2003高教社杯全国大学生数学建模竞赛A题
- 格式:doc
- 大小:270.00 KB
- 文档页数:7
高教社杯全国大学生数学建模竞赛题目 2003高教社杯全国大学生数学建模竞赛题目(请先阅读 “对论文格式的统一要求”)A题 SARS的传播SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。
SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。
请你们对SARS 的传播建立数学模型,具体要求如下:(1)对附件1所提供的一个早期的模型,评价其合理性和实用性。
(2)建立你们自己的模型,说明为什么优于附件1中的模型;特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。
附件2提供的数据供参考。
(3)收集SARS对经济某个方面影响的数据,建立相应的数学模型并进行预测。
附件3提供的数据供参考。
(4)给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性。
附件1:SARS疫情分析及对北京疫情走势的预测2003年5月8日在病例数比较多的地区,用数理模型作分析有一定意义。
前几天,XXX老师用解析公式分析了北京SARS疫情前期的走势。
在此基础上,我们加入了每个病人可以传染他人的期限(由于被严格隔离、治愈、死亡等),并考虑在不同阶段社会条件下传染概率的变化,然后先分析香港和广东的情况以获得比较合理的参数,最后初步预测北京的疫情走势。
希望这种分析能对认识疫情,安排后续的工作生活有帮助。
1 模型与参数假定初始时刻的病例数为N0,平均每病人每天可传染K个人(K一般为小数),平均每个病人可以直接感染他人的时间为L天。
则在L天之内,病例数目的增长随时间t(单位天)的关系是:N(t)= N0 (1+K)t如果不考虑对传染期的限制,则病例数将按照指数规律增长。
邯郸学院本科毕业论文题目全国大学生数学建模竞赛常用建模方法探讨学生柴云飞指导教师闫峰教授年级2009级本科专业数学与应用数学二级学院数学系(系、部)邯郸学院数学系2013年6月郑重声明本人的毕业论文是在指导教师闫峰的指导下独立撰写完成的.如有剽窃、抄袭、造假等违反学术道德、学术规范和侵权的行为,本人愿意承担由此产生的各种后果,直至法律责任,并愿意通过网络接受公众的监督.特此郑重声明.论文经“中国知网”论文检测系统检测,总相似比为5.80%.毕业论文作者(签名):年月日全国大学生数学建模竞赛常用建模方法探讨摘要全国大学生数学建模竞赛作为全国高校规模最大的基础性学科竞赛,越来越受到人们的重视,所以建模竞赛的方法也就变得尤为重要.随着竞赛的不断发展,赛题的开放性逐步增大,一道赛题可用多种解法,各种求解的算法有时会相互融合,同时也在向大规模数据处理方向发展,这就对选手的能力提出了更高的要求.由于建模方法种类众多,无法一一介绍,所以本文主要介绍了四种比较常用的数学建模竞赛方法,包括微分与差分方程建模方法、数学规划建模方法、统计学建模方法、图论方法,并结合历年赛题加以说明.关键词:数学建模竞赛统计学方法数学规划图论Commonly Used Modeling Method ofChina Undergraduate Mathematical Contest in ModelingChai yunfei Directed by Professor Yan fengABSTRACTThe China undergraduate mathematical contest in modeling has been attention by more and more people as a basic subject of the largest national college competition. The method of modeling competition has become more and more important. Open questions gradually increased with the development of competition. Most of the games can be solved by lots of solutions. Sometimes these methods can be used together. And there is also a lot of data which puts forward higher requirement on the ability of players. The modeling methods is too numerous to mention, so this article mainly four kinds Commonly used modeling method are introduced that differential and difference equations modeling method, Mathematical programming modeling method, Statistics modeling method, graph theory and interprets with calendar year’s test questions.KEY WORDS:Mathematical contest in modeling Statistics method Mathematical programming Graph theory目录摘要 (I)英文摘要 (II)前言 (1)1微分方程与差分方程建模 (2)1.1微分方程建模 (2)1.1.1微分方程建模的原理和方法 (2)1.1.2微分方程建模应用实例 (3)1.2差分方程建模 (4)1.2.1 差分方程建模的原理和方法 (4)1.2.2 差分方程建模应用实例 (5)2数学规划建模 (5)2.1线性规划建模的一般理论 (6)2.2线性规划建模应用实例 (7)3统计学建模方法 (8)3.1聚类分析 (8)3.1.1 聚类分析的原理和方法 (8)3.1.2 聚类分析应用实例 (8)3.2回归分析 (9)3.2.1 回归分析的原理与方法 (9)3.2.2 回归分析应用实例 (10)4图论建模方法 (10)4.1两种常见图论方法介绍 (11)4.1.1 模拟退火法的基本原理 (11)4.1.2 最短路问题 (11)4.2图论建模应用实例 (12)5小结 (13)参考文献 (13)致谢 (14)前言全国大学生数学建模竞赛创办于1992年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛.参赛者需要根据题目要求,在三天时间内完成一篇包括模型假设、模型建立和求解、计算方法的设计和实现、模型结果的分析和检验、模型的改进等方面的论文.通过参加竞赛的训练和比赛,可以提高学生用数学方法解决实际问题的意识和能力,而且在培养团队精神和撰写科技论文等方面都会得到十分有益的锻炼.竞赛题目的涉及面比较宽,有工业、农业、工程设计、交通运输、经济管理、生物医学和社会事业等.竞赛选手不一定预先掌握深入的专业知识,而只需要学过高等数学的相关课程即可,并且题目具有较大的灵活性,便于参赛者发挥其创造能力.近年来,竞赛题目包含的数据较多,手工计算一般不能实现,所以就对参赛者的计算机能力提出了更高的要求,如2003年B题,某些问题的解决需要使用计算机软件;2001年A题,问题的数据读取需要计算机技术,并且对于给出的图像,需要用图像处理的方法获得;再如2004年A题则需要利用数据库数据,数据库方法,统计软件包等等.竞赛题目的总体特点可大致归纳如下:(1)实用性不断加强,问题和数据来自于实际,解决方法需要切合实际,模型和结果可以应用于实际;(2)综合性不断加强,解法多样,方法融合,学科交叉;(3)数据结构越来越复杂,包括数据的真实性,数据的海量性,数据的不完备性,数据的冗余性等;(4)开放性也越来越突出,题意的开放性,思路的开放性,方法多样,结果不唯一等.总体来说,赛题向大规模数据处理方向发展,求解算法和各类现代算法相互融合.纵观历年的赛题,主要用到的建模方法有:初等数学模型、微分与差分方程建模、组合概率、数据处理、统计学建模、计算方法建模、数学规划、图论方法、层次分析、插值与拟合、排队论、模糊数学、随机决策、多目标决策、随机模拟、计算机模拟法、灰色系统理论、时间序列等.本文不一一列举竞赛题目中涉及的所有方法,只是重点讨论其中一些比较常用的方法,包括微分与差分方程建模方法、数学规划建模方法、统计学建模方法、图论建模方法,并结合案例说明建模方法的原理及应用.1 微分方程与差分方程建模在很多竞赛题目中,常常会涉及很多变量之间的关系,找出它们之间的函数关系式具有重要意义.可在许多实际问题中,我们常常不能直接给出所需要的函数关系,但可以得到含有所求函数的导数(或微分)或差分(即增量)的方程,这样的方程称为微分方程或差分方程. 建立微分方程或差分方程的数学模型是一种重要的建模方法.如1996年A 题“最优捕鱼策略”,1997年A 题“零件参数设计”,2003年A 题“SARS 的传播”,2007年A 题“中国人口增长预测”,2009年A 题“最优捕鱼策略”等赛题中,都用到了这种方法.1.1 微分方程建模1.1.1 微分方程建模的原理和方法一般来说,任何时变问题中随时间变化而发生变化的量与其它一些量之间的关系经常以微分方程的形式来表现.例1.1 有一容器装有某种浓度的溶液,以流量1v 注入该容器浓度为1c 的同样溶液,假定溶液立即被搅拌均匀,并以2v 的流量流出混合后的溶液,试建立反映容器内浓度变化的数学模型.解 注意到溶液浓度=溶液体积溶液质量,因此,容器中溶液浓度会随溶质质量和溶液体积变化而发生变化.不妨设t 时刻容器中溶质质量为()t s ,初始值为0s ,t 时刻容器中溶液体积为()t v ,初始值为0v ,则这段时间()t t t ∆+,内有⎩⎨⎧∆-∆=∆∆-∆=∆t v t v V t v c t v c s 212211, (1) 其中1c 表示单位时间内注入溶液的浓度,2c 表示单位时间内流出溶液的浓度,当t ∆很小时,在()t t t ∆+,内有≈2c =)()(t V t s tv v V t s )()(210-+. (2) 对式(1)两端同除以t ∆,令0t ∆→,则有⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=00212211)0(,)0(V V s s v v dtdV v c v c dt ds . (3) 即所求问题的微分方程模型.虽然它是针对液体溶液变化建立的,但对气体和固体浓度变化同样适用.实际应用中,许多时变问题都可取微小的时间段t ∆去考察某些量之间的变化规律,从而建立问题的数学模型,这是数学建模中微分方程建模常用手段之一.常用微分方程建模的方法主要有:(1)按实验定律或规律建立微分方程模型.此种建模方法充分依赖于各个学科领域中有关实验定律或规律以及某些重要的已知定理,这种方法要求建模者有宽广的知识视野,这样才能对具体问题采用某些熟知的实验定律.(2)分析微元变化规律建立微分方程模型.求解某些实际问题时,寻求一些微元之间的关系可以建立问题的数学模型.如例1.1中考察时间微元t ∆,从而建立起反应溶液浓度随时间变化的模型.此建模方法的出发点是考察某一变量的微小变化,即微元分析,找出其他一些变量与该微元间的关系式,从微分定义出发建立问题的数学模型.(3)近似模拟法.在许多实际问题中,有些现象的规律性并非一目了然,或有所了解亦是复杂的,这类问题常用近似模拟方法来建立问题的数学模型.一般通过一定的模型假设近似模拟实际现象,将问题做某些规范化处理后建立微分方程模型,然后分析、求解,并与实际问题作比较,观察模型能否近似刻画实际现象.近似模拟法的建模思路就是建立能够近似刻画或反映实际现象的数学模型,因此在建模过程中经常做一些较合理的模型假设使问题简化,然后通过简化建立近似反映实际问题的数学模型.1.1.2 微分方程建模应用实例例1.2(2003年高教社杯全国大学生数学建模竞赛A 题) SARS 传播的预测. 2003年爆发的“SARS ”疾病得到了许多重要的经验和教训,使人们认识到研究传染病的传播规律的重要性.题目给出了感病情况的三个附件,要求对SARS 的传播建立数学模型:(1)对SARS 的传播建立一个自己的模型,并说明模型的优缺点;(2)收集SARS 对经济某个方面影响的数据,建立相应的数学模型并进行预测.问题求解过程分析 由于题目具有开放性,故选择文献[1]中的求解思路分析. 传染病的传播模式可近似分为自由传播阶段和控后阶段,然后将人群分为易感者S ,感病者I ,移出者R 三类.由三者之间的关系可得到下列微分方程:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=++=-=-=NR I S hI dt dR hI kIS dt dI kISdt dS , 利用附件中给出的数据,可以将上述方程变形为I hI kNI dtdI λ=-=, 其中h kN -=λ,其解为t e I t I λ-=0)(.其中0I 为初始值.但此模型只适用于病例数与总人口数具有可比性的情况,当病例数远小于总人口数时,感病人数将随时间以指数增长.这是按实验定律或规律建立的微分方程模型.为进一步改进模型,用计算机跟踪病毒的个体传播情况,又建立计算机模拟模型.然后用计算机模拟北京5月10日之前SARS 的传播情况,并对5月10日以后的传播情况进行预测.但是得到的有效接触率与实际统计数据有所偏差,所以统计数据,为参数的确定寻求医学上的支持,并以随机模拟取代完全确定性的模拟,对原模型进行改进,建立随机模拟模型.通过计算机编程,产生正态分布的随机数,并对传染情况进行500次模拟,即可进行预测,并可得出对SARS 疫情控制提出的相应建议.1.2 差分方程建模1.2.1 差分方程建模的原理和方法差分方程在数学建模竞赛中应用的频率极高,所以要对这种方法引起足够的重视.它针对要解决的目标,引入系统或过程中的离散变量.具体方法是:根据实际的规律性质、平衡关系等,建立离散变量所满足的关系式,从而建立差分方程模型.差分方程可以分为不同的类型,如一阶和高阶差分方程,常系数和变系数差分方程,线性和非线性差分方程等等.建立差分方程模型一般要注意以下问题:(1)注意题中的离散变化量,对过程进行分析,尤其要注意形成变化运动过程的时间或距离的分化而得到离散变量;(2)通过对具体变化过程的分析,列出满足题意的差分方程,其中入手点是找出变量所能满足的平衡关系、增量或减量关系及规律,从而得到差分方程.1.2.2差分方程建模应用实例例1.3(2007年高教社杯全国大学生数学建模竞赛A题)中国人口增长预测.题目要求从中国的实际情况和人口增长的特点出发,参考附录中的相关数据(也可以搜索相关文献和补充新的数据),建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测,特别要指出模型中的优点与不足之处.问题求解过程分析由于题目具有开放性,故选择文献[2]中的求解思路分析.通过分析题中相关的数据,考虑到我国近年来人口发展的总趋势,因为涉及到人口的增长和变换,所以可以先用微分方程来建立模型,并对我国人口增长的中短期和长期趋势做出预测.首先,根据灰色系统理论,使用灰色关联分析模型法对人口系统结构进行关联分析,找出影响人口增长的主要因素;其次使用年龄推算法进行短期预测.在建立和求解长期预测模型时,根据人口阻滞增长模型(Logistic模型),可以考虑对中国人口老龄化进程加速、出生人口性别比例持续升高以及乡村人口城镇化等因素建立新的人口增长的差分方程模型.但是它仅给出了人口总数的变化规律,反映不出各类人口的详细信息,所以我们需要建立离散化的模型,并进一步可以得到全面系统地反应一个时期内人口数量状况的差分方程,可以用微分和差分方程理论来表现和模拟人口数量的变化规律.从而对人口分布的状况、变化趋势、总体特征等有更加详细和科学的了解.在模型的求解过程中,用到了MATLAB软件,并做参数估计,利用所得结果和题目给出的近五年来的人口数据,对我国人口发展趋势进行了预测,得到了在老龄化进程加速、出生人口性别比例持续升高以及乡村人口城镇化等因素影响下,未来我国人口发展预测情况.2 数学规划建模数学规划是指在一系列条件限制下,寻求最优方案,使得目标达到最优的数学模型,它是运筹学的一个重要分支.数学规划的内容十分丰富,包括许多研究分支,如:线性规划、非线性规划、整数规划、二次规划、0-1规划、多目标规划、动态规划、参数规划、组合优化、随机规划、模糊规划、多层规划问题等.在1993年A 题“非线性交调的频率设计”,1993年B 题“足球队排名”,1995年A 题“飞行管理问题”,1996年B 题“节水洗衣机”,1997年A 题“零件的参数设计”,1998年A 题“一类投资组合问题”,1999年B 题“钻井布局”,2001年B 题“公交车调度问题”,2002年A 题“车灯线光源的优化”,2006年A 题“出版社书号问题”,2007年B 题“城市公交线路选择问题”等赛题中,都用到了规划的方法.在此以线性规划为例,对规划的方法进行探讨.2.1 线性规划建模的一般理论线性规划建模方法主要用于解决生产实际中的资源利用、人力调配、生产安排等问题,它是一种重要的数学模型.线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是研究线性约束条件下线性目标函数的极值问题的数学理论和方法.一般的优化问题是指用“最好”的方式,使用或分配有限的资源即劳动力、原材料、机器、资金等,使得费用最小或利润最大.优化模型的一般形式为:()m ax m in 或 ()x f z = (4)().0..≤x g t s ()m i ,,2,1 = (5)()()12,,T n x x x x =,.由(4)、(5)组成的模型属于约束优化.若只有(4)式就是无约束优化.()x f 称为目标函数,()0g x ≤称为约束条件.在优化模型中,如果目标函数()x f 和约束条件中的()g x 都是线性函数,则该模型称为线性规划.建立实际问题线性规划模型的步骤如下:(1)设置要求解的决策变量.决策变量选取得当,不仅能顺利地建立模型而且能方便地求解,否则很可能事倍功半.(2)找出所有的限制,即约束条件,并用决策变量的线性方程或线性不等式来表示.当限制条件多,背景比较复杂时,可以采用图示或表格形式列出所有的已知数据和信息,从而避免“遗漏”或“重复”所造成的错误.(3)明确目标要求,并用决策变量的线性函数来表示,标出对函数是取极大还是取极小的要求.需要特别说明的是,要使用线性规划方法来处理一个实际问题,必须具备下面的条件:(1)优化条件:问题的目标有极大化或极小化的要求,而且能用决策变量的线性函数来表示.(2)选择条件:有多种可供选择的可行方案,以便从中选取最优方案.(3)限制条件:达到目标的条件是有一定限制的(比如,资源的供应量有限度等),而且这些限制可以用决策变量的线性等式或线性不等式表示出来.此外,描述问题的决策变量相互之间应有一定的联系,才有可能建立数学关系,这一点自然是不言而喻的.线性规划模型的求解可用图解法或单纯形法.随着计算机的普及和大量数学软件的出现,可以利用现成的软件MATLAB或LINGO等求解,在此不再叙述.2.2线性规划建模应用实例例2.1(2006年高教社杯全国大学生数学建模竞赛B题)艾滋病疗法的评价及疗效的预测.题目给出了美国某艾滋病医疗试验机构公布的两组数据,数据涉及到了病人CD4和HIV的浓度含量的测试结果.根据所给的资料需要参赛者完成以下问题:(1)利用附件1的数据,预测继续治疗的效果,或者确定最佳治疗终止时间;(2)利用附件2的数据,评价4种疗法的优劣(仅以4CD为标准),并对较优的疗法预测继续治疗的效果,或者确定最佳治疗终止时间;(3)如果病人需要考虑4种疗法的费用,对评价和预测有什么影响.问题求解过程分析由于题目具有开放性,故选择文献[3]中的求解思路进行分析.首先对题目所给数据进行分析,考虑到治疗的效果与患者的年龄有关,将患者按年龄分组,如25~35岁及45岁以上4组.每组中按照4种疗法和4个25岁,45~~14岁,35治疗阶段(如1020周,4030周),构造16个决策单元.取4~~~~0周,2010周,30种药品量为输入,治疗各个阶段末患者的4CD值的比值为输出.CD值与开始治疗时4然后建立相应的数学模型,利用相对有效性评价方法,建立分式规划模型并经过变换,转化为线性规划模型求解,对各年龄组患者在各阶段的治疗效率进行评价.计算结果:对第1年龄组疗法2和4在整个治疗中效率较高,在第4阶段仍然有效;对第2年龄组疗法1在第1,2阶段有效;对第3年龄组疗法1,2,3在第1阶段有效;对第4年龄组疗法1,2在第1,2阶段有效.表明只有2514岁的年4种轻患者,才能在治疗的最~后阶段仍然有有效的疗法.随后,由线性规划模型的对偶形式建立预测模型,对各年龄组各种疗法下一阶段的疗效进行预测.若由某决策单元得到的实际输出大于预测输出,则该决策单元相对有效;反之,说明该种疗法对该组患者在治疗的未来阶段不再有效,应该转换疗法.3 统计学建模方法在数学建模竞赛中,常常会涉及到大量的数据,因此,我们就需要用统计学建模方法对这些数据进行处理.此类方法主要包括统计分析、计算机模拟、回归分析、聚类分析、数据分类、判别分析、主成分分析、因子分析、残差分析、典型相关分析、时间序列等.如2004年A题“奥运会临时超市网点设计问题”,2004年B题“电力市场的输电阻塞管理问题”,2007年A题“人口增长预测问题”,2008年B题“大学学费问题”,2012年A题“葡萄酒的评价”等都用到了这种建模方法.在此选取其中两类方法进行阐述.3.1聚类分析3.1.1聚类分析的原理和方法该方法说的通俗一点就是,将n个样本,通过适当的方法选取m聚类中心,通过研究各样本和各个聚类中心的距离,选择适当的聚类标准,通常利用最小距离法来聚类,从而可以得到聚类.结果利用sas 软件或者spss 软件来做聚类分析,就可以得到相应的动态聚类图.这种模型的的特点是直观,容易理解.聚类分析的类型可分为:Q型聚类(即对样本聚类)和R型聚类(即对变量聚类).通常聚类中有相似系数法和距离法两种衡量标准.聚类方法种类多样,有可变类平均法、中间距离法、最长距离法、利差平均和法等.在应用时要注意,在样本量比较大时,要得到聚类结果就显得不是很容易,这时需要根据背景知识和相关的其他方法辅助处理.主要的方法步骤大致如下:(1)首先把每个样本自成一类;(2)选取适当的衡量标准,得到衡量矩阵;(3)重新计算类间距离,得到衡量矩阵;(4)重复第2步,直到只剩下一个类.3.1.2聚类分析应用实例例3.1(2012年高教社杯全国大学生数学建模竞赛A题)葡萄酒的评价.题目的附件中给出了某一年份一些葡萄酒的评价结果,和该年份这些葡萄酒的和酿酒葡萄的成分数据.要求参赛者建立数学模型解决以下问题:(1)分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信;(2)根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级;(3)分析酿酒葡萄与葡萄酒的理化指标之间的联系;(4)分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量.问题求解过程分析由于题目具有开放性,故选择文献[4]中的求解思路分析.由于给定了酿酒葡萄的理化指标,首先可将附录2和附录3中的一些数据进行处理.并可以据此对各种酿酒葡萄进行聚类分析,但是,由于题目中所给的数据庞大,所以可通过主成分分析法,简化并提取大部分有效信息,再用聚类分析对酿酒葡萄进行分级.最后根据酿酒葡萄对应葡萄酒质量的平均值大小进行比较,排序分级.接下来针对问题中分析酿酒葡萄与葡萄酒理化指标之间的联系,及上面整理好的数据,采用回归分析原理,在SPSS中得到酿酒葡萄与葡萄酒的理化指标之间的联系.再通过相关分析,得出相应的相关系数,从而得到相应的判断结论.在分析酿酒葡萄与葡萄酒的理化指标之间的联系时,还用到了多元线性回归分析.该模型用于生活实践中,也可以解决很多实际问题.3.2回归分析回归分析是利用数据统计原理,对大量数据进行数学处理,并确定因变量与某些自变量的相关关系,建立一个相关性较好的回归方程,并加以外推,用于预测今后的因变量的变化的分析方法.3.2.1回归分析的原理与方法回归分析是在一组数据的基础上研究这样几个问题:建立因变量与自变量之间的回归模型;对回归模型的可信度进行检验;判断每个自变量对因变量的影响是否显著;判断回归模型是否适合这组数据;利用回归模型对进行预报或控制.回归分析主要包括一元线性回归、多元线性回归、非线性回归.回归分析的主要步骤为:(1)根据自变量和因变量的关系,建立回归方程.(2)解出回归系数.(3)对其进行相关性检验,确定相关系数.(4)当符合相关性要求后,便可与具体条件结合,确定预测值的置信区间.需要注意的是,要尽可能定性判断自变量的可能种类和个数,并定性判断回归方程的可能类型.另外,最好应用高质量的统计数据,再运用数学工具和相关软件定量定性判断.3.2.2回归分析应用实例例3.2(2006年高教社杯全国大学生数学建模竞赛B题)艾滋病疗法的评价及疗效的预测.题目同例2.1.问题求解过程分析由于题目具有开放性,故选择文献[3]中的求解思路进行分析.问题2的解决就用到回归模型.首先分析数据知,应建立时间的一次与二次函数模型,并经过统计分析比较,确定哪种较好.所以可建立一个统一的回归模型,也可对每种疗法分别建立一个模型.以总体回归模型为例,分别用一次与二次时间函数模型进行比较,可知疗法3~1用一次模型较优,且一次项系数为负,即4CD在减少,从数值看疗法3优于疗法2和1;疗法4用二次模型较优,即4t左右达到最大.可以通过4条回归CD先增后减,在20曲线进行比较,显示疗法4在30周之前明显优于其它.最后再用检验法作比较,结果是疗法1与2无显著性差异,而疗法1与3,2与3,3与4均有显著性差异.4 图论建模方法图论建模方法在建模竞赛中也经常涉及,应用十分广泛,并且解法巧妙,方法灵活多变.如1990年B题“扫雪问题”,1991年B题“寻找最优Steiner树”,1992年B题“紧急修复系统的研制”,1993年B题“足球队排名”,1994年A题“逢山开路问题”,1994年B题“锁具装箱问题”,1995年B题“天车与冶炼炉的作业调度”,1997年B题“截断切割的最优排列”,1998年B题“灾情巡视最佳路线”,1999年B题“钻井布局”,2007年B题“城市公交线路选择问题”等都应用到了图论的方法.图论近几年来发展十分迅速,在物理、化学、生物学、地理学、计算机科学、信息论、控制论、社会科学、军事科学以及计算机管理等方面都有着广泛的应用.因此图论越来越受到了全世界数学界和工程技术界乃至经营决策管理者的重视.同时也成为了数学建模中一种十分重要的方法.图论问题算法很多,包括最短路、最大流、最小生成树、二分匹配、floyd、frim等.。
2003高教社杯全国大学生数学建模竞赛题目(请先阅读 “对论文格式的统一要求”)D 题 抢渡长江“渡江”是武汉城市的一张名片。
1934年9月9日,武汉警备旅官兵与体育界人士联手,在武汉第一次举办横渡长江游泳竞赛活动,起点为武昌汉阳门码头,终点设在汉口三北码头,全程约5000米。
有44人参加横渡,40人达到终点,张学良将军特意向冠军获得者赠送了一块银盾,上书“力挽狂澜”。
2001年,“武汉抢渡长江挑战赛”重现江城。
2002年,正式命名为“武汉国际抢渡长江挑战赛”,于每年的5月1日进行。
由于水情、水性的不可预测性,这种竞赛更富有挑战性和观赏性。
2002年5月1日,抢渡的起点设在武昌汉阳门码头,终点设在汉阳南岸咀,江面宽约1160米。
据报载,当日的平均水温16.8℃, 江水的平均流速为1.89米/秒。
参赛的国内外选手共186人(其中专业人员将近一半),仅34人到达终点,第一名的成绩为14分8秒。
除了气象条件外,大部分选手由于路线选择错误,被滚滚的江水冲到下游,而未能准确到达终点。
假设在竞渡区域两岸为平行直线, 它们之间的垂直距离为 1160 米, 从武昌汉阳门的正对岸到汉阳南岸咀的距离为 1000米,见示意图。
请你们通过数学建模来分析上述情况, 并回答以下问题:1. 假定在竞渡过程中游泳者的速度大小和方向不变,且竞渡区域每点的流速均为 1.89 米/秒。
试说明2002年第一名是沿着怎样的路线前进的,求她游泳速度的大小和方向。
如何根据游泳者自己的速度选择游泳方向,试为一个速度能保持在1.5米/秒的人选择游泳方向,并估计他的成绩。
1160m 长江水流方向 终点: 汉阳南岸咀 起点: 武昌汉阳门2. 在(1)的假设下,如果游泳者始终以和岸边垂直的方向游, 他(她)们能否到达终点?根据你们的数学模型说明为什么 1934年 和2002年能游到终点的人数的百分比有如此大的差别;给出能够成功到达终点的选手的条件。
3. 若流速沿离岸边距离的分布为 (设从武昌汉阳门垂直向上为 y 轴正向) : ⎪⎩⎪⎨⎧≤≤<<≤≤=米米秒,米米米秒,米米米秒,米1160960/47.1960200/11.22000/47.1)(y y y y v游泳者的速度大小(1.5米/秒)仍全程保持不变,试为他选择游泳方向和路线,估计他的成绩。
2003高教社杯全国大学生数学建模竞赛题目(请先阅读“对论文格式的统一要求”)A题 SARS的传播SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。
SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。
请你们对SARS 的传播建立数学模型,具体要求如下:(1)对附件1所提供的一个早期的模型,评价其合理性和实用性。
(2)建立你们自己的模型,说明为什么优于附件1中的模型;特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。
附件2提供的数据供参考。
(3)收集SARS对经济某个方面影响的数据,建立相应的数学模型并进行预测。
附件3提供的数据供参考。
(4)给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性。
附件1:SARS疫情分析及对北京疫情走势的预测2003年5月8日在病例数比较多的地区,用数理模型作分析有一定意义。
前几天,XXX老师用解析公式分析了北京SARS疫情前期的走势。
在此基础上,我们加入了每个病人可以传染他人的期限(由于被严格隔离、治愈、死亡等),并考虑在不同阶段社会条件下传染概率的变化,然后先分析香港和广东的情况以获得比较合理的参数,最后初步预测北京的疫情走势。
希望这种分析能对认识疫情,安排后续的工作生活有帮助。
1 模型与参数假定初始时刻的病例数为N0,平均每病人每天可传染K个人(K一般为小数),平均每个病人可以直接感染他人的时间为L天。
则在L天之内,病例数目的增长随时间t(单位天)的关系是:N(t)= N0 (1+K)t如果不考虑对传染期的限制,则病例数将按照指数规律增长。
高教社杯全国高校生数学建模竞赛题目(四套ABCD)当我第一遍读一本好书的时候,我仿佛觉得找到了一个伴侣;当我再一次读这本书的时候,仿佛又和老伴侣重逢。
我们要把读书当作一种乐趣,并自觉把读书和学习结合起来,做到博览、精思、熟读,更好地指导自己的学习,让自己不断成长。
让我们一起到学习啦一起学习吧!2021年高教社杯全国高校生数学建模竞赛题目A题 CT系统参数标定及成像CT(Computed Tomography)可以在不破坏样品的状况下,利用样品对射线能量的吸取特性对生物组织和工程材料的样品进行断层成像,由此猎取样品内部的结构信息。
一种典型的二维CT系统如图1所示,平行入射的X射线垂直于探测器平面,每个探测器单元看成一个接收点,且等距排列。
X射线的放射器和探测器相对位置固定不变,整个放射-接收系统绕某固定的旋转中心逆时针旋转180次。
对每一个X射线方向,在具有512个等距单元的探测器上测量经位置固定不动的二维待检测介质吸取衰减后的射线能量,并经过增益等处理后得到180组接收信息。
CT系统安装时往往存在误差,从而影响成像质量,因此需要对安装好的CT系统进行参数标定,即借助于已知结构的样品(称为模板)标定CT系统的参数,并据此对未知结构的样品进行成像。
请建立相应的数学模型和算法,解决以下问题:(1) 在正方形托盘上放置两个均匀固体介质组成的标定模板,模板的几何信息如图2所示,相应的数据文件见附件1,其中每一点的数值反映了该点的吸取强度,这里称为“吸取率”。
对应于该模板的接收信息见附件2。
请依据这一模板及其接收信息,确定CT系统旋转中心在正方形托盘中的位置、探测器单元之间的距离以及该CT系统使用的X射线的180个方向。
(2) 附件3是利用上述CT系统得到的某未知介质的接收信息。
利用(1)中得到的标定参数,确定该未知介质在正方形托盘中的位置、几何样子和吸取率等信息。
另外,请具体给出图3所给的10个位置处的吸取率,相应的数据文件见附件4。
2023年高教社杯全国大学生数学建模竞赛题目(包含A-E组)A题定日镜场的优化设计构建以新能源为主体的新型电力系统,是我国实现“碳达峰”“碳中和”目标的一项重要措施。
塔式太阳能光热发电是一种低碳环保的新型清洁能源技术[1]。
定日镜是塔式太阳能光热发电站(以下简称塔式电站)收集太阳能的基本组件,其底座由纵向转轴和水平转轴组成,平面反射镜安装在水平转轴上。
纵向转轴的轴线与地面垂直,可以控制反射镜的方位角。
水平转轴的轴线与地面平行,可以控制反射镜的俯仰角,定日镜及底座示意图见图1。
两转轴的交点(也是定日镜中心)离地面的高度称为定日镜的安装高度。
塔式电站利用大量的定日镜组成阵列,称为定日镜场。
定日镜将太阳光反射汇聚到安装在镜场中吸收塔顶端上的集热器,加热其中的导热介质,并将太阳能以热能形式储存起来,再经过热交换实现由热能向电能的转化。
太阳光并非平行光线,而是具有一定锥形角的一束锥形光线,因此太阳入射光线经定日镜任意一点的反射光线也是一束锥形光线[2]。
定日镜在工作时,控制系统根据太阳的位置实时控制定日镜的法向,使得太阳中心点发出的光线经定日镜中心反射后指向集热器中心。
集热器中心的离地高度称为吸收塔高度。
图1 定日镜及底座示意图现计划在中心位于东经98.5∘,北纬39.4∘,海拔3000 m,半径350 m的圆形区域内建设一个圆形定日镜场(图2)。
以圆形区域中心为原点,正东方向为x轴正向,正北方向为y轴正向,垂直于地面向上方向为z轴正向建立坐标系,称为镜场坐标系。
规划的吸收塔高度为80 m,集热器采用高8 m、直径7 m的圆柱形外表受光式集热器。
吸收塔周围100 m范围内不安装定日镜,留出空地建造厂房,用于安装发电、储能、控制等设备。
定日镜的形状为平面矩形,其上下两条边始终平行于地面,这两条边之间的距离称为镜面高度,镜面左右两条边之间的距离称为镜面宽度,通常镜面宽度不小于镜面高度。
镜面边长在2 m至8 m之间,安装高度在2 m至6 m之间,安装高度必须保证镜面在绕水平转轴旋转时不会触及地面。
2003高教社杯全国大学生数学建模竞赛(大专组)D 题(抢渡长江)参考答案注意:以下答案是命题人给出的,仅供参考。
各评阅组应根据对题目的理解及学生的解答,自主地进行评阅。
设竞渡在平面区域进行, 且参赛者可看成质点沿游泳路线 (x (t ), y (t )) 以速度 ()(cos ()sin ())u t u t u t θθ=,前进,其中游速大小u 不变。
要求参赛者在流速 )0,()(v t v =给定的情况下控制 θ (t ) 找到适当的路线以最短的时间 T 从起点 (0,0) 游到终点 (L, H ),如图1。
这是一个最优控制问题: HT y y t u dtdy L T x x v t u dt dx t s T Min =====+=)(,0)0(),(sin )(,0)0(,)(cos ..θθ可以证明,若 θ (t ) 为连续函数, 则 θ (t ) 等于常数时上述问题有最优解。
证明见: George Leitmann, The Calculus of Variations and Optimal Control , Plenum Press, 1981. pp. 130 – 135, p. 263, Exercise 15.13. (注:根据题意,该内容不要求同学知道。
)1. 设游泳者的速度大小和方向均不随时间变化,即令 )sin cos ()(θθu u t u ,=,而流速)0,()(v t v =, 其中 u 和 v 为常数, θ 为游泳者和x 轴正向间的夹角。
于是游泳者的路线 (x (t ), y (t )) 满足 cos ,(0)0,()sin ,(0)0,()dxu v x x T Ldt dy u y y T Hdtθθ⎧=+==⎪⎪⎨⎪===⎪⎩ (1)T 是到达终点的时刻。
令θcos =z ,如果 (1) 有解, 则⎪⎩⎪⎨⎧-=-=+=+=221,1)()(,)()(zTu H t z u t y v uz T L t v uz t x (2) 即游泳者的路径一定是连接起、终点的直线,且 L T uz v===+ (3)若已知L, H, v, T , 由(3)可得 zTvT L u vT L HvTL z -=-+-=,)(22(4)图1由(3)消去 T 得到)(12v uz H z Lu +=- (5) 给定L, H, u , v 的值,z 满足二次方程02)222222222=-+++u L v H uvz H z u L H( (6)(6)的解为12()z z H L u==+, (7)方程有实根的条件为22LH Hvu +≥ (8)为使(3)表示的T 最小,由于当L, u, v 给定时, 0<dzdT , 所以(7) 中z 取较大的根,即取正号。
高教社杯全国大学生数学建模竞赛A题太阳影子定位IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】摘要通过太阳影子定位技术可以确定视频的拍摄地点和时间,为拍摄出更好的视频,掌握太阳影子的变化规律就变得尤为重要。
本文主要综合运用了地理学、几何学、统计学、数学分析和高等代数等知识,并利用MATLAB,SPSS和mathematica等计算机软件,通过建立数学模型来研究影子长度的变化特征,进一步确定视频的拍摄地点和时间。
针对问题一,首先我们通过分析影子长度的影响因素得到与影子长度的关系(见表达式六)整理计算之后,就得到了影子长度的数学模型。
然后我们通过分析他们之间的关系,再利用MATLAB编程,得到了影子长度关于各个参数的变化规律(见图3到图7)。
其次根据我们建立的模型,利用MATLAB编程画出了给定时间天安门广场3米高的直杆的太阳影子长度的变化曲线(见图8),然后在考虑折射率的情况下又画了一条变化曲线(见图9),最后进行了误差分析(见图10)。
针对问题二,我们采用了测试分析法(数据分析法和计算机仿真相结合),通过分析各个参量之间的关系,先以影长l为目标做回归,用模型一的模型,通过SPSS进行拟合得到多组数据,再用MATLAB进行检验得到符合的两组经纬度。
然后我们又以太阳方位角K为目标做回归,得到模型(见表达式12),其计算方法与影长l做回归目标时一样。
我们分步做了两次拟合,先用MATLAB拟合出经度,再N E和杆长做回归模型(见表达式14)最后得到经纬度(18.74,109.35)=。
综上可知,肯定有一地点是在海南,还有一个地点可能在云南。
1.993L m针对问题三,我们用问题二中的多项式回归,得到回归模型(见表达式17和20)=,得到天数利用附件二得到的经纬度为(32.83N,110.25E)和杆长L 3.03m=,得到天n=。
利用附件三得到的经纬度为(39.19N,79.5E)和杆长L 1.962m 307n数=140针对问题四,首先运用MATLAB软件,根据画面灰度,运用MATLAB软件,把视频转化成二值图,求得影子端点的像素坐标,然后根据相似原理,把像素坐标转化成水平面上的坐标(消去了视角的影响),进而求得影子的长度。
2003高教社杯全国大学生数学建模竞赛参考答案补充说明(2003年10月4日)全国组委会在京部分委员应邀参加了北京赛区的阅卷工作,现将有关阅卷工作情况通报给你们,供你们参考。
各评阅组应根据对题目的理解及学生的解答,自主地进行评阅。
A题A题阅卷专家组进行了评分标准的讨论,大家达成的评分标准的共识大体如下:(以百分制打分)1.分数分布⑴摘要 5分⑵对附件1中的模型的评价 15分⑶学生自己建立的模型40分⑷对经济影响的建模25分⑸短文10分⑹机动分(或印象分)5分2.上述各项指标评分基本原则⑴对附件1中的模型的评价①对附件1中的模型的评价只限于一般性的议论,评差;②对附件1中的模型的缺点(不足)论述得比较清楚,评中;③把该模型实际上的假设说得比较清楚,评优。
⑵学生自己建立的模型估计大体上有两类建模方法,即基于机理的(例如:SIR模型,差分模型等)和统计建模(包括:时间序列,马尔柯夫链,神经网络等)。
在建模的过程中应注意分阶段考虑(在阅卷时应充分强调这一点),比如:潜伏期,隔离期,疑似病例,预测功能等。
直接的单变量回归拟合,评差;时间序列(自回归)等,评优。
⑶对经济影响的建模SARS对经济影响的预测,数据拟合,评中;联系到SARS情况,评优。
以上仅是北京赛区阅卷中对A题评判标准的大致共识。
同时,阅卷专家还强调,各位专家要在保证公平的基础上有自己的见解。
在评卷的过程中,希望各位专家能够注意有特色和创新亮点的论文。
在碰到有关专业性强的问题时建议找组内有关方面专家讨论。
组长要组织有关非共识(有争议)论文的讨论,以争取达到共识,不漏掉一份好论文。
B题1.对电铲能力约束的理解:可以认为只要在8小时中能装上车就能完成生产,即每个铲位产量可以达到96车(亦即原参考答案中第2页上的约束(2)可以取到等号)。
由于实际生产中各班次之间是连续的,可以认为这样假设有一定合理性。
当然,如果论文中通过分析说明铲位不能满负荷生产(即每个铲位产量可能达不到96车),也是可以的。
测控SARS流行趋势的优化模型齐秋锋魏杰万晓晨指导教师谭欣欣等摘要SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称非典型肺炎)是21世纪第一个在世界范围内传播的传染病。
SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响。
为了能定量的研究传染病的传播规律,人们建立了各类模型来预测、控制疾病的发生发展。
在本题中给出了一个早期指数模型,我们把它称为模型1,它在短期内有着计算参数简单等合理性与实用性,但却存在着用短期参数描述长期过程偏离实际的缺陷。
基于此,我们考虑应该引进新的参数,建立更优的模型。
由于SARS是新发传染病,人们对其的有效防治手段主要还是以预防为主的隔离和检疫,所以我们引进一个预防效果指数k,来反映防控措施对SARS传播的影响;又由于SARS发病传染迅猛,为了描述这个特征,我们又引入了参数 r ,用来表示发病率。
在假设所研究各地区人口为理想状态下的人群、对该病普遍易感等前提下,我们应用Logistic回归结合各地SARS发病的疫情资料,用Matlab软件模拟,得到了一个更为优化的Logistic SARS模型,它给出了SARS流行趋势以及控制措施有效性的定量评估。
由于参数k的引进,更符合实际情况也符合医学解释,并且能够预测SARS高峰期的到来时间,可能累计最大发病数,在测控和拟合实际上优于模型1。
同时,我们也通过Matlab语言对北京、山西等的计算值和实际数据进行了拟合,进而验证了这个模型的可靠性。
当然,要建立一个最优模型还需要考虑更多因素,在考虑了传播途径及易感人群等因素后,也可以建立一个最优的SEIRQ模型。
但这样考虑就需要大量的数据采集整理工作,但在实际中这是不易实现的。
在对卫生部所采取部分措施的评析中,我们引入了小世界网络模型,对政府措施作出了定量评论,并用图形直观的表示出来。
最后,我们分析了Logistic SARS模型的特点,并对其改进与应用做出了展望。
摘要SARS时疫对中国社会发展产生了重大影响,本论文以传统的微分方程为理论基础,以2003年6月以前的有关SARS的数据为参考资料,着重从数学的角度研究和预测其发展趋势,提出了控制前的自然传播模型和控制后的传播模型,重点分析了控后模型,并根据各参数对疫情的影响对北京、内蒙古、广东、香港四个SARS重点疫区的疫情作了详细的分析,并提出了应对SARS时疫的若干对策。
最后针对微分方程自身的缺陷提出了模型的改进方向和思路。
关键词:微分方程概率平均曲线拟合一. 问题的提出2003年春天,SARS这一突发疫情袭击了世界上20多个国家和地区,中国首当其冲,且受其影响最大。
面对突如其来的灾害,中国人民在党中央和国务院的统一指导下,迅速展开了抗击SARS的顽强斗争。
尽管SARS作为一种时疫尚未过去,人类与SARS的斗争可能才刚刚开始,但SARS时疫对我国社会发展的影响迫切需要我们进行理性的思考,并为抗击SARS时疫并取得阶段性胜利提出有价值的建设性意义。
二.数学模型的分析与建立分析与假设在SARS爆发的初期, 由于潜伏期的存在, 社会对病SARS毒传播的速度和危害程度认识不够, 所以政府和公众并不以为然; 当人们发现被感染者不断增加时, 政府开始采取多种措施以控制SARS的进一步蔓延.所以SARS的传播规律可以分为三个阶段:I.控制前, 接近于自然传播时的传播模式。
II.过渡期,在公众开始意识到SARS的严重性到政府采取得力措施前的一段时间内。
III.控制后,在介入人为因素之后的传播模式。
但是,除了广东和香港地区外,内地的其他城市都是在SARS刚刚大肆传播就采取了很强有力的措施,因此,这些地区的过渡期都可以包括在控后期;而广东和香港的情况虽然有一些不同,但根据我们的分析和模拟,这两个地区也可以用两个阶段即“控制前(包括控制力度不大的阶段)”和“控制后”来较好的符合采集到的数据,因此,我们统一将所有地区的SARS传播规律用“控制前”和“控制后”两个时期来模拟。
目录1996年全国大学生数学建模竞赛题目 (2)A题最优捕鱼策略 (2)B题节水洗衣机 (2)1997年全国大学生数学建模竞赛题目 (3)A题零件的参数设计 (3)B题截断切割 (4)1998年全国大学生数学建模竞赛题目 (5)A题投资的收益和风险 (5)B题灾情巡视路线 (6)1999创维杯全国大学生数学建模竞赛题目 (7)A题自动化车床管理 (7)B题钻井布局 (8)C题煤矸石堆积 (9)D题钻井布局(同 B 题) (9)2000网易杯全国大学生数学建模竞赛题目 (10)A题 DNA分子排序 (10)B题钢管订购和运输 (12)C题飞越北极 (15)D题空洞探测 (15)2001年全国大学生数学建模竞赛题目 (17)A题血管的三维重建 (17)B题公交车调度 (18)C题基金使用计划 (20)D题公交车调度 (20)2002高教社杯全国大学生数学建模竞赛题目 (21)A题车灯线光源的优化设计 (21)B题彩票中的数学 (21)C题车灯线光源的计算 (23)D题赛程安排 (23)2003高教社杯全国大学生数学建模竞赛题目 (24)A题 SARS的传播 (24)B题露天矿生产的车辆安排 (28)C题 SARS的传播 (29)D题抢渡长江 (30)2004高教社杯全国大学生数学建模竞赛题目 (31)A题奥运会临时超市网点设计 (31)B题电力市场的输电阻塞管理 (35)C题饮酒驾车 (39)D题公务员招聘 (39)2005高教社杯全国大学生数学建模竞赛题目 (42)A题: 长江水质的评价和预测 (42)B题: DVD在线租赁 (43)C题雨量预报方法的评价 (44)D题: DVD在线租赁 (45)2006高教社杯全国大学生数学建模竞赛题目 (46)A题: 出版社的资源配置 (46)B题: 艾滋病疗法的评价及疗效的预测 (46)C题: 易拉罐形状和尺寸的最优设计 (47)D题: 煤矿瓦斯和煤尘的监测与控制 (48)2007高教社杯全国大学生数学建模竞赛题目 (53)A题:中国人口增长预测 (53)2008高教社杯全国大学生数学建模竞赛题目 (56)A题数码相机定位 (56)B题高等教育学费标准探讨 (57)C题地面搜索 (57)2009高教社杯全国大学生数学建模竞赛题目 (59)A题制动器试验台的控制方法分析 (59)B题眼科病床的合理安排 (60)C题卫星和飞船的跟踪测控 (61)D题会议筹备 (61)2010全国高教社杯数学建模题目 (65)A题储油罐的变位识别与罐容表标定 (65)B题 2010年上海世博会影响力的定量评估 (66)A题最优捕鱼策略为了保护人类赖以生存的自然环境,可再生资源(如渔业、林业资源)的开发必须适度.一种合理、简化的策略是,在实现可持续收获的前提下,追求最大产量或最佳效益.考虑对某种鱼(鳀鱼)的最优捕捞策略:假设这种鱼分四个年龄组,称1龄鱼,…,4龄鱼,各年龄组每条鱼的平均重量分别为 5.07,11.55,17.86,22.99(g),各年龄组鱼的自然死亡率为0.8(1/年),这种鱼为季节性集产卵繁殖,平均每条4龄鱼的产卵量为1.109× (个),3龄鱼的产卵量为这个数的一半,2龄鱼和1龄鱼不产卵,产卵和孵化期为每年的最后4个月,卵孵化并成活为1龄鱼,成活率(1龄鱼条数与产卵总量n之比)为1.22× /(1.22× +n).渔业管理部门规定,每年只允许在产卵孵化期前的8个月内进行捕捞作业.如果每年投入的捕捞能力(如渔船数﹑下网次数等)固定不变,这时单位时间捕捞量与各年龄组鱼群条数成正比,比例系数不妨称捕捞强度系数.通常使用13mm网眼的拉网,这种网只能捕3龄鱼和4龄鱼,其两个捕捞强度系数之比为0.42:1.渔业上称这种方式为固定努力量捕捞.1)建立数学模型分析如何实现可持续捕获(即每年开始捕捞时鱼场中各年龄组鱼群不变),并且在此前提下得到最高的年收获量(捕捞总重量).2)某渔业公司承包这种鱼的捕捞业务5年,合同要求5年后鱼群的生产能力不能受到太大破坏. 已知承包时各年龄组鱼群的数量分别为:122,29.7,10.1,3.29(×条),如果任用固定努力量的捕捞方式,该公司应采取怎样的策略才能使总收获量最高.(北京师范大学刘来福提供)B题节水洗衣机我国淡水资源有限,节约用水人人又责,洗衣在家庭用水中占有相当大的份额,目前洗衣机已相当普及,节约洗衣机用水十分重要.假设在放入衣服和洗涤剂后洗衣机的运行过程为:加水-漂水-脱水-加水-漂洗-脱水-…-加水-漂洗-脱水(称"加水-漂洗-脱水"为运行一轮).请为洗衣机设计一种程序(包括运行多少轮﹑每轮加水量等),使得在满足一定洗涤效果的条件下,总用水量最少.选用合理的数据进行计算,对照目前常用的洗衣机的运行情况,对你的模型和结果做出评价.A题零件的参数设计一件产品由若干零件组装而成,标志产品性能的某个参数取决于这些零件的参数。
2003高教社杯全国大学生数学建模竞赛题目(请先阅读“对论文格式的统一要求”)A题 SARS的传播SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。
SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。
请你们对SARS 的传播建立数学模型,具体要求如下:(1)对附件1所提供的一个早期的模型,评价其合理性和实用性。
(2)建立你们自己的模型,说明为什么优于附件1中的模型;特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。
附件2提供的数据供参考。
(3)收集SARS对经济某个方面影响的数据,建立相应的数学模型并进行预测。
附件3提供的数据供参考。
(4)给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性。
附件1:SARS疫情分析及对北京疫情走势的预测2003年5月8日在病例数比较多的地区,用数理模型作分析有一定意义。
前几天,XXX老师用解析公式分析了北京SARS疫情前期的走势。
在此基础上,我们加入了每个病人可以传染他人的期限(由于被严格隔离、治愈、死亡等),并考虑在不同阶段社会条件下传染概率的变化,然后先分析香港和广东的情况以获得比较合理的参数,最后初步预测北京的疫情走势。
希望这种分析能对认识疫情,安排后续的工作生活有帮助。
1 模型与参数假定初始时刻的病例数为N0,平均每病人每天可传染K个人(K一般为小数),平均每个病人可以直接感染他人的时间为L天。
则在L天之内,病例数目的增长随时间t(单位天)的关系是:N(t)= N0 (1+K)t如果不考虑对传染期的限制,则病例数将按照指数规律增长。
2003高教社杯全国大学生数学建模竞赛题目
(请先阅读“对论文格式的统一要求”)
A题 SARS的传播
SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。
SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。
请你们对SARS 的传播建立数学模型,具体要求如下:
(1)对附件1所提供的一个早期的模型,评价其合理性和实用性。
(2)建立你们自己的模型,说明为什么优于附件1中的模型;特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5
天采取严格的隔离措施,对疫情传播所造成的影响做出估计。
附件2提供的数据供参考。
(3)收集SARS对经济某个方面影响的数据,建立相应的数学模型并进行预测。
附件3提供的数据供参考。
(4)给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性。
附件1:
SARS疫情分析及对北京疫情走势的预测
2003年5月8日
在病例数比较多的地区,用数理模型作分析有一定意义。
前几天,XXX老师用解析公式分析了北京SARS疫情前期的走势。
在此基础上,我们加入了每个病人可以传染他人的期限(由于被严格隔离、治愈、死亡等),并考虑在不同阶段社会条件下传染概率的变化,然后先分析香港和广东的情况以获得比较合理的参数,最后初步预测北京的疫情走势。
希望这种分析能对认识疫情,安排后续的工作生活有帮助。
1 模型与参数
假定初始时刻的病例数为N0,平均每病人每天可传染K个人(K一般为小数),平均每个病人可以直接感染他人的时间为L天。
则在L天之内,病例数目的增长随时间t(单位天)的关系是:
N(t)= N0 (1+K)t
如果不考虑对传染期的限制,则病例数将按照指数规律增长。
考虑传染期限L的作用后,变化将显著偏离指数律,增长速度会放慢。
我们采用半模拟循环计算的办法,把到达L天的病例从可以引发直接传染的基数中去掉。
参数K和L具有比较明显的实际意义。
L可理解为平均每个病人在被发现前后可以造成直接传染的期限,在此期限后他失去传染作用,可能的原因是被严格隔离、病愈不再传染或死去等等。
从原理上讲,这个参数主要与医疗机构隔离病人的时机和隔离的严格程度有关,只有医疗机构能有效缩短这个参数。
但我们分析广东、香港、北京现有的数据后发现,不论对于疫情的爆发阶段,还是疫情的控制阶段,这个参数都不能用得太小,否则无法描写好各阶段的数据。
该参数放在15-25之间比较好,为了简单我们把它固定在20(天)上这个值有一定统计上的意义,至于有没有医学上的解释,需要其他专家分析。
参数K显然代表某种社会环境下一个病人传染他人的平均概率,与全社会的警觉程度、政府和公众采取的各种措施有关。
在疾病初发期,社会来不及防备,此时K值比较大。
为了简单起见,我们从开始至到高峰期间均采用同样的K值(从拟合这一阶段的数据定出),即假定这阶段社会的防范程度都比较低,感染率比较高。
到达高峰期后,我们在10天的范围内逐步调整K值到比较小,然后保持不变,拟合其后在控制阶段的全部数据,即认为社会在经过短期的剧烈调整之后,进入一个对疫情控制较好的常态。
显然,如果疫情出现失控或反复的状态,则K 值需要做更多的调整。
2 计算结果
2.1 对香港疫情的计算和分析。
香港的数据相对比较完整准确。
但在初期,由于诊断标准等不确切,在3月17日之前,没有找到严格公布的数据。
我们以报道的2月15日作为发现第一例病人的起点,2月27日从报道推断为7例。
3月17日后则都是正式公布的数据。
累积病例数在图1中用三角形表示。
我们然后用上述方法计算。
4月1日前后(从起点起45天左右)是疫情高峰时期,在此之前我们取K=0.16204。
此后的10天,根据数据的变化将K逐步调到0.0273,然后保持0.0273算出后面控制期的结果。
短期内K调整的幅度很大,反映社会的变化比较大。
图中实心方黑点是计算的累积病例数。
从计算累积病例数,很容易算出每天新增病例数(当然只反映走向,实际状况有很大涨落)。
可以看出,香港疫情从起始到高峰大约45天,从高峰回落到1/10以下(每天几个病例)大约40天(5月上中旬),到基本没有病例还要再经过近一个月(到6月上中旬)。
2.2 对广东疫情的计算和分析。
广东的起点是02年11月16日,到今年2月下旬达到高峰,经过了约100天。
在今年2月10日以前的数据查不到,分析比较困难。
总体上看,广东持续的时间比香港长得多,但累积的总病例数却少一些,这反映出广东的爆发和高峰都不强烈。
但广东的回落也比较慢。
从2月下旬高峰期到现在经过了约70天,还维持着每天10来个新增病例,而同样过程香港只用了约40天。
这种缓慢上升和下降的过程也反映到K值上。
比较好的拟合结果是,在高峰期之前(t < 101天),K=0.0892;在随后的10天逐步调整到0.031。
用这组参数算出的后期日增病例数比实际公布的偏小,说明实际上降低得更慢。
这种情况与疫情的社会控制状况有没有什么关系,需要更仔细的分析。
2.3 对北京疫情的分析与预测。
北京的病例起点定在3月1日,经过大约59天在4月29日左右达到高峰。
我们通过拟合起点和4月20日以后的数据定出高峰期以前的K=0.13913。
这个值比香港的0.16204来得低,说明北京初期的爆发程度不如香港,但遗憾的是上升时间持续了近60天,而香港是45天,这就造成了累积病例数大大超过香港。
从图2中还看出4月20日以前公布的数据大大低于计算值。
而我们从对香港、广东情况的计算中,知道疫情前期我们的计算还是比
较可行的。
从而可以大致判断出北京前期实际的病例数。
图中的公布数据截止到5月7日(从起点起67天),其后的计算采用的是香港情况下获得的参数。
按这种估算,北京最终累积病例数将达到3100多。
图1 对香港疫情的拟合
图2 对北京疫情的分析
图3是计算的日增病例数。
后期下降得较快的实心方黑点是采用香港参数获得的。
这就是说,如果北京的疫情控制与香港相当或更好的话,就可以在高峰期后的40天(从起点起100天)左右,即6月上中旬下降到日增几例。
然后再经过约一个月,即7月上中旬达到日增0病例。
但如果北京的新病例下降速度与广东类似的话,则要再多花至少一个月,才能达到上述的效果,且累积总病例数会到3800左右。
至于什么原因造成香港下降速度快而广东下降速度慢,需要有关方面作具体分析。
图3 北京日增病例走势分析
3 结论
每个病人可以造成直接感染他人的期限平均在20天左右,这个值在不同地区和不同疫情阶段似乎变化不大。
病人的平均每天感染率与社会状况有关,在疫情爆发期较大,在疫情控制期要小很多。
香港的初期爆发情况比广东和北京都剧烈,但控制效果明显比较好。
北京后期如果控制在香港后期的感染率水平上,则有望在6月上中旬下降到日增几例。
然后再经过约一个月,即7月上中旬达到日增0病例。
而累积总病例数将达到3100多。
但如果北京的新病例下降速度与广东类似的话,则要再多花至少一个月,才能达到上述的效果,且累积总病例数会到3800左右。
附件2:北京市疫情的数据
( 据:/Resource/Detail.asp?ResourceID=66070)
日期已确诊病例累计现有疑似病例死亡累计治愈出院累计
4月20日339 402 18 33
4月21日482 610 25 43
4月22日588 666 28 46
4月23日693 782 35 55
4月24日774 863 39 64
4月25日877 954 42 73
附件3:北京市接待海外旅游人数(单位:万人)。