sars的传播2003数学建模题目
- 格式:docx
- 大小:37.42 KB
- 文档页数:4
高教社杯全国大学生数学建模竞赛题目 2003高教社杯全国大学生数学建模竞赛题目(请先阅读 “对论文格式的统一要求”)A题 SARS的传播SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。
SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。
请你们对SARS 的传播建立数学模型,具体要求如下:(1)对附件1所提供的一个早期的模型,评价其合理性和实用性。
(2)建立你们自己的模型,说明为什么优于附件1中的模型;特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。
附件2提供的数据供参考。
(3)收集SARS对经济某个方面影响的数据,建立相应的数学模型并进行预测。
附件3提供的数据供参考。
(4)给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性。
附件1:SARS疫情分析及对北京疫情走势的预测2003年5月8日在病例数比较多的地区,用数理模型作分析有一定意义。
前几天,XXX老师用解析公式分析了北京SARS疫情前期的走势。
在此基础上,我们加入了每个病人可以传染他人的期限(由于被严格隔离、治愈、死亡等),并考虑在不同阶段社会条件下传染概率的变化,然后先分析香港和广东的情况以获得比较合理的参数,最后初步预测北京的疫情走势。
希望这种分析能对认识疫情,安排后续的工作生活有帮助。
1 模型与参数假定初始时刻的病例数为N0,平均每病人每天可传染K个人(K一般为小数),平均每个病人可以直接感染他人的时间为L天。
则在L天之内,病例数目的增长随时间t(单位天)的关系是:N(t)= N0 (1+K)t如果不考虑对传染期的限制,则病例数将按照指数规律增长。
小组成员北京SARS的传播研究摘要SARS从2003年陆续传入,期间先后感染6000多人其中北京感染2847,我国给我过经济·社会带来严重额的影响,为减少疾病的危害,提高人们对疾病的ARS的认识,疫情分析及对北京疫情走势的预测研究也变得尤为重要。
为改善现状并提高人们对疾病的是SARS的认识,我们对北京市的SARS传播问题建立数学模型。
关键词: SARS 人群分类微分模型整体拟合1、问题重述1.1问题的背景严重急性呼吸综合征(Severe Acute Respiratory Syndromes),又称传染性非典型肺炎,简称SARS,是一种因感染SARS冠状病毒引起的新的呼吸系统传染性疾病。
主要通过近距离空气飞沫传播,以发热,头痛,肌肉酸痛,乏力,干咳少痰等为主要临床表现,严重者可出现呼吸窘迫。
本病具有较强的传染性,在家庭和医院有显著的聚集现象。
首发病例,也是全球首例。
于2002年11月出现在广东佛山,并迅速形成流行态势1.2问题的叙述现阶段北京SARS的传播正处于高峰期。
由于人们对该种疾病的传播机理还不太清楚,因此引起人们的恐慌,它关系社会的稳定和经济的发展。
因此对该问题的研究非常有必要,我们把人口分成四类,即:健康人S(t)SARS病人I(t)病人免疫(包括死亡)的人R(t)及疑似病人P(t)四类人,利用现有数据着重从四类人口中:把该传染病进行统计学分析,归纳出主要特征通过假设,参数以及它们的相互联系,进行数据判定,数据假设,数据处理,数据分析,建立模型,数据总结等得出较为科学的SARS问题的分析,相关信息(见附件1、2、3)附件1SARS疫情分析及对北京走势的预测附件2北京市疫情的数据附件3北京市接待海外游客人数附件4相关编程1.3问题的提出问题一:对附件1所提供的一个早期的模型,评价其合理性和实用性。
问题二:建立自己的模型,说明为什么优于附件1中的模型,对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。
2003高教社杯全国大学生数学建模竞赛题目(请先阅读“对论文格式的统一要求”)A题 SARS的传播SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。
SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。
请你们对SARS 的传播建立数学模型,具体要求如下:(1)对附件1所提供的一个早期的模型,评价其合理性和实用性。
(2)建立你们自己的模型,说明为什么优于附件1中的模型;特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。
附件2提供的数据供参考。
(3)收集SARS对经济某个方面影响的数据,建立相应的数学模型并进行预测。
附件3提供的数据供参考。
(4)给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性。
附件1:SARS疫情分析及对北京疫情走势的预测2003年5月8日在病例数比较多的地区,用数理模型作分析有一定意义。
前几天,XXX老师用解析公式分析了北京SARS疫情前期的走势。
在此基础上,我们加入了每个病人可以传染他人的期限(由于被严格隔离、治愈、死亡等),并考虑在不同阶段社会条件下传染概率的变化,然后先分析香港和广东的情况以获得比较合理的参数,最后初步预测北京的疫情走势。
希望这种分析能对认识疫情,安排后续的工作生活有帮助。
1 模型与参数假定初始时刻的病例数为N0,平均每病人每天可传染K个人(K一般为小数),平均每个病人可以直接感染他人的时间为L天。
则在L天之内,病例数目的增长随时间t(单位天)的关系是:N(t)= N0 (1+K)t如果不考虑对传染期的限制,则病例数将按照指数规律增长。
实验06 基于微分方程对象建模及实现(二)SARS的传播SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。
SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。
请你们对SARS 的传播建立数学模型,具体要求如下:(1)对附件1所提供的一个早期的模型,评价其合理性和实用性。
(2)建立你们自己的模型,说明为什么优于附件1中的模型;特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。
附件2提供的数据供参考。
(3)收集SARS对经济某个方面影响的数据,建立相应的数学模型并进行预测。
附件3提供的数据供参考。
(4)给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性。
附件1:SARS疫情分析及对北京疫情走势的预测2003年5月8日在病例数比较多的地区,用数理模型作分析有一定意义。
前几天,XXX老师用解析公式分析了北京SARS疫情前期的走势。
在此基础上,我们加入了每个病人可以传染他人的期限(由于被严格隔离、治愈、死亡等),并考虑在不同阶段社会条件下传染概率的变化,然后先分析香港和广东的情况以获得比较合理的参数,最后初步预测北京的疫情走势。
希望这种分析能对认识疫情,安排后续的工作生活有帮助。
1 模型与参数假定初始时刻的病例数为N0,平均每病人每天可传染K个人(K一般为小数),平均每个病人可以直接感染他人的时间为L天。
则在L天之内,病例数目的增长随时间t(单位天)的关系是:N(t)= N0 (1+K)t如果不考虑对传染期的限制,则病例数将按照指数规律增长。
sars的传播2003数学建模题目在2003年,严重急性呼吸综合征(Severe Acute Respiratory Syndrome,简称SARS)的爆发引起了全球范围内的恐慌。
为了更好地了解SARS的传播特点和控制措施,我们可以应用数学建模的方法来分析SARS的传播规律,并提出相关的应对策略。
1. SARS的传播模型为了探究SARS的传播规律,我们可以采用传染病的基本传播模型——SIR模型。
SIR模型将人群分为三类:易感者(Susceptible)、感染者(Infected)和康复者(Recovered)。
根据该模型,我们可以列出如下的微分方程:dS/dt = - βSIdI/dt = βSI - γIdR/dt = γI其中,S,I和R分别表示易感者、感染者和康复者的数量;β表示传染率;γ表示康复率。
2. 参数估计与模型拟合要对SARS的传播模型进行参数估计和模型拟合,我们需要收集大量的疫情数据。
通过对实际数据进行统计学分析,我们可以获得β和γ的估计值,并将其代入SIR模型方程中进行模型拟合。
通过与实际数据的对比,我们可以评估模型的拟合效果以及参数的准确性。
3. 传播速率和传播方式SARS的传播速率直接影响到其传播范围和传播强度。
在SARS爆发期间,我们可以通过统计病例的增长速率来估计SARS的传播速率。
此外,研究发现,SARS主要通过空气飞沫传播,在密闭环境中飞沫的传播距离较远,因此需要采取相应的防控措施,如戴口罩、保持良好的通风等。
4. 人群的易感性和免疫力SARS的传播过程中,人群的易感性和免疫力起着重要的作用。
通过研究易感者和感染者的流行病学数据,我们可以了解人群的易感性和免疫力对于传播过程的影响。
同时,针对易感者的接种疫苗和提高人群的免疫力也是有效控制SARS传播的策略之一。
5. 社会干预措施的效果评估为了控制SARS的传播,社会干预措施起到了至关重要的作用。
例如,早期的病例隔离、密切接触者的追踪和隔离、社交距离的维持等都可以有效降低SARS的传播风险。
【数学建模】day14-建⽴GM(1,1)预测评估模型应⽤学习建⽴GM(1,1)灰⾊预测评估模型,解决实际问题:SARS疫情对某些经济指标的影响问题⼀、问题的提出 2003 年的 SARS 疫情对中国部分⾏业的经济发展产⽣了⼀定影响,特别是对部分疫情较严重的省市的相关⾏业所造成的影响是显著的,经济影响主要分为直接经济影响和间接影响。
直接经济影响涉及商品零售业、旅游业、综合服务等⾏业。
很多⽅⾯难以进⾏定量的评估,现仅就 SARS 疫情较重的某市商品零售业、旅游业和综合服务业的影响进⾏定量的评估分析。
究竟 SARS 疫情对商品零售业、旅游业和综合服务业的影响有多⼤,已知某市从 1997 年 1 ⽉到 2003 年 12 ⽉的商品零售额、接待旅游⼈数和综合服务收⼊的统计数据如下⾯三表所⽰。
试根据这些历史数据建⽴预测评估模型,评估 2003 年 SARS 疫情给该市的商品零售业、旅游业和综合服务业所造成的影响。
⼆、模型的分析与假设模型分析: 根据所掌握的历史统计数据可以看出,在正常情况下,全年的平均值较好地反映了相关指标的变化规律。
这样,对于每⼀个经济指标,考虑从两部分着⼿建⽴预测评估模型:1. 利⽤灰⾊理论建⽴GM(1,1)模型,根据1997-2002年的平均值序列,预测2003年的平均值。
2. 通过历史数据计算每⼀个⽉的指标值与全年总值之间的关系,并将此关系拓展到2003年,进⽽预测出2003年每⼀个⽉的指标值。
进⽽与真实数据值作⽐较,从⽽得出结论。
模型假设:1. 假设所有的统计数据真实可靠。
2. 假设该市SARS疫情流⾏期间和结束之后,数据的变化只与SARS疫情的影响有关,不考虑其他随机因素的影响。
三、建⽴灰⾊预测模型GM(1,1) 由已知数据,对于1997-2002年的某项指标记为A= (a ij)6*12,计算每年的平均值作为初始数列。
记为: 并要求级⽐。
对x(0)做⼀次累加得1-AGO序列: 式中: 取x(1)的加权均值序列: 式中,α是确定参数。
小组成员SARS的传播研究摘要SARS从2003年陆续传入,期间先后感染6000多人其中感染2847,我国给我过经济·社会带来严重额的影响,为减少疾病的危害,提高人们对疾病的ARS的认识,疫情分析及对疫情走势的预测研究也变得尤为重要。
为改善现状并提高人们对疾病的是SARS的认识,我们对市的SARS传播问题建立数学模型。
关键词: SARS 人群分类微分模型整体拟合1、问题重述1.1问题的背景严重急性呼吸综合征(Severe Acute Respiratory Syndromes),又称传染性非典型肺炎,简称SARS,是一种因感染SARS冠状病毒引起的新的呼吸系统传染性疾病。
主要通过近距离空气飞沫传播,以发热,头痛,肌肉酸痛,乏力,干咳少痰等为主要临床表现,严重者可出现呼吸窘迫。
本病具有较强的传染性,在家庭和医院有显著的聚集现象。
首发病例,也是全球首例。
于2002年11月出现在,并迅速形成流行态势1.2问题的叙述现阶段SARS的传播正处于高峰期。
由于人们对该种疾病的传播机理还不太清楚,因此引起人们的恐慌,它关系社会的稳定和经济的发展。
因此对该问题的研究非常有必要,我们把人口分成四类,即:健康人S(t)SARS病人I(t)病人免疫(包括死亡)的人R(t)及疑似病人P(t)四类人,利用现有数据着重从四类人口中:把该传染病进行统计学分析,归纳出主要特征通过假设,参数以及它们的相互联系,进行数据判定,数据假设,数据处理,数据分析,建立模型,数据总结等得出较为科学的SARS问题的分析,相关信息(见附件1、2、3)附件1SARS疫情分析及对走势的预测附件2市疫情的数据附件3市接待海外游客人数附件4相关编程1.3问题的提出问题一:对附件1所提供的一个早期的模型,评价其合理性和实用性。
问题二:建立自己的模型,说明为什么优于附件1中的模型,对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。
测控SARS流行趋势的优化模型齐秋锋魏杰万晓晨指导教师谭欣欣等摘要SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称非典型肺炎)是21世纪第一个在世界范围内传播的传染病。
SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响。
为了能定量的研究传染病的传播规律,人们建立了各类模型来预测、控制疾病的发生发展。
在本题中给出了一个早期指数模型,我们把它称为模型1,它在短期内有着计算参数简单等合理性与实用性,但却存在着用短期参数描述长期过程偏离实际的缺陷。
基于此,我们考虑应该引进新的参数,建立更优的模型。
由于SARS是新发传染病,人们对其的有效防治手段主要还是以预防为主的隔离和检疫,所以我们引进一个预防效果指数k,来反映防控措施对SARS传播的影响;又由于SARS发病传染迅猛,为了描述这个特征,我们又引入了参数 r ,用来表示发病率。
在假设所研究各地区人口为理想状态下的人群、对该病普遍易感等前提下,我们应用Logistic回归结合各地SARS发病的疫情资料,用Matlab软件模拟,得到了一个更为优化的Logistic SARS模型,它给出了SARS流行趋势以及控制措施有效性的定量评估。
由于参数k的引进,更符合实际情况也符合医学解释,并且能够预测SARS高峰期的到来时间,可能累计最大发病数,在测控和拟合实际上优于模型1。
同时,我们也通过Matlab语言对北京、山西等的计算值和实际数据进行了拟合,进而验证了这个模型的可靠性。
当然,要建立一个最优模型还需要考虑更多因素,在考虑了传播途径及易感人群等因素后,也可以建立一个最优的SEIRQ模型。
但这样考虑就需要大量的数据采集整理工作,但在实际中这是不易实现的。
在对卫生部所采取部分措施的评析中,我们引入了小世界网络模型,对政府措施作出了定量评论,并用图形直观的表示出来。
最后,我们分析了Logistic SARS模型的特点,并对其改进与应用做出了展望。
数学建模sars的传播题目
题目:基于数学建模的SARS病毒传播模型分析
问题描述:
SARS(严重急性呼吸综合征)是一种严重的传染性疾病,其
传播过程受到各种因素的影响。
我们希望建立一个数学模型来分析SARS的传播,并预测其传播趋势。
具体问题如下:
1. 如何建立一个能够描述SARS传播过程的数学模型?
2. 在考虑不同因素的影响下,如何确定传染性疾病的传播速率和传播范围?
3. 如何定量分析不同因素对SARS传播速度和传播范围的影响?例如,人口密度、人口流动性、潜伏期、接触率等等。
4. 如何利用已知的疫情数据,来验证和调整数学模型的参数?
5. 如何利用建立的数学模型来预测疫情的发展趋势和未来传播可能出现的风险地区?
6. 如何制定合理的干预措施,以控制SARS的传播,并最大程度地减少疫情对社会和经济造成的影响?
这些问题涉及到传染病传播规律的研究,需要结合统计分析和数学建模的方法,通过模拟和预测来指导实际应对措施的制定。
通过对SARS传播过程的深入研究,我们可以提高对疫情的认识,加强对传染病的防控措施,保护公共卫生安全。
2003 高教社杯全国大学生数学建模竞赛参考答案补充说明(2003 年10 月 4 日)全国组委会在京部分委员应邀参加了北京赛区的阅卷工作,现将有关阅卷工作情况通报给你们,供你们参考。
各评阅组应根据对题目的理解及学生的解答,自主地进行评阅。
A题A 题阅卷专家组进行了评分标准的讨论,大家达成的评分标准的共识大体如下:(以百分制打分)1.分数分布⑴ 摘要 5 分⑵ 对附件 1 中的模型的评价15 分⑶ 学生自己建立的模型40 分⑷ 对经济影响的建模25 分⑸ 短文10 分⑹ 机动分(或印象分) 5 分2.上述各项指标评分基本原则⑴ 对附件 1 中的模型的评价①对附件 1 中的模型的评价只限于一般性的议论,评差;②对附件 1 中的模型的缺点(不足)论述得比较清楚,评中;③把该模型实际上的假设说得比较清楚,评优。
⑵ 学生自己建立的模型估计大体上有两类建模方法,即基于机理的(例如:SIR 模型,差分模型等)和统计建模(包括:时间序列,马尔柯夫链,神经网络等)。
在建模的过程中应注意分阶段考虑(在阅卷时应充分强调这一点),比如:潜伏期,隔离期,疑似病例,预测功能等。
直接的单变量回归拟合,评差;时间序列(自回归)等,评优。
⑶ 对经济影响的建模SARS对经济影响的预测,数据拟合,评中;联系到SARS情况,评优。
以上仅是北京赛区阅卷中对 A 题评判标准的大致共识。
同时,阅卷专家还强调,各位专家要在保证公平的基础上有自己的见解。
在评卷的过程中,希望各位专家能够注意有特色和创新亮点的论文。
在碰到有关专业性强的问题时建议找组内有关方面专家讨论。
组长要组织有关非共识(有争议)论文的讨论,以争取达到共识,不漏掉一份好论文。
B题1. 对电铲能力约束的理解:可以认为只要在8 小时中能装上车就能完成生产,即每个铲位产量可以达到96车(亦即原参考答案中第2 页上的约束(2)可以取到等号)。
由于实际生产中各班次之间是连续的,可以认为这样假设有一定合理性。
传染病模型医学科学的发展已经能够有效地预防和控制许多传染病,但是仍然有一些传染病暴发 或流行,危害人们的健康和生命。
社会、经济、文化、风俗习惯等因素都会影响传染病的传播,而最直接的因素是:传 染者的数量及其在人群中的分布、被传染者的数量、传播形式、传播能力、免疫能力等。
一般把传染病流行范围内的人群分成三类:S 类,易感者(Susceptible),指未得病者, 但缺乏免疫能力,与感染者接触后容易受到感染;I 类,感病者(Infective),指染上传染 病的人,它可以传播给S 类成员;R 类,移出者(Removal),指被隔离或因病愈而具有免疫 力的人。
问题提出请建立传染病模型,并分析被传染的人数与哪些因素有关?如何预报传染病高潮的到 来?为什么同一地区一种传染病每次流行时,被传染的人数大致不变?关键字:传染病模型、建模、流行病摘要:随着卫生设施的改善、医疗水平的提高以及人类文明的不断发展,诸如霍乱、 天花等曾经肆虐全球的传染性疾病已经得到有效的控制。
但是一些新的、不断变异着的传 染病毒却悄悄向人类袭来。
20世纪80年代十分险恶的爱滋病毒开始肆虐全球,至今带来 极大的危害。
还有最近的 SARS 病毒和禽流感病毒,都对人类的生产生活造成了重大的损 失。
长期以来,建立制止传染病蔓延的手段等,一直是各国有关专家和官员关注的课题。
不同类型传染病的传播过程有其各自不同的特点,弄清这些特点需要相当多的病理知识, 这里不可能从医学的角度一一分析各种传染病的传播,而只是按照一般的传播模型机理建 立几种模型。
模型1在这个最简单的模型中,设时刻t 的病人人数x(t)是连续、可微函数,并且每天每个病人有效 接触(足使人致病)的人数为常数■考察t 到t 病人人数的增加,就有x(t :」t) —x(t)二 x(t) :t再设t =0时有X o 有个病人,即得微分方 程 d xx , dtx(t)二 x °e"结果表明,随着t 的增加,病人人数x(t)无限增长,这显然是不符合实际的。
11552-数学建模-2003年AC题《SARS的传播》题目、论文、点评2003年A\C题《SARS的传播》题目、论文、点评考虑自愈的SARS的传播模型李贝本文根据对SARS传播的分析,把人群分为5类:易感类、潜伏期类、患病未被发现类、患病已被发现类和治愈及死亡组成的免疫类,并考虑自愈因素,提出了两个模型:微分方程模型和基于Small-world Network的模拟模型。
对微分方程模型,以香港为例讨论了自愈的影响,在一定意义下说明自愈现象在SARS传播中是普遍存在的。
模拟模型利用Small-World Network模拟现实中人们之间的接触;借鉴Sznajd模型观念传播的基本思想“考察区域内每个成员如何影响与其有联系的其他成员”,用影响类比传染,从患病者去传染与其有接触的健康人的角度,模拟SARS的传播过程;然后吸收元胞自动机模型同步更新的思想,最终建立了一个患病者传染邻居,且一个成员同时受所有邻居影响的基于Small-World Network的模拟模型。
对此模型,我们讨论了一些主要参数及接种疫苗的影响,最后拟合北京数据,讨论了提前或推迟5天采取措施的影响。
考虑自愈的SARS的传播模型.pdf (341.9 KB)SARS传播的数学原理及预测与控制邹宇庭郑晓练...众所周知,SARS对中国社会带来了重大的影响。
我们以北京地区4月到6月有关SARS的数据为参考资料,就病毒的实际传播特征引入了电子线路中的负反馈的概念,建立了SARS传播的负反馈系统,并在分析该系统参数实际意义的情况下,建立时间序列的模型。
该模型将传染率定义为时间的函数,以拟合数据和实际数据之间的总残差最小为目标,利用matlab中的fminseareh函数模拟得到最优的模型参数。
该模型可以较好的预测SARS的发展趋势,且可以就此趋势提出如何控制SARS传播的措施。
继而,本文通过模拟出在不同日期提前或滞后5天实施隔离政策所引起SARS发展趋势变化的曲线,分析了卫生部门实施隔离政策的日期对SARS发展趋势的影响。
2003年(A) SARS的传播问题(组委会)(B) 露天矿生产的车辆安排问题(吉林大学:方沛辰)(C) SARS的传播问题(组委会)(D) 抢渡长江问题(华中农业大学:殷建肃)2004年(A) 奥运会临时超市网点设计问题(北京工业大学:孟大志)(B) 电力市场的输电阻塞管理问题(浙江大学:刘康生)(C) 酒后开车问题(清华大学:姜启源)(D) 招聘公务员问题(解放军信息工程大学:韩中庚)2005年(A) 长江水质的评价和预测问题(解放军信息工程大学:韩中庚)(B) DVD在线租赁问题(清华大学:谢金星等)(C) 雨量预报方法的评价问题(复旦大学:谭永基)(D) DVD在线租赁问题(清华大学:谢金星等)2006年(A) 出版社的资源配置问题(北京工业大学:孟大志)(B) 艾滋病疗法的评价及疗效的预测问题(天津大学:边馥萍)(C) 易拉罐的优化设计问题(北京理工大学:叶其孝)(D) 煤矿瓦斯和煤尘的监测与控制问题(解放军信息工程大学:韩中庚)2007年(A) 中国人口增长预测(B) 乘公交,看奥运(C) 手机“套餐”优惠几何(D) 体能测试时间安排2008年(A)数码相机定位,(B)高等教育学费标准探讨,(C)地面搜索,(D)NBA赛程的分析与评价2009年(A)制动器试验台的控制方法分析(B)眼科病床的合理安排(C)卫星和飞船的跟踪测控(D)会议筹备2010年(A)储油罐的变位识别与罐容表标定(B)2010年上海世博会影响力的定量评估(C)输油管的布置(D)对学生宿舍设计方案的评价2011A题城市表层土壤重金属污染分析B题交巡警服务平台的设置与调度。
2003高教社杯全国大学生数学建模竞赛题目(请先阅读“对论文格式的统一要求”)A题 SARS的传播SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。
SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。
请你们对SARS 的传播建立数学模型,具体要求如下:(1)对附件1所提供的一个早期的模型,评价其合理性和实用性。
(2)建立你们自己的模型,说明为什么优于附件1中的模型;特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。
附件2提供的数据供参考。
(3)收集SARS对经济某个方面影响的数据,建立相应的数学模型并进行预测。
附件3提供的数据供参考。
(4)给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性。
附件1:SARS疫情分析及对北京疫情走势的预测2003年5月8日在病例数比较多的地区,用数理模型作分析有一定意义。
前几天,XXX老师用解析公式分析了北京SARS疫情前期的走势。
在此基础上,我们加入了每个病人可以传染他人的期限(由于被严格隔离、治愈、死亡等),并考虑在不同阶段社会条件下传染概率的变化,然后先分析香港和广东的情况以获得比较合理的参数,最后初步预测北京的疫情走势。
希望这种分析能对认识疫情,安排后续的工作生活有帮助。
1 模型与参数假定初始时刻的病例数为N0,平均每病人每天可传染K个人(K一般为小数),平均每个病人可以直接感染他人的时间为L天。
则在L天之内,病例数目的增长随时间t(单位天)的关系是:N(t)= N0 (1+K)t如果不考虑对传染期的限制,则病例数将按照指数规律增长。
SARS(严重急性呼吸系统综合征)是一种由SARS冠状病毒引起的传染病,曾在2003年引发全球性的疫情。
在数学建模中,研究SARS的传播规律是一个重要且具有挑战性的课题。
通过数学建模可以更好地理
解疫情传播的规律,并为疾病控制和预防提供科学依据。
1. SARS病毒的传播途径
SARS病毒主要通过呼吸道飞沫传播,当感染者咳嗽、打喷嚏或说话时,会释放含有病毒的飞沫,健康人在呼吸这些飞沫或接触污染的物体后
易受感染。
在数学建模中,需要考虑不同人群之间的接触模式以及感
染的概率,这对于评估疫情的传播速度和范围至关重要。
2. SARS病毒的潜伏期和传播特点
SARS病毒有较长的潜伏期,患者在潜伏期内可能没有明显症状,但仍然可以传播病毒给他人。
这增加了疫情控制的难度,也需要数学模型
来估计患者在潜伏期内的传播能力和传播速度。
3. 数学建模在SARS疫情中的应用
数学建模可以帮助我们模拟和预测疫情的传播趋势,包括病毒的传播
速度、传播范围以及传播途径。
通过建立传染病传播模型,可以评估
不同的干预措施对疫情传播的影响,为政府和卫生部门提供科学依据
和决策支持。
总结回顾
通过数学建模,我们可以更好地理解SARS疫情传播的规律,评估干预措施的效果,并为未来类似疫情的防控提供经验和启示。
由于SARS 疫情的传播特点复杂多样,数学建模需要考虑到多种因素的影响,是一项具有挑战性和意义重大的工作。
个人观点与理解
SARS疫情的发生引起了全球范围内的关注和担忧,数学建模在疫情控制和预防中的应用显得尤为重要。
作为一种强大的工具,数学建模为我们提供了一种全新的视角来认识和理解疫情的传播规律,为疾病防控提供了有力的支持。
希望未来能进一步深入研究传染病传播的数学模型,为应对未知疫情做好充分准备。
在这篇文章中,我从SARS疫情传播的数学建模角度对疫情的传播规律进行了探讨,并共享了个人对于数学建模在疫情防控中的重要性的理解。
希望这篇文章能帮助你更好地理解SARS疫情的传播特点以及数学建模的应用。
SARS(Severe Acute Respiratory Syndrome)是由SARS冠状病毒引起的一种急性呼吸道传染病,曾在2003年引发全球性的疫情。
在数学建模中,研究SARS的传播规律是一个重要且具有挑战性的课题。
通过数学建模可以更好地理解疫情传播的规律,并为疾病控制和预防提供科学依据。
SARS病毒的传播途径
SARS病毒主要通过呼吸道飞沫传播,当感染者咳嗽、打喷嚏或说话时,会释放含有病毒的飞沫,健康人在呼吸这些飞沫或接触污染的物体后
易受感染。
在数学建模中,需要考虑不同人群之间的接触模式以及感
染的概率,这对于评估疫情的传播速度和范围至关重要。
SARS病毒的潜伏期和传播特点
SARS病毒有较长的潜伏期,患者在潜伏期内可能没有明显症状,但仍然可以传播病毒给他人。
这增加了疫情控制的难度,也需要数学模型
来估计患者在潜伏期内的传播能力和传播速度。
在数学建模中,需要
考虑潜伏期内的传染性,以及如何合理评估疫情的传播风险。
数学建模在SARS疫情中的应用
数学建模可以帮助我们模拟和预测疫情的传播趋势,包括病毒的传播
速度、传播范围以及传播途径。
通过建立传染病传播模型,可以评估
不同的干预措施对疫情传播的影响,为政府和卫生部门提供科学依据
和决策支持。
在数学建模中,需要学者们收集关于疫情的数据,建立
相应的数学模型,并借助模型来分析疫情的传播规律和趋势。
SARS疫情的数学建模分析
通过数学建模,我们可以更好地理解SARS疫情传播的规律,评估干
预措施的效果,并为未来类似疫情的防控提供经验和启示。
由于SARS 疫情的传播特点复杂多样,数学建模需要考虑到多种因素的影响,是一项具有挑战性和意义重大的工作。
在数学建模分析中,学者们需要考虑患者的潜伏期、传染性和治疗率等因素,以便更好地预测疫情的发展趋势。
个人观点与理解
SARS疫情的发生引起了全球范围内的关注和担忧,数学建模在疫情控制和预防中的应用显得尤为重要。
作为一种强大的工具,数学建模为我们提供了一种全新的视角来认识和理解疫情的传播规律,为疾病防控提供了有力的支持。
希望未来能进一步深入研究传染病传播的数学模型,为应对未知疫情做好充分准备。
结论
通过数学建模可以更好地理解SARS疫情的传播规律,评估干预措施的效果,为未来类似疫情的防控提供经验和启示。
数学建模在疾病防控中的应用具有重要意义,可以帮助政府和卫生部门制定科学合理的防控措施。
希望未来能加强对疾病传播规律的研究,提高数学建模在疫情防控中的应用水平。