠1=∠3 (等角的余角相等)2、能力形成(1)填下列表:结论:同一个锐角的补角比它的余角大90°。
4.3.3 余角和补角1.在具体情境中认识余角和补角,掌握余角和补角的性质;(重点)2.能利用余角和补角的性质进行计算和简单的推理.(重点)一、情境导入让学生观察意大利著名建筑比萨斜塔.比萨斜塔建于1173年,工程曾间断了两次很长的时间,历经约二百年才完工.设计为垂直建造,但是在工程开始后不久便由于地基不均匀和土层松软而倾斜.二、合作探究探究点一:余角和补角及其性质【类型一】余角和补角的概念如果α与β互为余角,则( )A.α+β=180°B.α-β=180°C.α-β=90°D.α+β=90°解析:如果α与β互为余角,则α+β=90°.故选D.方法总结:正确记忆互为余角的定义是解决问题的关键.【类型二】利用余角和补角计算求值已知∠A与∠B互余,且∠A的度数比∠B度数的3倍还多30°,求∠B的度数.解析:根据∠A与∠B互余,得出∠A+∠B=90°,再由∠A的度数比∠B度数的3倍还多30°,从而得到∠A=3∠B+30°,再把两个算式联立即可求出∠2的值.解:∵∠A与∠B互余,∴∠A+∠B=90°,又∵∠A的度数比∠B度数的3倍还多30°,∴∠A=3∠B+30°,∴3∠B+30°+∠B=90°,解得∠B=15°.故∠B的度数为15°.方法总结:此题把角的关系结合方程问题一起解决,即把相等关系的问题转化为方程问题,利用方程组解决.【类型三】 如图,已知∠AOB 在∠AOC 内部,∠BOC =90°,OM 、ON 分别是∠AOB ,∠AOC 的平分线,∠AOB 与∠COM 互补,求∠BON 的度数.解析:根据补角的性质,可得∠AOB +∠COM =180°,根据角的和差,可得∠AOB+∠BOM =90°,根据角平分线的性质,可得∠BOM =12∠AOB ,根据解方程,可得∠AOB 的度数,根据角的和差,可得答案.解:由∠AOB 与∠COM 互补,得∠AOB +∠COM =180°.由角的和差,得∠AOB +∠BOM +∠COB =180°,∠AOB +∠BOM =90°.由OM 是∠AOB 的平分线,得∠BOM =12∠AOB , 即∠AOB +12∠AOB =90°.解得∠AOB =60°. 由角的和差,得∠AOC =∠BOC +∠AOB =90°+60°=150°.由ON 平分∠AOC 得∠AON =12∠AOC =12×150°=75°.由角的和差,得∠BON =∠AON -∠AOB =75°-60°=15°.方法总结:本题考查了余角与补角及角平分线的相关知识,利用了补角的性质,角的和差,角平分线的性质进行计算,解决问题一定要结合图形认真分析,做到数形结合.探究点二:方位角【类型一】 利用方位角确定方向M 地是海上观测站,从M 地发现两艘船A 、B 的方位如图所示,下列说法中正确的是( )A .船A 在M 的南偏东30°方向B .船A 在M 的南偏西30°方向C .船B 在M 的北偏东40°方向D .船B 在M 的北偏东50°方向解析:船A在M的南偏西90°-30°=60°方向,故A、B选项错误;船B在M的北偏东90°-50°=40°方向,故C正确,D错误.故选C.方法总结:用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西.【类型二】方位角的有关计算如图所示,甲、乙、丙三艘轮船从港口O出发,当分别行驶到A、B、C处时,经测量得甲船位于港口的北偏东44°方向,乙船位于港口的北偏东76°方向,丙船位于港口的北偏西45°方向.(1)求∠BOC的度数;(2)求∠AOB的度数.解析:(1)根据方向角的表示方法,可得∠EOB,∠EOC的度数,根据角的和差,可得答案;(2)根据方向角的表示方法,可得∠EOB,∠EOA的度数,根据角的和差,可得答案.解:如图,(1)由乙船位于港口的北偏东76°方向,丙船位于港口的北偏西45°方向,得∠EOB=76°,∠EOC=45°.由角的和差,得∠BOC=∠EOB+∠EOC=76°+45°=121°;(2)由甲船位于港口的北偏东44°方向,乙船位于港口的北偏东76°方向,得∠EOB=76°,∠EOA=44°.由角的和差,得∠AOB=∠EOB-∠EOA=76°-44°=32°.方法总结:解决本题主要是理解方向角的表示方法,结合图形找到相应的角,然后进行计算.三、板书设计1.互余、互补(1)和为90°的两个角互余;(2)和为180°的两个角互补.2.方位角通过比萨斜塔这一学生熟知的著名建筑激发学生的学习兴趣,再运用现代化的教学手段,把图形的“静”变成“动”,在动态课件演示中引出概念,增强了趣味性,并且可以充分调动学生的学习兴趣,一下子把学生吸引到课堂上.这样也把书本上原本呆板的概念激活了,使数学知识充满新鲜感,实现了书本知识和学生发现的一种沟通,增强学生对几何图形的敏感性.。
数学:4.3.3《余角和补角(1)》学案(人教版七年级上)【学习目标】在具体的现实情境中,认识一个角的余角和补角;【重点难点】正确求出一个角的余角和补角。
【导学指导】一、知识链接思考:(1) 在一副三角板中同一块三角板的两个锐角和等于多少度?(2) 如图1,已知∠1=61°,∠2=29°,那么∠1+∠2= 。
(3) 如 图 2,已知点A 、O 、B 在一直线上 ,∠COD=90°,那么∠1+∠2= 。
二、自主探究1.互为余角的定义:思考:(1) 如图3,已知∠1=62°,∠2=118°,那么 ∠1+∠2=(2) 如图4,A 、O 、B 在同一直线上,∠1+∠2=2图 1 90° 1 2 图 2 1 2 A O B 图 41 2 图 3 C O DO E D C B A2.互为补角的定义:问题1:以上定义中的“互为”是什么意思?问题2:若 ∠1+∠2 +∠3 =180° ,那么∠1、∠2、∠3互为补角吗?3.新知应用:例1:若一个角的补角等于它的余角4倍,求这个角的度数。
例2:如图,∠AOC =∠COB =90°,∠DOE =90°,A 、O 、B 三点在一直线上(1)写出∠COE 的余角,∠AOE 的补角;(2)找出图中一对相等的角,并说明理由;【课堂练习】:课本141页练习1、2、3;【要点归纳】:【拓展训练】:1、一个角的余角比它的补角的31还少 20,求这个角的度数。
2、若α∠和β∠互余,且α∠:β∠=7:2,求α∠、β∠的度数。
【总结反思】:。
人教版数学七年级上册4.3.3《余角和补角》教学设计一. 教材分析《余角和补角》是人教版数学七年级上册第4.3.3节的内容,本节主要介绍余角和补角的概念、性质及其应用。
通过本节的学习,使学生掌握余角和补角的概念,了解它们之间的关系,能运用余角和补角解决一些实际问题。
二. 学情分析七年级的学生已经学习了角的初步知识,对角的概念有一定的了解。
但是,对于余角和补角这样的概念性知识,还需要通过实例来加深理解。
此外,学生的空间想象能力和逻辑思维能力仍在发展阶段,需要通过大量的练习来巩固所学知识。
三. 教学目标1.了解余角和补角的概念,掌握它们的性质。
2.能够运用余角和补角解决一些实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.余角和补角的概念。
2.余角和补角的性质。
3.运用余角和补角解决实际问题。
五. 教学方法采用讲授法、实例分析法、小组讨论法、练习法等多种教学方法,引导学生通过观察、思考、讨论、练习,从而掌握余角和补角的知识。
六. 教学准备1.PPT课件。
2.相关练习题。
3.黑板、粉笔。
七. 教学过程导入(5分钟)利用PPT展示一些生活中的图片,如一副画、一座建筑等,让学生观察其中的角,并提出问题:“这些角之间有什么关系?”引导学生思考,引出余角和补角的概念。
呈现(10分钟)1.讲解余角和补角的概念。
2.通过实例展示余角和补角的性质。
操练(10分钟)学生在课堂上完成PPT上的练习题,教师巡回指导。
巩固(10分钟)学生分组讨论,总结余角和补角的性质,并用它们解决实际问题。
拓展(10分钟)引导学生思考:在实际生活中,除了余角和补角,还有哪些角的概念?它们有什么作用?小结(5分钟)教师总结本节课的主要内容,强调余角和补角的概念和性质。
家庭作业(5分钟)布置相关的练习题,让学生课后巩固所学知识。
板书(5分钟)教师在黑板上板书本节课的主要内容,包括余角和补角的概念、性质等。
教学过程总结:本节课通过导入、呈现、操练、巩固、拓展、小结、家庭作业和板书等环节,使学生掌握了余角和补角的知识。
七年级(人教版)集体备课教案:4.3.3 《余角和补角》一. 教材分析《余角和补角》这一节的内容,主要出现在人教版七年级数学教科书第三章“角”的一部分。
本节内容是在学生已经掌握了角度制、角的分类等基础知识之后进行教授的,旨在让学生了解和掌握余角和补角的概念,并能够运用它们解决一些实际问题。
教材通过例题和练习,帮助学生理解和掌握余角和补角的性质和计算方法,为学生今后的数学学习打下坚实的基础。
二. 学情分析在进入七年级之前,学生已经学习了一定的数学知识,包括基本的算术、几何等。
但是,对于余角和补角这样的概念,他们可能是第一次接触,因此需要通过具体的例子和实际操作来理解和掌握。
此外,学生的学习习惯和思维方式也会影响他们对这一节内容的理解和掌握。
三. 教学目标通过本节课的学习,学生能够理解余角和补角的概念,掌握它们的性质和计算方法,并能够运用它们解决一些实际问题。
同时,通过小组合作和讨论,培养学生的合作意识和解决问题的能力。
四. 教学重难点本节课的重点是让学生理解和掌握余角和补角的概念,以及它们的性质和计算方法。
难点在于如何让学生理解和接受余角和补角这样的抽象概念,并能够灵活运用它们解决实际问题。
五. 教学方法在本节课的教学过程中,我将采用讲授法、例题解析法、小组合作法、问题解决法等教学方法。
通过讲解和示例,让学生理解和掌握余角和补角的概念;通过小组合作和讨论,培养学生的合作意识和解决问题的能力;通过问题解决,激发学生的学习兴趣和思考能力。
六. 教学准备为了保证课堂教学的顺利进行,我需要准备一些教学工具和材料,包括PPT、教科书、黑板、粉笔等。
此外,我还需要准备一些例题和练习题,以便学生在课堂上进行操练和巩固。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出余角和补角的概念。
例如,可以出一个实际问题:在平面直角坐标系中,点A(2,3)和点B(-3,2)之间的线段AB的倾斜角是多少?通过解决这个问题,让学生初步接触和理解余角和补角的概念。
七年级上册(人教版)集体备课教案:4.3.3余角和补角(合集5篇)第一篇:七年级上册(人教版)集体备课教案:4.3.3 余角和补角4.3.3 余角和补角教学目标:1、在具体的现实情境中,认识一个角的余角与补角,掌握余角和补角的性质;了解方位角,能确定具体物体的方位。
2、进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想。
3、体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益。
重点:认识角的互余、互补关系及其性质,确定方位难点:通过简单的推理,归纳出余角、补角的性质,•并能用规范的语言描述性质教学过程一、引入新课1、提出问题:(1)在一副三角板中,每块都有一个角是90°,那么其余两个角的和是多少?(2)已知∠1=36°,∠2=54°,那么∠1+∠2=?学生活动:独立思考,小组交流,得出结论:都是90°.2.提出问题.(1)观察方格如下图中的两个角,你能猜想∠1+∠2等于多少度?(2)如果∠1=144°,∠2=36°,那么∠1+∠2=?学生活动:观察思考,小组交流,得出结论:都是180°.教师活动:操作多媒体,移动∠2,使∠1、∠2顶点和一边重合,•引导学生观察∠1,∠2的另一条边,观察到两角的另一条边成一条直线,验证学生的结论.二、讲授新课1、余角与补角.教师活动:指导学生阅读课本有关内容,并讲解余角与补角的定义.注:讲解余角和补角时,必须向学生说明互余、互补是指两个角的数量关系,即∠1+∠2=90°或∠1+∠2=180°,同时强调∠1是∠2的余角(或补角),那么∠2也是∠1的余角(或补角).2、巩固反思.(1)填空:①47°18′的余角是______,补角是_______.②∠α(0°<∠α<90°)的余角是______,∠β(0°<β<180°)的补角是_______.(2)已知一个角是它补角的3倍,求这个角.注:这两个例题讲解时,应通过师生互动的方法进行教学,在学生思考后再讲解.(3)课本练习.学生活动:独立完成,并由三个学生进行板书,•其余同学进行小组交流并进行小组评价.教师活动:巡视学生完成练习的情况,并给予适当的评价.3、余角与补角的性质.(1)提出问题:观察方格图,下图中∠1与∠3有什么关系?∠1与∠2,∠3与∠4有什么关系?学生活动:观察图形,小组交流观察的结果:∠1=∠3,∠1+∠2=180°,∠3+•∠4=180°.教师活动:移动图中各角,对学生观察的结果进行验证,进一步提出问题:∠2•与∠4有什么关系?学生活动:观察思考后得出∠2=∠4.(2)说明理由:注:教学中,向学生说明,以上从观察图形得出的结论,还应从理论上说明其理由,并讲解课本例1.例1.如上图,∠1与∠2互补,∠3与∠4互补,如果∠1=∠3,那么∠2与∠4相等吗?为什么?教师活动:指导学生分析题意,并写出说理过程,归纳性质.学生活动:完成课本分析中的问题,并在教师指导下,用自己的语言描述余角、补角的性质.板书:等角的补角相等.师生互动:类比补角的性质,得出余角的性质.板书:等角的余角相等.三、巩固练习1、如右图,∠EDC=∠CDF=90°,∠1=∠2.(1)图中哪些角互为余角?哪些角互为补角?(2)∠ADC与∠BDC有什么关系?为什么?(3)∠ADF与∠BDE 有什么关系?为什么?学生活动:独立完成练习,并进行小组交流和自我评价.教师活动:巡视学生完成练习情况,并进行个别指导,然后进行讲评.2、认识方位角.提出问题:课本例2.如下图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,•在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上分别发现了客轮B、货轮C和海岛D.仿照表示灯塔方位的方法,画出客轮B、货轮C和海岛D方向的射线.注:讲解时应讲清楚方位角是以正北或正南方向的射线为一个角的始边,而表示物体运动的方向的射线是角的另一边.学生活动:在教师指导下画出问题中的每一条射线.3、知识拓展提出问题:、小宁从A地向东北方向走62米到B地,再从B地向西走56米到C地,这时她离A•地多少米?在A地的北偏西多少度?画出图形(用1cm表示10m),然后用刻度尺和量角器进行测量.(精确到1m、1°)学生活动:先进行小组讨论,然后独立完成,再进行小组交流和评价.教师活动:指导学生画图和测量,并对学生完成的情况进行评价.四、课堂小结1、本节课学习了余角和补角,并通过简单的推理,得出余角和补角的性质.2、了解方位角,学会确定物体运动的方向五、作业布置第二篇:七年级上数学教案:4.3.3余角和补角4.3.3余角和补角教学内容课本第142页至第144页.教学目标1.知识与技能(1)在具体的现实情境中,认识一个角的余角与补角,掌握余角和补角的性质.(2)了解方位角,能确定具体物体的方位. 2.过程与方法进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想.3.情感态度与价值观体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益.重、难点与关键1.重点:认识角的互余、互补关系及其性质,确定方位是本节课的重点.2.难点:通过简单的推理,归纳出余角、补角的性质,•并能用规范的语言描述性质是难点.3.关键:了解推理的意义和推理过程,是掌握性质的关键.教具准备三角板、量角器教学过程一、引入新课 1.提出问题:(1)在一副三角板中,每块都有一个角是90°,那么其余两个角的和是多少?(2)已知∠1=36°,∠2=54°,那么∠1+∠2=?学生活动:独立思考,小组交流,得出结论:都是90°. 2.提出问题.(1)观察方格如右图中的两个角,你能猜想∠1+∠2等于多少度?(2)如果∠1=144°,∠2=36°,那么∠1+∠2=?学生活动:观察思考,小组交流,得出结论:都是180°.教师活动:移动∠2,使∠1、∠2顶点和一边重合,•引导学生观察∠1,∠2的另一条边,观察到两角的另一条边成一条直线,验证学生的结论.二、新授 1.余角与补角.教师活动:指导学生阅读课本第142页有关内容,并讲解余角与补角的定义.注:讲解余角和补角时,必须向学生说明互余、互补是指两个角的数量关系,即∠1+∠2=90°或∠1+∠2=180°,同时强调∠1是∠2的余角(或补角),那么∠2也是∠1的余角(或补角). 2.巩固反思.(1)填空:①47°18′的余角是______,补角是_______.②∠α(0°<∠α<90°)的余角是______,∠β(0°<β<180°)的补角是_______.(2)已知一个角是它补角的3倍,求这个角.注:这两个例题讲解时,应通过师生互动的方法进行教学,在学生思考后再讲解.(3)课本第143页练习.学生活动:独立完成,并由三个学生进行板书,•其余同学进行小组交流并进行小组评价.教师活动:巡视学生完成练习的情况,并给予适当的评价. 3.余角与补角的性质.(1)提出问题:观察方格图,下图中∠1与∠3有什么关系?∠1与∠2,∠3与∠4有什么关系?学生活动:观察图形,小组交流观察的结果:∠1=∠3,∠1+∠2=180°,∠3+•∠4=180°.教师活动:移动图中各角,对学生观察的结果进行验证,进一步提出问题:∠2•与∠4有什么关系?学生活动:观察思考后得出∠2=∠4.(2)说明理由:注:教学中,向学生说明,以上从观察图形得出的结论,还应从理论上说明其理由,并讲解课本例1.例1.如上图,∠1与∠2互补,∠3与∠4互补,如果∠1=∠3,那么∠2与∠4相等吗?为什么?教师活动:指导学生分析题意,并写出说理过程,归纳性质.学生活动:完成课本分析中的问题,并在教师指导下,用自己的语言描述余角、补角的性质.板书:等角的补角相等.师生互动:类比补角的性质,得出余角的性质.板书:等角的余角相等.三、巩固练习1.如右图,∠EDC=∠CDF=90°,∠1=∠2.(1)图中哪些角互为余角?哪些角互为补角?(2)∠ADC与∠BDC有什么关系?为什么?4(3)∠ADF与∠BDE有什么关系?为什么?学生活动:独立完成练习,并进行小组交流和自我评价.教师活动:巡视学生完成练习情况,并进行个别指导,然后进行讲评.2.认识方位角.提出问题:课本第143页例2.如下图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,•在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上分别发现了客轮B、货轮C和海岛D.仿照表示灯塔方位的方法,画出客轮B、货轮C和海岛D方向的射线.图3.4-10(1)教师活动:讲解方位角和表示方位的射线,•在学生完成题中的问题后操作画图过程.注:讲解时应讲清楚方位角是以正北或正南方向的射线为一个角的始边,而表示物体运动的方向的射线是角的另一边.学生活动:在教师指导下画出问题中的每一条射线.3.知识拓展提出问题:小宁从A地向东北方向走62米到B地,再从B地向西走56米到C地,这时她离A•地多少米?在A地的北偏西多少度?画出图形(用1cm表示10m),然后用刻度尺和量角器进行测量.(精确到1m、1°)学生活动:先进行小组讨论,然后独立完成,再进行小组交流和评价.教师活动:指导学生画图和测量,并对学生完成的情况进行评价.四、课堂小结1.本节课学习了余角和补角,并通过简单的推理,得出余角和补角的性质.2.了解方位角,学会确定物体运动的方向五、作业布置1.课本第145页习题4.3:复习巩固8、9,综合运用12、13. 2.选用课时作业设计.课时作业设计一、填空题.1.52°24′的余角是_______,补角是________.OAB2.如右图已知∠AOB,在图中画出它的余角是_______,补角是_______.3.射线OA方向是东北方向,射线OB方向是北偏西60°,则∠AOB度数是______.二、选择题.4.一个角比它的余角大25°,那么这个角的补角是().A.67.5° B.22.5° C.57.5° D.122.5° 5.和北偏西40°的射线OA组成平角AOB的射线OB是().A.南偏东40°的射线B.南偏东50°的射线 C.南偏东60°的射线 D.东南方向的射线三、解答题.6.如右图,E、D、F在同一条直线上,∠CDE=90°,∠(1)哪些角互为余角?哪些角互为补角?(2)∠ADC与∠BDC有什么关系?为什么?(3)∠ADF与∠BDE有什么关系?为什么?1=∠2. CAB12EDF第三篇:数学北师大版七年级上册4.3.3 余角和补角4.3.3 余角和补角学习目标:1、在具体的现实情境中,认识一个角的余角和补角。
数学:4.3.3《余角和补角(1)》学案(人教版七年级上)【学习目标】在具体的现实情境中,认识一个角的余角和补角; 【重点难点】正确求出一个角的余角和补角。
【导学指导】 一、知识链接 思考:(1) 在一副三角板中同一块三角板的两个锐角和等于多少度? (2) 如图1,已知∠1=61°,∠2=29°,那么∠1+∠2= 。
(3) 如 图 2,已知点A 、O 、B 在一直线上 ,∠COD=90°,那么∠1+∠2= 。
二、自主探究1.互为余角的定义: 思考:(1) 如图3,已知∠1=62°,∠2=118°,那么 ∠1+∠2=(2) 如图4,A 、O 、B 在同一直线上,∠1+∠2=2.互为补角的定义:2图 190°12图 212A O B图 412图 3 CODOEDCBA问题1:以上定义中的“互为”是什么意思?问题2:若 ∠1+∠2 +∠3 =180° ,那么∠1、∠2、∠3互为补角吗? 3.新知应用:例1:若一个角的补角等于它的余角4倍,求这个角的度数。
例2:如图,∠AOC =∠COB =90°,∠DOE =90°,A 、O 、B 三点在一直线上 (1)写出∠COE 的余角,∠AOE 的补角; (2)找出图中一对相等的角,并说明理由;【课堂练习】:课本141页练习1、2、3;【要点归纳】:【拓展训练】:1、一个角的余角比它的补角的31还少︒20,求这个角的度数。
2、若α∠和β∠互余,且α∠:β∠=7:2,求α∠、β∠的度数。
【总结反思】:2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,∠1=15︒,∠AOC=90︒,点O 、D 在同一直线上,则∠2的度数为( )A.5°B.15°C.105°D.165°2.下列说法不正确的是( ) A.两点之间,直线最短 B.两点确定一条直线 C.互余两角度数的和等于90︒D.同角的补角相等3.如图所示,两个直角∠AOB ,∠COD 有公共顶点O ,下列结论:(1)∠AOC =∠BOD ;(2)∠AOC +∠BOD =90°;(3)若OC 平分∠AOB ,则OB 平分∠COD ;(4)∠AOD 的平分线与∠COB 的平分线是同一条射线.其中正确的个数是( )A.1B.2C.3D.44.下列解方程去分母正确的是( ) A.由,得2x ﹣1=3﹣3x B.由,得2x ﹣2﹣x =﹣4 C.由,得2y-15=3yD.由,得3(y+1)=2y+65.方程2y ﹣12=12y ﹣中被阴影盖住的是一个常数,此方程的解是y =﹣53.这个常数应是( ) A.1B.2C.3D.46.某制衣厂计划若干天完成一批服装的订货任务,如果每天生产服装20套,那么就比订货任务少生产100套,如果每天生产服装23套,那么就可超过顶货任务20套,设这批服装的订货任务是x 套,根据题意,可列方程() A.201002320x x -=+ B.201002320x x +=- C.100202023x x -+= D.100202023x x +-= 7.已知a+b =4,c ﹣d =3,则(b+c )﹣(d ﹣a )的值等( )A .1B .﹣1C .7D .﹣7 8.多项式4xy 2–3xy 3+12的次数为( ) A .3B .4C .6D .79.下列结论正确的是( ) A .单项式223ab c 的次数是4B .单项式22πm n5-的系数是25-C .多项式2x y -的次数是3D .多项式325x 2x 1-+中,第二项是22x 10.计算(-2)100+(-2)99的结果是( ) A .2B .2-C .992-D .99211.-24的相反数是( ) A.-24B.24C.124-D.12412.在数轴上表示有理数a ,b ,c 的点如图所示.若ac<0,b+a<0,则一定成立的是A.|a|>|b|B.|b|<|c|C.b+c<0D.abc<0二、填空题13.如图,一艘货轮位于O 地,发现灯塔A 在它的正北方向上,这艘货轮沿正东方向航行,到达B 地,此时发现灯塔A 在它的北偏西60°的方向上. (1) 在图中用直尺、量角器画出B 地的位置;(2) 连接AB ,若货轮位于O 地时,货轮与灯塔A 相距1.5千米,通过测量图中AB 的长度,计算出货轮到达B 地时与灯塔A 的实际距离约为_______千米(精确到0.1千米).14.在钟面上,10点30分时的时针和分针所成的角等于__________度.15.某种品的标价为120元,若以九折降价出售,仍获利20%,该商品的进货价为________元. 16.若代数式223x x -的值为5,则代数式2469x x -+-的值是_______17.方程8x=16两边同时________ 得到另一个方程4x=8,8x=16与4x=8的解________ .像这样,两个方程的解相同,我们称这两个方程为________ .18.杨辉是我国南宋时期杰出的数学家和教育家,下图是杨辉在公元1261年著作《详解九章算法》里面的一张图,即“杨辉三角”,该图中有很多规律,请仔细观察,归纳猜想出第n行中所有数字之和是______.19.比-4大而比3小的所有整数的和是________20.比较大小:23⎛⎫-+ ⎪⎝⎭___34--.(选用>、<、=号填写)三、解答题21.一个角的余角比它的补角的13还少20°,求这个角.22.已知:点D在线段AB上,点C是线段AD的中点,AB=4。
人教版数学七年级上册4.3.3《余角和补角》教学设计1一. 教材分析《人教版数学七年级上册4.3.3《余角和补角》》是学生在学习了角的分类、角的度量等知识后,进一步研究角的性质和特点的一节内容。
本节课主要通过实例引入余角和补角的概念,让学生理解并掌握余角和补角的定义及其性质,能够运用余角和补角解决一些实际问题。
教材通过丰富的情境图和实例,引导学生探究、发现、总结余角和补角的性质,培养学生的观察能力、思维能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了角的分类、角的度量等基本知识,对角的概念有了初步的认识。
但是,对于余角和补角的概念和性质,他们可能还没有完全理解,需要通过实例和操作来进一步巩固。
此外,学生可能对角的计算和应用还不够熟练,需要在教学中加强操练和巩固。
三. 教学目标1.知识与技能:让学生理解并掌握余角和补角的概念及其性质,能够运用余角和补角解决一些实际问题。
2.过程与方法:通过观察、操作、探究等活动,培养学生的观察能力、思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们积极思考、合作探究的学习态度。
四. 教学重难点1.重点:余角和补角的概念及其性质。
2.难点:运用余角和补角解决实际问题。
五. 教学方法1.情境教学法:通过情境图和实例,引导学生观察、思考,发现余角和补角的性质。
2.探究教学法:引导学生通过自主探究、合作交流,总结余角和补角的性质。
3.操练教学法:通过大量的练习,巩固学生对余角和补角的理解和运用。
六. 教学准备1.教学PPT:制作包含情境图、实例、练习等内容的PPT。
2.教学卡片:准备一些有关余角和补角的卡片,用于游戏等活动。
3.练习题:准备一些有关余角和补角的练习题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)通过情境图或实例,引导学生观察、思考,发现余角和补角的概念。
例如,展示一幅图,其中有几个角,请学生找出其中的余角和补角。
4.3.3余角和补角【学习目标】1、在具体情境中了解余角与补角.懂得等角的余角相等,等角的补角相等.并能运用这些性质解决一些简单的实际问题;2、经历观察、操作、推理、交流等活动,发展学生的空间观念,培养学生的推理能力和有条理的表达能力;3、理解方位角的意义,掌握方位角的判别与应用.【自主学习】(阅读教材P137-138,自主完成下列题目,然后师友互查,互助完善)1、知识1:余角与补角的概念(预习课文P137,完成下列填空)⑴如果两个角的和等于(),我们就说这两个角,简称互余。
即其中一个角是另一个角的.例如:如果∠1+∠2=90°,那么∠1与∠2 ,∠1是的余角,∠2也是∠1的⑵如果两个角的和等于度 ( ),就说这两个角,简称互补。
即其中一个角是另一个角的.例如:如果∠1与∠2互补,那么∠1+∠2= ,知识点2:余角与补角的性质如果两个角相等,那么它们的余角(或补角)也。
简称:同角(等角)的余角;同角(等角)的补角。
知识3:方位角1.海上,缉私艇发现离它500海里处停着一艘可疑船只(如图),立即赶往检查.现请你确定缉私艇的航向,画出示意图.缉私艇舰长如何向总部描述缉私艇的航向呢?可疑船在航行、测绘等工作以及生活中,我们经常会碰到上述类似问题,即如何描述一个物体的运动方向.用表示方向:一般以正北、正南为基准,用向东或向西旋转的表示方向,表示方向的角叫做注意:1.方位角通常用“北偏东多少度”、“北偏西多少度”或者“南偏东多少度”、“南偏西多少度”来表示.2.“北偏东45度”、“北偏西45度"、“南偏东45度”、“南偏西45度”,分别称为“东北方向”、“西北方向”,“东南方向”、“西南方向”。
【尝试应用】1.填表:n(n<90°),则它的余角为,补角为;2.一个角为3.如果1290,1390∠+∠=︒∠+∠=,则32∠∠与的关系是 ,理由是 ;4. 如图,点O 在直线AB 上,∠AOC=53°17′,则∠BOC 的度数= 。
4.3.3 余角和补角1.在具体情境中认识余角和补角,掌握余角和补角的性质;(重点)2.能利用余角和补角的性质进行计算和简单的推理.(重点)一、情境导入让学生观察意大利著名建筑比萨斜塔.比萨斜塔建于1173年,工程曾间断了两次很长的时间,历经约二百年才完工.设计为垂直建造,但是在工程开始后不久便由于地基不均匀和土层松软而倾斜.二、合作探究探究点一:余角和补角及其性质【类型一】余角和补角的概念如果α与β互为余角,则( )A.α+β=180°B.α-β=180°C.α-β=90°D.α+β=90°解析:如果α与β互为余角,则α+β=90°.故选D.方法总结:正确记忆互为余角的定义是解决问题的关键.【类型二】利用余角和补角计算求值已知∠A与∠B互余,且∠A的度数比∠B度数的3倍还多30°,求∠B的度数.解析:根据∠A与∠B互余,得出∠A+∠B=90°,再由∠A的度数比∠B度数的3倍还多30°,从而得到∠A=3∠B+30°,再把两个算式联立即可求出∠2的值.解:∵∠A与∠B互余,∴∠A+∠B=90°,又∵∠A的度数比∠B度数的3倍还多30°,∴∠A=3∠B+30°,∴3∠B+30°+∠B=90°,解得∠B=15°.故∠B的度数为15°.方法总结:此题把角的关系结合方程问题一起解决,即把相等关系的问题转化为方程问题,利用方程组解决.【类型三】 如图,已知∠AOB 在∠AOC 内部,∠BOC =90°,OM 、ON 分别是∠AOB ,∠AOC 的平分线,∠AOB 与∠COM 互补,求∠BON 的度数.解析:根据补角的性质,可得∠AOB +∠COM =180°,根据角的和差,可得∠AOB+∠BOM =90°,根据角平分线的性质,可得∠BOM =12∠AOB ,根据解方程,可得∠AOB 的度数,根据角的和差,可得答案.解:由∠AOB 与∠COM 互补,得∠AOB +∠COM =180°.由角的和差,得∠AOB +∠BOM +∠COB =180°,∠AOB +∠BOM =90°.由OM 是∠AOB 的平分线,得∠BOM =12∠AOB , 即∠AOB +12∠AOB =90°.解得∠AOB =60°. 由角的和差,得∠AOC =∠BOC +∠AOB =90°+60°=150°.由ON 平分∠AOC 得∠AON =12∠AOC =12×150°=75°.由角的和差,得∠BON =∠AON -∠AOB =75°-60°=15°.方法总结:本题考查了余角与补角及角平分线的相关知识,利用了补角的性质,角的和差,角平分线的性质进行计算,解决问题一定要结合图形认真分析,做到数形结合.探究点二:方位角【类型一】 利用方位角确定方向M 地是海上观测站,从M 地发现两艘船A 、B 的方位如图所示,下列说法中正确的是( )A .船A 在M 的南偏东30°方向B .船A 在M 的南偏西30°方向C .船B 在M 的北偏东40°方向D .船B 在M 的北偏东50°方向解析:船A在M的南偏西90°-30°=60°方向,故A、B选项错误;船B在M的北偏东90°-50°=40°方向,故C正确,D错误.故选C.方法总结:用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西.【类型二】方位角的有关计算如图所示,甲、乙、丙三艘轮船从港口O出发,当分别行驶到A、B、C处时,经测量得甲船位于港口的北偏东44°方向,乙船位于港口的北偏东76°方向,丙船位于港口的北偏西45°方向.(1)求∠BOC的度数;(2)求∠AOB的度数.解析:(1)根据方向角的表示方法,可得∠EOB,∠EOC的度数,根据角的和差,可得答案;(2)根据方向角的表示方法,可得∠EOB,∠EOA的度数,根据角的和差,可得答案.解:如图,(1)由乙船位于港口的北偏东76°方向,丙船位于港口的北偏西45°方向,得∠EOB=76°,∠EOC=45°.由角的和差,得∠BOC=∠EOB+∠EOC=76°+45°=121°;(2)由甲船位于港口的北偏东44°方向,乙船位于港口的北偏东76°方向,得∠EOB=76°,∠EOA=44°.由角的和差,得∠AOB=∠EOB-∠EOA=76°-44°=32°.方法总结:解决本题主要是理解方向角的表示方法,结合图形找到相应的角,然后进行计算.三、板书设计1.互余、互补(1)和为90°的两个角互余;(2)和为180°的两个角互补.2.方位角通过比萨斜塔这一学生熟知的著名建筑激发学生的学习兴趣,再运用现代化的教学手段,把图形的“静”变成“动”,在动态课件演示中引出概念,增强了趣味性,并且可以充分调动学生的学习兴趣,一下子把学生吸引到课堂上.这样也把书本上原本呆板的概念激活了,使数学知识充满新鲜感,实现了书本知识和学生发现的一种沟通,增强学生对几何图形的敏感性.。