波动光学答案2011
- 格式:doc
- 大小:348.00 KB
- 文档页数:7
波动光学试题及答案1. 光波的波长为600nm,其频率是多少?答案:根据光速公式c = λν,其中c为光速(约为3×10^8m/s),λ为波长(600×10^-9 m),可得ν = c/λ = (3×10^8m/s) / (600×10^-9 m) = 5×10^14 Hz。
2. 一束光在折射率为1.5的介质中传播,其在真空中的速度是多少?答案:在折射率为1.5的介质中,光的速度v = c/n,其中c为真空中的光速(3×10^8 m/s),n为折射率。
因此,v = (3×10^8 m/s) / 1.5 = 2×10^8 m/s。
3. 光的偏振现象说明了什么?答案:光的偏振现象说明光是一种横波,即光波的振动方向与传播方向垂直。
4. 何为布儒斯特角?答案:布儒斯特角是指当光从一种介质(如空气)入射到另一种介质(如玻璃)时,反射光完全偏振时的入射角。
5. 干涉现象产生的条件是什么?答案:干涉现象产生的条件是两束光波的频率相同、相位差恒定且具有相同的振动方向。
6. 描述杨氏双缝干涉实验的基本原理。
答案:杨氏双缝干涉实验的基本原理是利用两个相干光源(如激光)通过两个相邻的狭缝产生两束相干光波,这两束光波在屏幕上相互叠加,形成明暗相间的干涉条纹。
7. 光的衍射现象说明了什么?答案:光的衍射现象说明光在遇到障碍物或通过狭缝时,其传播方向会发生改变,形成明暗相间的衍射图样。
8. 单缝衍射的中央亮条纹宽度与哪些因素有关?答案:单缝衍射的中央亮条纹宽度与光的波长、缝宽以及观察距离有关。
9. 光的色散现象是如何产生的?答案:光的色散现象是由于不同波长的光在介质中传播速度不同,导致折射率不同,从而在介质界面处发生不同程度的折射。
10. 描述光的全反射现象。
答案:光的全反射现象是指当光从光密介质(折射率较大)向光疏介质(折射率较小)传播时,如果入射角大于临界角,则光线不会折射,而是全部反射回光密介质中。
第十一章 波动光学习题11-1 在杨氏双缝实验中,双缝间距d =0.20 mm ,缝屏间距D =1.0 m ,若第2级明条纹离屏中心的距离为6.0 mm ,试求:(1)入射光的波长;(2)相邻两明条纹间的距离。
解:(1)由λk d D x =明知, λ22.01010.63⨯⨯= 30.610m m 600n m λ-=⨯= (2)3106.02.010133=⨯⨯⨯==∆-λd D x mm 11-2 在双缝装置中,用一很薄的云母片(n =1.58)覆盖其中的一条缝,结果使屏幕上的第7级明条纹恰好移到屏幕中央原零级明纹的位置。
若入射光的波长为550 nm ,求此云母片的厚度。
解:设云母片厚度为e ,则由云母片引起的光程差为e n e ne )1(-=-=δ 按题意 λδ7= ∴610106.6158.1105500717--⨯=-⨯⨯=-=n e λm 6.6=m μ 11-3 在折射率n 1=1.52的镜头表面涂有一层折射率n 2=1.38的MgF 2增透膜,如果此膜适用于波长λ=550 nm 的光,问膜的最小厚度应取何值?解:设光垂直入射增透膜,欲透射增强,则膜上、下两表面反射光应满足干涉相消条件,即λ)21(22+=k e n ),2,1,0(⋅⋅⋅=k 222422)21(n n k n k e λλλ+=+=)9961993(38.14550038.125500+=⨯+⨯=k k o A令0=k ,得膜的最薄厚度为996o A 。
11-4 白光垂直照射在空气中厚度为0.4μm 的玻璃片上,玻璃的折射率为1.50。
试问在可见光范围内(λ= 400~700nm ),哪些波长的光在反射中增强?哪些波长的光在透射中增强?解:(1)222n d j λδλ=+= 24 3,480n m 21n d j j λλ===- (2)22(21) 22n d j λλδ=+=+ 22n d j λ= 2,600n m j λ==;3,400nm j λ== 11-5 白光垂直照射到空气中一厚度为380 nm 的肥皂膜上,设肥皂膜的折射率为1.33,试问该膜的正面呈现什么颜色?背面呈现什么颜色? 解:由反射干涉相长公式有42221ne ne k k λδλλ=+==-, ),2,1(⋅⋅⋅=k 得4 1.3338002674nm 2214 1.3338003404nm 231k k λλ⨯⨯===⨯-⨯⨯===⨯-,红色,紫色所以肥皂膜正面呈现紫红色。
第11章 波动光学一. 基本要求1. 解获得相干光的方法。
掌握光程的概念以及光程差与相位差的关系。
2. 能分析、确定杨氏双缝干涉条纹及等厚、等倾干涉条纹的特点(干涉加强、干涉减弱的条件及明、暗条纹的分布规律;了解迈克耳逊干涉仪的原理。
3. 了解惠更斯——菲涅耳原理;掌握分析单缝夫琅禾费衍射暗纹分布规律的方法。
4. 理解光栅衍射公式,会确定光栅衍射谱线的位置,会分析光栅常数及波长对光栅衍射谱线分布的影响。
5. 理解自然光和偏振光及偏振光的获得方法和检验方法。
6. 理解马吕斯定律和布儒斯特定律。
二. 内容提要1. 相干光及其获得方法 能产生干涉的光称为相干光。
产生光干涉的必要条件是:频率相同;振动方向相同;有恒定的相位差。
获得相干光的基本方法有两种:一种是分波阵面法(如杨氏双缝干涉、洛埃镜干涉、菲涅耳双面镜和菲涅耳双棱镜等);另一种是分振幅法(如平行波膜干涉、劈尖干涉、牛顿环和迈克耳逊干涉仪等)。
2. 光程、光程差与相位差的关系 光波在某一介质中所经历的几何路程l 与介质对该光波的折射率n 的乘积n l 称为光波的光学路程,简称光程。
若光波先后通过几种介质,其总光程为各分段光程之和。
若在界面反射时有半波损失,则反射光的光程应加上或减去2λ。
来自同一点光源的两束相干光,经历不同的光程在某一点相遇,其相位差Δφ与光程差δ的关系为δλπϕ2=∆ 其中λ为光在真空中的波长。
3. 杨氏双缝干涉 经杨氏双缝的两束相干光在某点产生干涉时有两种极端情况:一种是相位差为零或2π的整数倍,合成振幅最大—干涉加强;另一种是相位差为π的奇数倍,合成振动最弱或振幅为零——称干涉减弱或相消。
其对应的光程差为⎪⎩⎪⎨⎧=-±=±= 21k 212 210 干涉减弱),,()(干涉加强),,(ΛΛλλδk k k 杨氏双缝干涉的光程差还可写成Dx d=δ ,式中d 为两缝间距离,x 为观察屏上纵轴坐标,D 为缝屏间距。
第十四章波动光学一、基本要求1. 掌握光程的概念以及光程差和相位差的关系。
2. 理解获得相干光的方法,能分析确定杨氏双缝干涉条纹及薄膜等厚干涉条纹的位置,了解迈克尔逊干涉仪的工作原理。
3. 了解惠更斯-菲涅耳原理; 掌握用半波带法分析单缝夫琅和费衍射条纹的产生及其明暗纹位置的计算,会分析缝宽及波长对衍射条纹分布的影响。
4. 掌握光栅衍射公式。
会确定光栅衍射谱线的位置。
会分析光栅常数及波长对光栅衍射谱线分布的影响。
5. 了解自然光和线偏振光。
理解布儒斯特定律和马吕斯定律。
理解线偏振光的获得方法和检验方法。
6. 了解双折射现象。
二、基本内容1. 相干光及其获得方法只有两列光波的振动频率相同、振动方向相同、振动相位差恒定时才会发生干涉加强或减弱的现象,满足上述三个条件的两束光称为相干光。
相应的光源称为相干光源。
获得相干光的基本方法有两种:(1)分波振面法(如杨氏双缝干涉、洛埃镜、菲涅耳双面镜和菲涅耳双棱镜等);(2)分振幅法(如薄膜干涉、劈尖干涉、牛顿环干涉和迈克耳逊干涉仪等)。
2. 光程和光程差(1)光程把光在折射率为n的媒质中通过的几何路程r折合成光在真空x中传播的几何路程x,称x为光程。
nr(2)光程差在处处采用了光程概念以后就可以把由相位差决定的干涉加强,减弱等情况用光程差来表示,为计算带来方便。
即当两光源的振动相位相同时,两列光波在相遇点引起的振动的位相差πλδϕ2⨯=∆ (其中λ为真空中波长,δ为两列光波光程差) 3. 半波损失光由光疏媒质(即折射率相对小的媒质)射到光密媒质发生反射时,反射光的相位较之入射光的相位发生了π的突变,这一变化导致了反射光的光程在反射过程中附加了半个波长,通常称为“半波损失”。
4. 杨氏双缝干涉经杨氏双缝的两束相干光在某点产生干涉时有两种极端情况:(1)位相差为0或2π的整数倍,合成振动最强;(2)位相差π的奇数倍,合成振动最弱或为0。
其对应的光程差()⎪⎩⎪⎨⎧-±±=212λλδk k ()()最弱最强 ,2,1,2,1,0==k k 杨氏的双缝干涉明、暗条纹中心位置:dD k x λ±= ),2,1,0( =k 亮条纹 d D k x 2)12(λ-±= ),2,1( =k 暗条纹 相邻明纹或相邻暗纹间距:λd D x =∆ (D 是双缝到屏的距离,d 为双缝间距) 5. 薄膜干涉以21n n <为例,此时反射光要计“半波损失”, 透射光不计“半波损失”。
波动光学一章习题解答习题15—1 用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用另一纯蓝色的滤光片遮盖另一条缝,则:[ ] (A) 干涉条纹的宽度将发生改变。
(B) 产生红光和蓝光的两套彩色条纹。
(C) 干涉条纹的亮度将发生改变。
(D) 不产生干涉条纹。
解:因为这时两缝发出的光频率不同,已不满足相干条件,所以将不产生干涉条纹,应选择答案(D)。
习题15—2 在双缝干涉实验中,屏幕E 上的P 点处是明条纹。
若将S 2盖住,并在S 1S 2连线的垂直平分面处放一反射镜M ,如图所示,则此时:[ ](A) P 点处仍为明条纹。
(B) P 点处为暗条纹。
(C) 不能确定P 点处是明条纹还是暗条纹。
(D) 无干涉条纹。
解:原来正常情况下P 点处是明纹,当把S 2盖住并在S 1S 2连线的垂直平分面处放一反射镜后,就成为“洛埃镜”了,由于存在半波损失,这时干涉明暗条件与原来情况刚好相反,因此,原来情况下是明纹的P 点处现在刚好变成暗纹。
所以,应当选择(B)。
习题15─3 如图所示,假设有两个相同的相干光源S 1和S 2,发出波长为λ的光,A 是它们连线的中垂线上的一点。
若在S 1与A 之间插入厚度为e 、折射率为n 的薄玻璃片,则两光源发出的光在A 点的位相差=∆ϕ ;若已知A 5000=λ,n =1.5,A 点恰为第四级明条纹中心,则e = 。
解:(1) []λπλπδλπϕe n r ne e r )1(222-=-+-=⋅=∆ (2) 由题设条件 λδk e n ±=-=)1( k =0,1,2,3,… 令k =4可得A 40000)15.1(50004)1(4=-⨯=-=n e λ习题15―2图S 习题15―3图习题15—4 如图所示,在双缝干涉实验中,SS 1=SS 2。
用波长为λ的光照射双缝S 1和S 2,通过空气后在屏幕E 上形成干涉条纹。
已知P 点处为第三级明条纹,则S 1和S 2到P 点的光程差为 ;若将整个装置放于种透明液体中,P 点处为第四级明纹,则该液体的折射率n = 。
第11章 波动光学一. 基本要求1. 解获得相干光的方法。
掌握光程的概念以及光程差与相位差的关系。
2. 能分析、确定杨氏双缝干涉条纹及等厚、等倾干涉条纹的特点(干涉加强、干涉减弱的条件及明、暗条纹的分布规律;了解迈克耳逊干涉仪的原理。
3. 了解惠更斯——菲涅耳原理;掌握分析单缝夫琅禾费衍射暗纹分布规律的方法。
4. 理解光栅衍射公式,会确定光栅衍射谱线的位置,会分析光栅常数及波长对光栅衍射谱线分布的影响。
5. 理解自然光和偏振光及偏振光的获得方法和检验方法。
6. 理解马吕斯定律和布儒斯特定律。
二. 内容提要1. 相干光及其获得方法 能产生干涉的光称为相干光。
产生光干涉的必要条件是:频率相同;振动方向相同;有恒定的相位差。
获得相干光的基本方法有两种:一种是分波阵面法(如杨氏双缝干涉、洛埃镜干涉、菲涅耳双面镜和菲涅耳双棱镜等);另一种是分振幅法(如平行波膜干涉、劈尖干涉、牛顿环和迈克耳逊干涉仪等)。
2. 光程、光程差与相位差的关系 光波在某一介质中所经历的几何路程l 与介质对该光波的折射率n 的乘积n l 称为光波的光学路程,简称光程。
若光波先后通过几种介质,其总光程为各分段光程之和。
若在界面反射时有半波损失,则反射光的光程应加上或减去2λ。
来自同一点光源的两束相干光,经历不同的光程在某一点相遇,其相位差Δφ与光程差δ的关系为δλπϕ2=∆ 其中λ为光在真空中的波长。
3. 杨氏双缝干涉 经杨氏双缝的两束相干光在某点产生干涉时有两种极端情况:一种是相位差为零或2π的整数倍,合成振幅最大—干涉加强;另一种是相位差为π的奇数倍,合成振动最弱或振幅为零——称干涉减弱或相消。
其对应的光程差为⎪⎩⎪⎨⎧=-±=±= 21k 212 210 干涉减弱),,()(干涉加强),,(ΛΛλλδk k k 杨氏双缝干涉的光程差还可写成Dx d=δ ,式中d 为两缝间距离,x 为观察屏上纵轴坐标,D 为缝屏间距。
形成明纹,先光程差为半的透明薄膜上,透明薄故薄膜的最小厚度h 应第十二章波动光学(一)一.选择题[B ]1.在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝. (B) 使两缝的间距变小. (C) 把两个缝的宽度稍微调窄. (D) 改用波长较小的单色光源. 参考解答:根据条纹间距公式Ax =2 •,即可判断。
nd[B ]2.在双缝干涉实验中,入射光的波长为 ■,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5 •,则屏上原来的明纹处 (A)仍为明条纹; (B)变为暗条纹;(C)既非明纹也非暗纹;(D)无法确定是明纹,还是暗纹参考解答:光程差变化了 2.5 -,原光程差为半波长的偶数倍波长的奇数倍,故变为暗条纹。
[A ]3.如图所示,波长为■的平行单色光垂直入射在折射 率为n 2的薄膜上,经上下两个表面反射的两束光发生干涉•若薄 膜厚度为e ,而且n i >n 2>出,则两束反射光在相遇点的相位差为(A) 4 二n 2 e / ■.(B) 2 二n 2 e / ■.(C) (4 m2 e / ■. j 亠,. (D) (2 二n 2 e / ■-二 参考解答:此题中无半波损失,故相位差为:…2兀2兀.「二光程差 =2en 24二 n 2e /,。
[B ]4. 一束波长为■的单色光由空气垂直入射到折射率为 膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(A)人 /4 . (B) / (4 n).(C)九/ 2 .(D)九/ (2n).参考解答:反射光要干涉加强,其光程差应为半波长的偶数倍满足如下关系式:2nh ■ — =1工(要考虑半波损失),由此解得h =,/ (4n)。
2n 3n i[C ]5.若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹参考解答:接触点P 的左边两反射光的光程差为'飞《 = 2nh ,接触点P 的右边两反射光的光程差为“ght=2nh 。
第11章波动光学一.基本要求1. 解获得相干光的方法。
掌握光程的概念以及光程差与相位差的关系。
2. 能分析、确定杨氏双缝干涉条纹及等厚、等倾干涉条纹的特点(干涉加强、干涉减弱的条件及明、暗条纹的分布规律;了解迈克耳逊干涉仪的原理。
3. 了解惠更斯——菲涅耳原理;掌握分析单缝夫琅禾费衍射暗纹分布规律的方法。
4. 理解光栅衍射公式,会确定光栅衍射谱线的位置,会分析光栅常数及波长对光栅衍射谱线分布的影响。
5. 理解自然光和偏振光及偏振光的获得方法和检验方法。
6. 理解马吕斯定律和布儒斯特定律。
二. 内容提要1. 相干光及其获得方法能产生干涉的光称为相干光。
产生光干涉的必要条件是:频率相同;振动方向相同;有恒定的相位差。
获得相干光的基本方法有两种:一种是分波阵面法(如杨氏双缝干涉、洛埃镜干涉、菲涅耳双面镜和菲涅耳双棱镜等);另一种是分振幅法(如平行波膜干涉、劈尖干涉、牛顿环和迈克耳逊干涉仪等)。
2. 光程、光程差与相位差的关系光波在某一介质中所经历的几何路程l与介质对该光波的折射率n的乘积n l称为光波的光学路程,简称光程。
若光波先后通过几种介质,其总光程为各分段光程之和。
若在界面反射时有半波损失,则反射光的光程应加上或减去2λ。
来自同一点光源的两束相干光,经历不同的光程在某一点相遇,其相位差Δφ与光程差δ的关系为δλπϕ2=∆其中λ为光在真空中的波长。
3. 杨氏双缝干涉 经杨氏双缝的两束相干光在某点产生干涉时有两种极端情况:一种是相位差为零或2π的整数倍,合成振幅最大—干涉加强;另一种是相位差为π的奇数倍,合成振动最弱或振幅为零——称干涉减弱或相消。
其对应的光程差为⎪⎩⎪⎨⎧=-±=±= 21k 212 210 干涉减弱),,()(干涉加强),,( λλδk k k 杨氏双缝干涉的光程差还可写成Dx d=δ ,式中d 为两缝间距离,x 为观察屏上纵轴坐标,D 为缝屏间距。
杨氏双缝干涉明、暗条纹的中心位置 λdD kx ±= 明纹中心 212λd D k x )(+±= 暗纹中心 相邻明纹或暗纹中心距离λd D x =∆。
学习资料收集于网络,仅供参考学习资料收集于网络,仅供参考学习资料学习资料 第七章 波动光学习题答案1.从一光源发出的光线,从一光源发出的光线,通过两平行的狭缝而射在距双缝通过两平行的狭缝而射在距双缝100 cm 的屏上,如两狭缝中心的距离为0.2 mm ,屏上相邻两条暗条纹之间的距离为3 mm ,求光的波长(Å为单位)。
已知已知 D=100cm a=0.2mm D=100cm a=0.2mm d x=3mm求l [解] l =a d x/D=3x/D=3××10-3×0.20.2××10-3/100/100××10-2=0.6=0.6××10-6m=6000 Å2.用波长为7000 Å的红光照射在双缝上,距缝1 m 处置一光屏,如果21个明条纹(谱线以中央亮条为中心而对称分布)共宽2.3 cm ,求两缝间距离。
,求两缝间距离。
[解] 明条纹间距明条纹间距 cm a=6.084.用波长为4800 Å的蓝光照射在缝距为0.1 mm 的双缝上,求在离双缝50 cm 处光屏上干涉条纹间距的大小。
涉条纹间距的大小。
[解]=2.4mm 5.什么是光程?在不同的均匀媒质中,在不同的均匀媒质中,单色光通过相等光程时,单色光通过相等光程时,单色光通过相等光程时,其几何路程是否相同其几何路程是否相同? 需要时间是否相同?[解]光程=nx 。
在不同的均匀媒质中,单色光通过相等光程时,其几何路程是不同。
需要时间相同相同6.在两相干光的一条光路上,在两相干光的一条光路上,放入一块玻璃片,其折射率为放入一块玻璃片,其折射率为1.6,结果中央明条纹移到原是第六级明条纹处,设光线垂直射入玻璃片,入射光波长为6.6×103 Å。
求玻璃片厚度。
求玻璃片厚度。
已知已知 n=1.6 n=1.6 l =6.6=6.6××103Å 求 d[解]光程差MP-d+nd-NP=0 ∵ NP-MP=6l∴ (n-1n-1))d=6ld=6l /(n-1)=6.6/(n-1)=6.6××10-6m7.在双缝干涉实验中,用钠光灯作光源(l =5893 Å),屏幕离双缝距离D=500mm ,双缝间距a=1.2mm ,并将干涉实验装置整个地浸在折射率1.33的水中,相邻干涉条纹间的距离为多大?若把实验装置放在空气中,干涉条纹变密还是变疏?(通过计算回答)已知n 水=1.33 l =5893Å D=500 mm a=1.2mm 比较d x 水和d x 空气 [解] d x 水=D l /na=500/na=500××5893×10-10×10-3/(1.2×10-3×1.33)=1.85×10-4m d x 空气=D l /a=500×5893×10-10×10-3/(1.2×10-3)=2.46×10-4m∴ 干涉条纹变疏干涉条纹变疏8.用白光垂直照射到厚度为4×10-5 cm 的薄膜上,薄膜的折射率为1.5。
第十一章 波动光学答案§11.2杨氏双缝干涉实验 劳埃德镜一.选择题和填空题1. D2. B3. 4I 04. 上 (n -1)e5. 0.75二.计算题1. 解:相邻明纹间距 ∆x 0 = D λ / d2分 两条缝之间的距离 d = D λ / ∆x 0 =D λ / (∆x / 20) =20 D λ/∆x= 9.09×10-2 cm 3分2. 解:设S 1、S 2分别在P 点引起振动的振幅为A ,干涉加强时,合振幅为2A ,所以2max 4A I ∝1分因为 λ3112=-r r所以S 2到P 点的光束比S 1到P 点的光束相位落后()3π23π2π212=⋅=-=∆λλλφr r 1分P 点合振动振幅的平方为:22223π2cos 2A A A A =++ 2分 ∵ I ∝A 2 ∴ I / I max = A 2 / 4A 2 =1 / 41分§11.3 光程 薄膜于涉一.选择题和填空题1. A2. C3. B4. 2.60 e5. [( 4ne / λ )–1 ]π 或 [( 4ne / λ) +1]π二.计算题1. 解:设介质薄膜的厚度为e ,上、下表面反射均为由光疏介质到光密介质,故不计附加程差。
当光垂直入射i = 0时,依公式有: 对λ1: ()112212λ+='k e n ① 1分 按题意还应有: 对λ2: 22λk e n =' ② 1分 由① ②解得: ()32121=-=λλλk 1分将k 、λ2、n '代入②式得en 0 =1.00n '=1.35n k e '=22λ=7.78×10-4 mm 2分2. 解:加强, 2ne+21λ = k λ, 2分 123000124212-=-=-=k k ne k ne λ nm 2分 k = 1, λ1 = 3000 nm , k = 2, λ2 = 1000 nm , k = 3, λ3 = 600 nm , k = 4, λ4 = 428.6 nm ,k = 5, λ5 = 333.3 nm .2分∴ 在可见光范围内,干涉加强的光的波长是λ=600 nm 和λ=428.6 nm . 2分§11.4 劈尖 牛顿环一.选择题和填空题1. C2. C3. D4. B5. λ/(2n )6. 2 ( n – 1) e – λ /2 或者2 ( n – 1) e + λ /2二.计算题1. 解:根据暗环半径公式有 R k r k λ=2分()R k r k λ1010+=+ 由以上两式可得 ()()λ10/2210k k r r R -=+ 2分=4 m 1分2. 解: 明纹, 2ne +λ21=k λ (k =1,2,…)3分 第五条,k =5,ne 2215λ⎪⎭⎫ ⎝⎛-==8.46×10-4 mm 2分3. 解:(1) 明环半径 ()2/12λ⋅-=R k r 2分()Rk r 1222-=λ=5×10-5 cm (或500 nm) 2分 (2) (2k -1)=2 r 2 / (R λ)对于r =1.00 cm , k =r 2 / (R λ)+0.5=50.5 3分 故在OA 范围内可观察到的明环数目为50个. 1分§11.5 迈克耳孙干涉仪 时间相干性一.选择题和填空题1. D2. 2(n-1)d3. 2d /λ二.计算题1. 解:插入厚度为 d 的介质片后,两相干光的光程差的改变量为2(n-1)d,从而引起N 条条纹的移动,根据劈尖干涉加强的条件有2(n-1)d=N λ,得:§11.7 单缝衍射 一.选择题和填空题1. B2. C3. D4. C5. 干涉(或答“相干叠加”)6. ±30° (答30° 也可以)7. 0.36 mm二.计算题1.解:中央明纹宽度 x = 2 x ≈2 f λ/ a2分 单缝的宽度 a = 2 f λ/ x = 2×400×6328×10-9 / 3.4 m 2分 = 0.15 mm 1分2. 解:(1) 由单缝衍射暗纹公式得111sin λθ=a 222sin λθ=a 由题意可知 21θθ= , 21sin sin θθ=代入上式可得 212λλ= 3分(2) 211112sin λλθk k a == (k 1 = 1, 2, ……) a k /2sin 211λθ=222sin λθk a = (k 2 = 1, 2, ……)a k /sin 222λθ=若k 2 = 2k 1,则θ1 = θ2,即λ1的任一k 1级极小都有λ2的2k 1级极小与之重合. 2分§11.8 圆孔衍射 光学仪器的分辨率1.2.24×10-5 4.47§11.9 衍射光栅一.选择题和填空题1.D 2. B 3. D 4. D 5. B 6. 一 三二.计算题1. 解:(1) 由光栅衍射主极大公式得md 61051.51)-2(n N -⨯==λa +b =ϕλsin k =2.4×10-4 cm 3分 (2) 若第三级不缺级,则由光栅公式得()λϕ3sin ='+b a由于第三级缺级,则对应于最小可能的a ,ϕ'方向应是单缝衍射第一级暗纹:两式比较,得 λϕ='sin aa = (a +b )/3=0.8×10-4 cm 3分(3) ()λϕk b a =+sin ,(主极大)λϕk a '=sin ,(单缝衍射极小) (k '=1,2,3,......)因此 k =3,6,9,........缺级. 2分 又因为k max =(a +b ) / λ=4, 所以实际呈现k=0,±1,±2级明纹.(k=±4 在π / 2处看不到.) 2分2.解:(1) a sin ϕ = k λ tg ϕ = x / f 2分 当x << f 时,ϕϕϕ≈≈sin tg , a x / f = k λ , 取k = 1有x = f l / a = 0.03 m 1分 ∴中央明纹宽度为 ∆x = 2x = 0.06 m 1分(2) ( a + b ) sin ϕλk '=='k ( a +b ) x / (f λ)= 2.5 2分 取k'= 2,共有k '= 0,±1,±2 等5个主极大 2分§11.10 光的偏振性 马吕斯定律一.选择题和填空题1.B 2. A 3. 2 1/44. 自然光 线偏振光 部分偏振光 5.波动 横二.计算题1. 解:(1) 自然光通过第一偏振片后,其强度 I 1 = I 0 / 2 1分通过第2偏振片后,I 2=I 1cos 245︒=I 1/ 4 2分 通过第3偏振片后,I 3=I 2cos 245︒=I 0/ 8 1分 通过每一偏振片后的光皆为线偏振光,其光振动方向与刚通过的偏振片的偏振化方平行. 2分(2) 若抽去第2片,因为第3片与第1片的偏振化方向相互垂直,所以此时I 3 =0. 1分 I 1仍不变. 1分2. 解:设I 0为入射光中自然光的强度,I 1、I 2分别为穿过P 1和连续穿过P 1、P 2的强度. (1) 由题意,入射光强为2I 0, ()θ20001cos 5.0221I I I I +==得 cos 2θ=1 / 2, θ =45° 3分(2) I 2=(0.5I 0+I 0cos 245°) cos 2α =()0241I得 21cos 2=α , α=45° 2分§11.11 反射光和折射光的偏振一.选择题和填空题 1. D 2. B3.线偏振光 垂直于入射面 部分偏振光二.计算题1. 解:(1) 设该液体的折射率为n ,由布儒斯特定律tg i 0=1.56 / n 2分 得 n =1.56 / tg48.09°=1.40 1分(2) 折射角r =0.5π-48.09°=41.91° (=41°55' ) 2分2. 解: (1) 据布儒斯特定律tg i =n 2 / n 1=1.43所以 i =55.03° 2分(2) 令在介质Ⅱ中的折射角为r ,则 r =0.5π-i此r 在数值上等于介质Ⅱ、Ⅲ界面上的入射角,由布儒斯特定律 tg r =n 3 / n 2得 n 3=n 2 tg r =n 2 ctg i =n 2n 1 / n 2=1.00 3分§11.12 双折射一.选择题和填空题1. 遵守通常的折射 不遵守通常的折射2.传播速度 单轴。
一. 选择题[A ]1. 一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片.若以此入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的5倍,那么入射光束中自然光与线偏振光的光强比值为(A) 1 / 2. (B) 1 / 3. (C) 1 / 4. (D) 1 / 5.提示:[ D ]2. 某种透明媒质对于空气的临界角(指全反射)等于45°,光从空气射向此媒质时的布儒斯特角是(A) 35.3°.(B) 40.9°.(C) 45°. (D) 54.7°. (E) 57.3°.[ ]3. 一束自然光自空气射向一块平板玻璃(如图),设入射角等于布儒斯特角i 0,则在界面2的反射光(A) 是自然光. (B) 是线偏振光且光矢量的振动方向垂直于入射面. (C) 是线偏振光且光矢量的振动方向平行于入射面. (D) 是部分偏振光. 提示:[ ]4. 一束自然光通过两个偏振片,若两偏振片的偏振化方向间夹角由α1转到α2,则转动前后透射光强度之比为2212cos :cos αα提示:二. 填空题1. 如图所示的杨氏双缝干涉装置,若用单色自然光照射狭缝S ,在屏幕上能看到干涉条纹.若在双缝S 1和S 2的一侧分别加一同质同厚的偏振片P 1、P 2,则当P 1与P 2的偏振化方向相互___平行________时,在屏幕上仍能看到很清晰的干涉条纹.提示:要相互平行。
致”,两个偏振片方向为了满足“振动方向一致,相位差恒定。
频率相同,振动方向一件:两束光必须满足相干条为了看到清晰的条纹,2. 要使一束线偏振光通过偏振片之后振动方向转过90°,至少需要让这束光通过_____2_____块理想偏振片.在此情况下,透射光强最大是原来光强的___1/4_____倍 。
提示:如图P 2P 1S 1S 2S3. 在以下五个图中,前四个图表示线偏振光入射于两种介质分界面上,最后一图表示入射光是自然光.n 1、n 2为两种介质的折射率,图中入射角i 0=arctg (n 2/n 1),i ≠i 0.试在图上画出实际存在的折射光线和反射光线,并用点或短线把振动方向表示出来.提示:作图时注意细节。
波动光学答案一.选择题:⒈ C;⒉ A;⒊ C(应为51.8m);⒋E;⒌A;⒍E;⒎C;⒏ C;⒐ A;二、填空题1.;光程。
2. ;。
3.频率相同、振动方向相同、相位差恒定的两束光;将一个光源发出的同一光波列分为两束,使它们在空间经不同路程再相遇而相干;分波前;分振幅。
4.。
5. 暗;明;;。
6. 光疏;光密;反射;l/2;。
7. ;;明。
8. 2; 0.25 ;。
9. ;;1.32 。
10.; 11. ;12. 寻常;非常;光轴; O三、问答题答:⑴将待检光线垂直入射偏振片,并以入射光为轴旋转偏振片,透射光强若不变则为自然光;⑵光强有强弱变化但最弱不为0则为部分偏振光;⑶光强有强弱变化且最弱处光强为0则为全偏光。
四、计算题1. 解:设相邻两条纹间距为l,则l=b/10, l=sinθ=λ/2, sinθ≈tanθ=d/L2. 解:(1)由已知条件,明纹公式为2n1e+λ/2=kλ将最高点e=h 代入得:共有k=1,2,3,4,5 的5条明纹,对应于k的油膜厚度e k 为:k=1,e1=90nm; k=2,e2=270nm; k=3,e3=450nmk=4,e4=630nm; k=5,e5=810nm(2) h=864nm ,k=5.3为非整数,条纹介于明暗之间,非明非暗条纹。
h=810nm时k=5,为明纹;h=720nm时,k=4.5,为暗纹;故条纹变化为:明暗之间→明纹→暗纹。
3.解:(1)斜入射公式(a+b)(sinθ+sinφ)=kλ当 φ=π/2,sin=1时可得最高级次, 一侧:, 最多可看到第九级;另侧 ,最多第三级;(2)(a+b)sinφ=kλ, 当 φ=π/2,sin=1时, 两侧均最多可以看到第六级;(3)光栅方程(a+b)sinφ=kλ,单缝衍射的暗纹条件asinφ=k’λ因此缺级为: =3k’, 即衍射条纹的第3,6级缺级由此可以看到0,±1,±2,±4,±5, 共9 条五、附加题:相消条件=>, k=1时D max=1665m。
波动光学填空题56、杨氏双缝的间距为0.3mm ,双缝距离屏幕1500mm ,若第四到第七明纹距离为7.5 ,则入射光波长 =___500nm____ ;若入射光的波长 =639nm ,则相邻两明纹的间距x k+1-x k =____3.195___mm 。
57、用单色光做单缝衍射实验,若缝宽变为原来的6倍,则中央明纹区宽度是原来的____1/6____倍。
58、波长为750nm 的单色平行光,垂直照射到宽度为d 的单缝上,若衍射角为3π/12时,对应的衍射图样为第一极小,则缝宽为_____1.06µm______。
59、单色平行光垂直入射于单缝上,观察夫琅和费衍射,若屏上P 点处为第3级暗纹,则单缝处波面相应地可划分为 __6___个半波带,若将单缝宽度缩小一半,P 点将是第__1__级__明__纹。
60、单色平行光垂直入射于单缝上,观察夫琅和费衍射,若屏上P 点处为第3级明纹,则单缝处波面相应地可划分为 _____个半波带,若将单缝宽度缩小一半,P 点将是第____级____纹。
61、一束强度为I 0的自然光垂直穿过两个叠合在一起、偏振化方向成45゜角的理想偏振片,则透射光强为____1/4____I 062、光的干涉和衍射现象反映了光的___波动_____性质.光的偏振现象说明光波是______横___波.63、单色平行光垂直入射于单缝上,观察夫琅和费衍射,若屏上P 点处为第2级明纹,则单缝处波面相应地可划分为 _____个半波带,若将单缝宽度缩小一半,P 点将是第____级____纹。
64、单色光在折射率为n=1.4的介质中传播的几何路程长度为30m ,则相当于该光在真空中传播的路程长度为____42m_____。
65、波长为λ=532nm 的单色光垂直照射到宽度为d 的单缝上,若对应第二级暗纹的衍射角θ=30°。
则缝宽d __2128______nm 。
66、光的_ 干涉____和_ 衍射____现象表明光具有波动性质,光的__偏振_____现象说明光波是横波。
67、一束自然光由空气斜入射到折射率为n 的均匀平板玻璃表面,当入射角i 满足_i tan _____=n 时,反射光将具有完全偏振性。
68、光从光疏媒质射向光密媒质时,反射光的半波损失对应的附加光程为__λ/2__,对应的附加位相为____π__.69、一束自然光通过两个偏振片,若两偏振片的偏振化方向间夹角由α1转到α2,则转动前后透射光强度之比为___2212cos cos αα______。
70、已知玻璃的折射率为 ,在其上面镀一层氟化镁(MgF 2)薄膜(n =1.38),放在空气中,白光垂直照射到膜的表面,欲使反射光中波长为550nm 的光相消,此膜的最小厚度为___0.1µm____。
波动光学选择题79、为了使双缝干涉的条纹间距变大,可以采取的方法是:[ B ]A. 使屏靠近双缝;B. 使两缝的间距变小;C. 使两缝的宽度稍微变小;D. 改用波长较小的单色光源。
80、为了使干涉的条纹更亮,可见条纹更多,条纹拉得更开,最可取的方法是:[ B ]A. 使屏靠近光缝;B. 减小缝间距;C. 增加缝间距;D. 采用等距多缝方案81、在垂直照射的劈尖干涉实验中,当劈尖的夹角变大时,干涉条纹将[ B ]。
A. 远离劈棱方向移动;B. 向劈棱方向移动;C. 相邻条纹间的距离将变宽;D. 条纹位置和间距不变.82、真空中波长为λ的单色光,在折射率为n 的媒质中,由a 点传到b 点相位改变了π,则对应的光程为[ D ]A. λ;B. λ/2;C. λn /2;D. λ/2n83、光波从光疏媒质垂直入射到光密媒质,当它在界面反射时,其[ C ]。
A.相位不变B.频率增大C.产生附加光程λ/2D.频率减小84、用波长连续改变的单色光垂直照射劈尖,如果波长逐渐减小,则干涉条纹变化情况为[ B ]A. 明纹间距变小,并向劈尖增厚方向移动;B. 明纹间距变小,并向劈尖方向移动;C. 明纹间距变大,并向劈尖方向移动;D. 明纹间距变大,并向劈尖增厚方向移动。
85、单色平行光垂直入射于单缝上,观察夫琅和费衍射,则 [ A ]A. 若屏上P 点处为第2级明纹,则单缝处波面相应地可划分为 5个半波带B.若将单缝宽度加倍,P 点还是明纹;C. 缝宽加倍,条纹宽度也加倍;D. 缝宽减半, 条纹宽度不变.86、一束自然光I 0垂直穿过两个偏振片,已知两偏振片的偏振化方向成45度角,则穿过两偏振片后的光强为:[ B ](A )4/20I ; (B )I 0 / 4 ; (C )I 0 / 2 ; (D )2/20I87、有一束平行光从真空射向折射率n = [ A ]A .当入射角大于45º时会发生全反射现象。
B .无论入射角多大,折射角都不会超过45º。
C .入射角为45º时,折射角为30º。
D .当入射角为波动光学计算题108、用λ = 400nm 的光垂直入射到楔形薄透明片(劈尖)上,形成等厚条纹,已知膜片的折射率为n=1.4,等厚条纹相邻纹间距为5.0mm ,求楔形面间的夹角. 解:n k n k n e e l k k 22)1(2sin 1λλλθ=-+=-=+ 51088.20.54.124002sin -⨯=⨯⨯==mmnm nl λθ 51088.2arcsin -⨯=θ109、一平面单色光波垂直照射在厚度均匀的薄油膜上,油膜覆盖在玻璃板上.油的折射率为1.30,玻璃的折射率为1.50,若单色光的波长可由光源连续可调,可观察到500nm 与700nm 这两个波长的单色光在反射中消失.试求油膜层的厚度. 解: 油膜上、下两表面反射光的光程差为ne 2,由反射相消条件有λλ)21(2)12(2+=+=k k k ne ),2,1,0(⋅⋅⋅=k ① 当50001=λo A 时,有2500)21(21111+=+=λλk k ne ② 当70002=λo A 时,有3500)21(22222+=+=λλk k ne ③ 因12λλ>,所以12k k <;又因为1λ与2λ之间不存在3λ满足 33)21(2λ+=k ne 式 即不存在 132k k k <<的情形,所以2k 、1k 应为连续整数,即 112-=k k ④由②、③、④式可得:51)1(75171000121221+-=+=+=k k k k λλ 得 31=k 2112=-=k k可由②式求得油膜的厚度为67312250011=+=nk e λo A 110、如图所示,波长为680nm 的平行光垂直照射到L =0.12m 长的两块玻璃片上,两玻璃片一边相互接触,另一边被直径d =0.048mm 的细钢丝隔开.求:(1)两玻璃片间的夹角θ(2)相邻两明条纹间空气膜的厚度差是多少?(3)相邻两暗条纹的间距是多少?(4)在这0.12 m 内呈现多少条明条纹?解: (1)由图知,d L =θsin ,即d L =θ故 43100.41012.0048.0-⨯=⨯==L d θ(弧度) (2)相邻两明条纹空气膜厚度差为7104.32-⨯==∆λe m(3)相邻两暗纹间距641010850100.421068002---⨯=⨯⨯⨯==θλl m 85.0= mm (4)141≈=∆lL N 条 111、在杨氏双缝实验中,双缝间距d =0.20mm ,缝屏间距D =1.0m ,试求:(1)若第二级明条纹离屏中心的距离为6.0mm ,计算此单色光的波长;(2)相邻两明条纹间的距离.解: (1)由λk d D x =明知,λ22.01010.63⨯⨯=, ∴ 3106.0-⨯=λmm oA 6000= (2) 3106.02.010133=⨯⨯⨯==∆-λd D x mm 112、把金属丝放到两块叠合的玻璃片一端,构成一空气劈尖,从劈棱到金属丝顶的长度为2.888cm ,以波长为589.3nm 的单色光垂直照射,观察反射光的等厚干涉条纹,相邻条纹间距为1.432×10-2cm 。
求(1)劈棱处是明纹还是暗纹?(2)玻璃片从劈棱到金属丝之间所呈现的暗条纹数目;(3)金属丝的直径D 。
解:(1)暗纹条件2)12(22λλ+=+=∆k e 劈棱处为暗纹。
(2)20010432.1888.22=⨯=-cmcm l L 暗条纹数目100。
(3)2sin λθ=l L D =≈θθtan sin m cmcm nm l L D 5210893.510432.12888.23.5892--⨯=⨯⨯⨯==λ 113、在杨氏双缝干涉实验中,设两缝间的距离:d =0.02cm,屏与缝之间距离D =100cm ,试求:(1)以波长为589nm 的单色光照射,第10级明条纹离开中央明条纹的距离;(2)第10级干涉明条纹的宽度;(3)以白色光照射时,屏幕上出现彩色干涉条纹,求第2级光谱的宽度;(4)若把此双缝实验装置放到水中进行,则屏幕上干涉条纹如何变化?(5)在S 1光路中放上厚为l =3.0cm ,折射率为n 的很薄的透明云母片,观察到屏幕上条纹移过20条,则云母片折射率为多少?(空气折射率n 0=1)(1)mm nm cm cm d D kx 45.2958902.010010=⨯⨯==λ (2)mm dD x 945.2==∆λ (3)白光(波长400--760nm ),第2级光谱宽度mm nm nm cmcm d D k x 6.3)400760(02.01002)(21=-⨯⨯=-=∆λλ (4)干涉条纹间距变小。
(5))(12nl l r r +--=∆ λk l n r r =-=-)1(12 00039.10.35892011=⨯+=+=cm nm l k n λ 114、用钠灯光源(λ=589.3nm )观察牛顿环,看到第k 条暗环的半径r k =4mm ,第k +5条暗环半径r k+5=6mm ,求所用平凸透镜的曲率半径R 。
解:m nmmm r r m r r R k k k m k 79.63.5895)46(522222522=⨯-=-=-=++λλ 115、若用波长不同的光观察牛顿环,λ1=600nm ,λ2=450nm ,观察到用λ1时的第k 个暗环与用λ2时的第k+1个暗环重合,已知透镜的曲率半径是190cm .求用λ1时第k 个暗环的半径. 解:21)1(λλR k kR += k k 121+=λλ 3)450600(450212=-=-=nmnm k λλλ mm nm cm kR r k 85.160019031=⨯⨯==λ116、用每毫米500条栅纹的光栅,观察钠光光谱(λ=590nm )衍射。