初中常用数学公式总结归纳
- 格式:docx
- 大小:36.62 KB
- 文档页数:2
初中数学公式定理总结汇总归纳大全
一、代数公式
1、二元一次方程的解法:
解:二元一次方程的解为:x=(-b±√(b2-4ac))/2a
2、单项式的展开式:
解:单项式展开式有(x+y)^n=ΣCn,mx^(n-m)y^m
其中Cn,m为组合数,即Cn,m=n!/(m!(n-m)!)
3、二次函数的一般式:
解:二次函数一般式为:y=ax2+bx+c
其中a,b,c为实数,a≠0
4、分式的乘法:
解:分式相乘法则为:
(a/b)×(c/d)=ac/bd
5、分式的除法:
解:分式相除法则为:
(a/b)÷(c/d)=ad/bc
6、二次函数的极值:
解:当ax2+bx+c=0时,函数的极值为-(b±√(b2-4ac))/2a
7、二次函数的开口方向:
解:a>0时开口向上,a<0时开口向下
8、多项式的展开式:
解:多项式的展开式为:
(x+y)^n=ΣΣ(A)n,mx^(n-m)y^m
其中A)n,m为组合数,即A)n,m=n!/(m!(n-m)!)
9、二次函数的解析式:
解:解析式为:y=a(x-x1)(x-x2)
其中a为系数,x1和x2为极值点
二、几何公式
1、直线与圆的位置关系:
解:直线与圆的位置关系分为内切、外切、相交(内切外切)、切点相离
2、平行线定理:
解:如果两条直线互相垂直,则它们是平行的。
3、垂线定理:。
初中数学公式大全总结一:代数:1、二次函数的标准方程:y=ax^2+bx+c;2、一元二次方程的解法:ax^2+bx+c=0,△=b^2-4ac,若△<0则无解;△=0时,有一个解x=-b/2a;△>0时,有两个解分别为x1=(-b+√△)/2a,x2=(-b-√△)/2a;3、三次函数的标准方程:y=ax^3+bx^2+cx+d ;4、二次函数的极值:在y=ax^2+bx+c中,极值点为(-b/2a,f(-b/2a));5、四次函数的标准方程:y=ax^4+bx^3+cx^2+dx+e;6、多项式乘法:(x+a)(x+b)=x^2+(a+b)x+ab;7、多项式除法:ax^2+bx+c/x+d=(ax+b)/d + c/d(x+d)^1;二:几何:1、三角形外接圆半径表达式:R=abc/(4S);2、立体三角形的表达式:V=1/3S(a+b+c)(a+b-c)(b+c-a)(a+c-b);3、直角三角形的勾股定理:a^2+b^2=c^2;4、外接圆的中心到三角形边长的距离表达式:h=(2R^2-a^2)/2R;5、三角形夹角内接圆半径表达式:r=2S/a;6、内接圆的中心到三角形顶点距离表达式:h=2r tanα/2;7、立体四面体的表达式:V=a(a^2+b^2+c^2-ab-ac-bc)^1/2/12;三:三角函数:1、正弦定理:a/sinA=b/sinB=c/sinC=2R;2、余弦定理:a^2=b^2+c^2-2bc cosA;3、正切定理:tanA/b = tanB/a = tanC/c;4、余切定理:cotA/cotB+cotC=1;5、锐角所对的外角的正切:tan2A=2tanA/(1-tan^2A);6、向量的叉积:A×B=|A||B|sin(A,B);7、三角函数相等关系:sin(-A)= -sinA,cos(-A) =cosA,tan(-A)=-tanA,cot(-A)=-cotA。
初中数学重要公式整理初中数学中常用的重要公式有很多,下面整理了一些常见的重要公式供你参考。
一、代数运算公式:1. 二次方差公式:(a+b)²=a²+2ab+b²2.一次方差公式:(a+b)(a-b)=a²-b²3.二次平方差公式:a²-b²=(a+b)(a-b)4. 二次立方差公式:a³-b³=(a-b)(a²+ab+b²)5. 一次立方差公式:a³+b³=(a+b)(a²-ab+b²)二、平方根公式:1.平方根的定义:如果a²=b,那么a叫做b的平方根,记作a=√b2.平方根的性质:非负数的平方根为非负数。
3.平方根求和、求差公式:a²+b²±2ab=(a±b)²a²-b²=(a+b)(a-b)三、等差数列常用公式:1. 前n项和公式:Sn=(a₁+an)×n/22. 通项公式:an=a₁+(n-1)d四、等比数列常用公式:1.前n项和公式:Sn=a₁(1-qⁿ)/(1-q)2. 通项公式:an=a₁×qⁿ⁻¹五、三角函数常用公式:1. sin²A+cos²A=12. 1+tan²A=sec²A、1+cot²A=csc²A3. sin(-A)=-sinA,cos(-A)=cosA4. sin(A±B)=sinAcosB±cosAsinB5. cos(A±B)=cosAcosB∓sinAsinB6. tan(A±B)=(tanA±tanB)/ (1∓tanAtanB)7. sin2A=2sinAcosA,cos2A=cos²A-sin²A=2cos²A-1=1-2sin²A六、平面几何常用公式:1.直角三角形勾股定理:c²=a²+b²2. 正弦定理:a/sinA=b/sinB=c/sinC=2R,其中R为三角形外接圆的半径3. 余弦定理:a²=b²+c²-2bc cosA4.面积公式:等腰三角形面积=S=1/2×底边×高5.等边三角形面积=S=√3/4×边长²6.圆的面积公式:S=πr²,其中r为圆的半径7.圆的周长公式:C=2πr,其中r为圆的半径以上只是初中数学中的一部分重要公式,掌握了这些公式,能够在解题过程中更加灵活运用,提高解题效率。
初中数学常用公式大全1.数与式-两个数的和:a+b-两个数的差:a-b-两个数的积:a×b-两个数的商:a÷b-两个数的平均数:(a+b)÷2-两个数的和的平方:(a+b)²-两个数的差的平方:(a-b)²-两个数的积的平方:(a×b)²-两个数的商的平方:(a÷b)²2.平方与立方-数的平方:a²-数的立方:a³-平方差公式:(a+b)×(a-b)=a²-b²- 立方和公式:a³ + b³ = (a + b) × (a² - ab + b²) - 立方差公式:a³ - b³ = (a - b) × (a² + ab + b²) 3.代数式- (a + b)² = a² + 2ab + b²- (a - b)² = a² - 2ab + b²- (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca- (a - b - c)² = a² + b² + c² - 2ab - 2bc + 2ca4.百分数-百分数的意义:百分数是以100为基数表示的分数,百分号表示百分数。
-百分数与小数的转化:将百分数去掉百分号,并除以100,即得小数;将小数乘以100,并加上百分号,即得百分数。
-百分数与分数的转化:将百分数的百分号去掉,并将百分数的百分数除以100,即得分数;将分数的分子乘以100,并在分母上加上百分号,即得百分数。
-相当百分数:等效于一样的部分,并且百分数与百分数之间可以相互替代。
5.比例与比例等式-比例:两个比例相等时,称为比例,记作a:b=c:d-比值:两个数的比较结果,记作a/b或a:b-比例等式:两个比例相等的等式,如a:b=c:d-长度、面积、体积的比例:两个相似图形的对应边长、面积或体积的比值相等。
初中数学公式总结一、整数运算公式:1.加法法则:a+b=b+a2.减法法则:a-b+c=a+c-b3.乘法法则:a×b=b×a4.除法法则:a÷b≠b÷a(除以零没有意义)二、整数的乘方和开方:1. 平方公式:(a + b)² = a² + 2ab + b²2. 平方差公式:(a - b)² = a² - 2ab + b²3. 立方公式:(a + b)³ = a³ + 3a²b + 3ab² + b³4. 立方差公式:(a - b)³ = a³ - 3a²b + 3ab² - b³5.平方根公式:√(a±b)=√a±√b三、比例和百分数:1.比例关系:a:b=c:d,即a×d=b×c2.百分数:a%=a/100,即a%=a×0.013.小数和百分数的转换:a%=a/100,即a%=a×0.014.百分数和分数的转换:a%=a/100=a/100四、代数式和方程:1. 一元一次方程:ax + b = 0,x = -b/a2. 一元二次方程:ax² + bx + c = 0,x = (-b ± √(b² -4ac))/2a3.二元一次方程组:a₁x+b₁y=c₁,a₂x+b₂y=c₂4. 二元二次方程组:a₁x² + b₁y² + c₁xy + d₁x + e₁y + f₁ = 0,a₂x² + b₂y² + c₂xy + d₂x + e₂y + f₂ = 0五、三角学:1. 正弦定理:a/sinA = b/sinB = c/sinC2. 余弦定理:c² = a² + b² - 2abcosC3. 正切定理:tanA = a/b,tanB = b/a六、平面几何:1.图形的周长:正方形的周长为4边长;长方形的周长为2倍长+2倍宽;三角形的周长为三边之和;圆的周长为2πr2.图形的面积:正方形的面积为边长的平方;长方形的面积为长×宽;三角形的面积为底边×高的一半;圆的面积为πr²3.相似三角形:两个三角形的对应角相等,对应边成比例4.共面直线的性质:平行直线的两个对应角相等,对顶角相等,内角和为180度七、数列与函数:1.等差数列通项公式:an = a1 + (n - 1)d2.等差数列求和公式:S(n) = n/2(a1 + an)3.等比数列通项公式:an = a1 × q^(n-1)4.等比数列求和公式:S(n)=a1(1-q^n)/(1-q)5. 函数线性关系公式:y = kx + b6. 函数平方关系公式:y = ax² + bx + c以上是初中数学常用的公式总结,它们是完成数学运算和问题解决的基础,熟练掌握这些公式对学习数学非常有帮助。
初中数学公式大全总结归纳一、代数部分1. 有理数- 有理数加法法则:- 同号两数相加,取相同的符号,并把绝对值相加。
例如:3 + 5=8,( -3)+(-5)=-(3 + 5)=-8。
- 异号两数相加,绝对值相等时和为0(互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
例如:3+( - 5)=-(5 - 3)=-2,( - 3)+5 = 5-3 = 2。
- 一个数同0相加,仍得这个数。
- 有理数减法法则:减去一个数,等于加上这个数的相反数。
即a - b=a+( - b)。
- 有理数乘法法则:- 两数相乘,同号得正,异号得负,并把绝对值相乘。
例如:3×5 = 15,( - 3)×(-5)=15,3×(-5)=-15。
- 任何数同0相乘,都得0。
- 有理数除法法则:- 除以一个不等于0的数,等于乘这个数的倒数。
即adiv b=a×(1)/(b)(b≠0)。
- 两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
2. 整式的加减- 合并同类项:同类项的系数相加,所得结果作为系数,字母和指数不变。
例如:3x+2x=(3 + 2)x=5x。
- 去括号法则:- 如果括号前面是“+”号,去括号时括号里面各项不变号。
例如:a+(b - c)=a + b-c。
- 如果括号前面是“-”号,去括号时括号里面各项都变号。
例如:a-(b -c)=a - b + c。
3. 一元一次方程- 一元一次方程的标准形式:ax + b = 0(a≠0)。
- 求解一元一次方程的步骤:- 去分母(方程两边同时乘以各分母的最小公倍数)。
- 去括号。
- 移项(把含未知数的项移到等号一边,常数项移到等号另一边,移项要变号)。
- 合并同类项。
- 系数化为1(方程两边同时除以未知数的系数)。
4. 二元一次方程组- 二元一次方程组的解法:- 代入消元法:将一个方程中的某个未知数用含有另一个未知数的代数式表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
初中阶段数学公式总结大全以下是一些常见的初中阶段的数学公式总结:1. 代数公式:- 二元一次方程式:ax + by = c- 二元一次方程组:{ax + by = c, dx + ey = f}- 配方法:(a+b)² = a² + 2ab + b²- 差分平方法:(a-b)² = a² - 2ab + b²- 倒数公式:(a+b)(a-b) = a² - b²- 完全平方式:a² + b² = (a+b)² - 2ab2. 几何公式:- 三角形的面积:A = 1/2 * 底 * 高- 矩形的面积:A = 长 * 宽- 平行四边形的面积:A = 底 * 高- 梯形的面积:A = 1/2 * (上底 + 下底) * 高- 圆的面积:A = π * r²- 圆的周长:C = 2 * π * r3. 分数公式:- 分数加法:a/b + c/d = (ad + bc)/bd- 分数减法:a/b - c/d = (ad - bc)/bd- 分数乘法:a/b * c/d = ac/bd- 分数除法:a/b ÷ c/d = ad/bc4. 百分数公式:- 百分数到小数:百分数/100 = 小数- 小数到百分数:小数 * 100 = 百分数- 百分数与小数的互相转化5. 集合运算公式:- 并集:A ∪ B- 交集:A ∩ B- 差集:A - B6. 统计学公式:- 平均数(算术平均数):(数值的总和) / (数量)- 中位数:将数据按照从小到大的顺序排列,取中间数- 众数:出现频率最高的数- 范围:最大值 - 最小值这只是一部分初中阶段数学公式的总结,希望对您有所帮助。
如需更详细的总结,可以参考相关数学教材或参考资料。
初中数学各种常用公式大全初中数学是我们学习过程中的重要学科之一,其中包含了大量的公式。
接下来,本文将为大家整理出初中数学中各种常用公式大全。
1. 直线方程:点斜式:y - y1 = k(x - x1)斜截式:y = kx + b截距式:x/a + y/b = 12. 二次函数:标准式:y = a(x - m)² + n顶点式:y = a(x - h)² + k一般式:y = ax² + bx + c3. 三角函数:正弦函数:sin θ = 对边 / 斜边余弦函数:cos θ = 临边 / 斜边正切函数:tan θ = 对边 / 临边余切函数:cot θ = 临边 / 对边4. 平面几何:欧拉公式:V - E + F = 2三角形面积公式:S = 1/2bh 正方形面积公式:S = a²长方形面积公式:S = ab圆面积公式:S = πr²圆周长公式:C = 2πr5. 空间几何:球体表面积公式:S = 4πr²球体体积公式:V = (4/3)πr³直角坐标系中两点距离公式:d = √((x2-x1)² + (y2-y1)² + (z2-z1)²)6. 概率统计:全概率公式:P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) + ... + P(A|Bn)P(Bn) 贝叶斯公式:P(B|A) = P(A|B)P(B) / [P(A|B)P(B) + P(A|Bc)P(Bc)]期望公式:E(X) = ∑xiP(xi)方差公式:Var(X) = E(X²) - [E(X)]²以上就是初中数学各种常用公式的大全。
在学习过程中,我们需要结合不同的题型,运用不同的公式,寻找最佳解决方案,让我们更好地应对数学考试。
初中数学知识点总结与公式大全一、代数1.因式分解公式:(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²a²-b²=(a+b)(a-b)a³ + b³ = (a + b)(a² - ab + b²)a³ - b³ = (a - b)(a² + ab + b²)a² + 2ab + b² = (a + b)²a² - 2ab + b² = (a - b)²2.方程求解公式:一次方程:ax + b = 0,x = -b/a二次方程:ax² + bx + c = 0,x = (-b ± √(b² - 4ac))/2a 一元二次方程组求解:联立两个方程,解得未知数的值3.指数与幂公式:aⁿ×aᵐ=aⁿ⁺ᵐ(aⁿ)ᵐ=aⁿᵐa⁰=1aⁿ⁻ᵐ=aⁿ/aᵐa⁽ⁿ⁺ᵐ⁾=aⁿ×aᵐ4.平方差公式:(a + b)² = a² + 2ab + b²(a - b)² = a² - 2ab + b²二、几何1.图形面积公式:长方形的面积:S=长×宽正方形的面积:S=边长²三角形的面积:S=底边×高/2梯形的面积:S=(上底+下底)×高/2圆的面积:S=πr²2.图形周长公式:长方形的周长:P=2(长+宽)正方形的周长:P=4×边长三角形的周长:P=边1+边2+边3梯形的周长:P=上底+下底+两腿圆的周长:P=2πr3.相似三角形公式:对应边的比例:AB/DE=BC/EF=AC/DF对应角的相等性:∠A=∠D,∠B=∠E,∠C=∠F4.圆的相关公式:弧长公式:L=2πr(θ/360°)弦长公式:l = 2r × sin(θ/2)弧度和角度的转换:θ(弧度)=θ(角度)×π/180°弧度的定义:圆的半径所对的圆心角的弧长等于半径的长度三、统计与概率1.统计相关公式:平均值:平均值=总和/个数中位数:将一组数据按大小排列后,取中间位置的数众数:出现次数最多的数极差:一组数中最大值与最小值之差2.概率相关公式:事件的概率:P(A)=发生事件A的次数/总次数互斥事件的概率:P(A或B)=P(A)+P(B)独立事件的概率:P(A和B)=P(A)×P(B)。
初中常用数学公式总结归纳在初中阶段学习数学的过程中,我们需要掌握并应用各种数学公式。
这些公式帮助我们解决问题,简化计算,并深化对数学概念的理解。
以下是初中常用数学公式的总结归纳:一、代数基本公式1. 一元一次方程 ax + b = 0 的解为 x = -b/a,其中 a、b 为常数且a ≠ 0。
2. 一元二次方程解的公式为 x = (-b±√(b²-4ac))/(2a),其中 a、b、c 为常数且a ≠ 0。
3. 两个数的积等于两个数的和与差的积,即(a±b)² = a²±2ab+b²。
4.平方差公式,即(a+b)(a-b)=a²-b²。
二、几何基本公式1.三角形的面积公式为S=1/2*底边*高,其中S为三角形的面积。
2.三角形的海伦公式,即S=√(p(p-a)(p-b)(p-c)),其中a、b、c为三角形的边长,p为半周长。
3. 三角形的余弦定理,即c² = a² + b² - 2abcosC,其中 a、b、c 为三角形的边长,C 为不等于90° 的夹角对应的边。
4. 三角形的正弦定理,即 a/sinA = b/sinB = c/sinC,其中 a、b、c 为三角形的边长,A、B、C 为对应的角度。
5.正方形的面积公式为S=a²,其中a为正方形的边长。
6.矩形的面积公式为S=长*宽,其中长和宽分别为矩形的边长。
7.圆的面积公式为S=πr²,其中S为圆的面积,r为半径,π为圆周率(取近似值3.14)。
8.圆的周长公式为C=2πr,其中C为圆的周长,r为半径。
三、进阶公式1.算术平均数的计算公式为平均数=总和/数量。
2.两数的最大公约数(最大公因数)可以使用辗转相除法来求解。
3.两数的最小公倍数可以使用最大公约数求解,即最小公倍数=(数1*数2)/最大公约数。
初中数学常用公式总结归纳一、代数学公式1、平方和公式:(1)两个数的平方和:a²+b²=(a+b)²-2ab(2)三个数的平方和:a²+b²+c²=(a+b+c)²-2(ab+bc+ca)(3)n个数的平方和:a1²+a2²+…+an²=(a1+a2+…+an)²–2(a1a2+a2a3+…+an-1an)2、立方和公式:(1)两个数的立方和:a³+b³=(a+b)(a²+b²+ab)(2)三个数的立方和:a³+b³+c³=(a+b+c)(a²+b²+c²+ab+bc+ac)(3)n个数的立方和:a1³+a2³+…+an³=(a1+a2+…+an)(a1²+a2²+…+an²+a1a2+a2a3+…+an-1an)3、四次方和公式:(1)两个数的四次方和:a⁴+b⁴=(a+b)²(a²+b²)+2ab(a+b)(2)三个数的四次方和:a⁴+b⁴+c⁴=(a+b+c)²(a²+b²+c²)+2(ab(a+b+c)+bc(a+b)+ca(a+c))(3)n个数的四次方和:a1⁴+a2⁴+…+an⁴=(a1+a2+…+an)²(a1²+a2²+…+an²)+2(a1a2(a1+a2+…+an)+a2a3(a2+a3+…+an)+…+an-1an(an-1+an))二、几何学公式1、直角三角形公式:(1)三边长公式:a^2+b^2=c^2(2)海伦公式:S = 1/2ab sinC(3)余弦定理:C^2 = a^2 + b^2 – 2abcosA2、三角形三边长关系:a+b>c,,a–b,<c3、圆的公式:(1)周长公式:C=2πr(2)面积公式:S=πr^24、矩形的公式:(1)面积公式:S=a×b (2)周长公式:P=2(a+b)。
初中数学公式归纳大全1. 整数运算公式- 加法公式:$a + b = b + a$- 减法公式:$a - b = -(b - a)$- 乘法公式:$a \times b = b \times a$- 除法公式:$a \div b = \frac{1}{b} \times a$ 2. 平方和差公式- 平方公式:$(a + b)^2 = a^2 + 2ab + b^2$- 差的平方公式:$(a - b)^2 = a^2 - 2ab + b^2$- 平方差公式:$a^2 - b^2 = (a + b)(a - b)$3. 三角函数公式- 正弦和余弦的平方和公式:$\sin^2x + \cos^2x = 1$- 余弦和正切的关系公式:$\cos x = \frac{1}{\sec x}$- 正弦和余切的关系公式:$\sin x = \frac{1}{\csc x}$- 正切和余切的关系公式:$\tan x = \frac{1}{\cot x}$4. 直角三角形公式- 正弦定理:$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$- 余弦定理:$a^2 = b^2 + c^2 - 2bc\cos A$- 正切定理:$\tan A = \frac{b}{c}$5. 平面几何公式- 面积公式:矩形面积 $S = l \times w$- 周长公式:矩形周长 $C = 2l + 2w$- 面积公式:三角形面积 $S = \frac{1}{2}bh$- 周长公式:三角形周长 $C = a + b + c$6. 等式与不等式公式- 倒数不等式公式:$\frac{1}{a} > \frac{1}{b} \Rightarrow a < b$ ($a, b > 0$)- 平方不等式公式:$a^2 > b^2 \Rightarrow |a| > |b|$- 绝对值不等式公式:$|x - a| < b \Rightarrow a - b < x < a + b$以上是初中数学常见公式的归纳大全,希望能对你的学习有所帮助!。
初中数学公式总结大全一、代数公式1. 消去法则:- $a + b = b + a$- $a \times b = b \times a$2. 结合法则:- $(a + b) + c = a + (b + c)$- $(a \times b) \times c = a \times (b \times c)$3. 分配法则:- $a \times (b + c) = a \times b + a \times c$- $(a + b) \times c = a \times c + b \times c$4. 平方差公式:- $(a + b)(a - b) = a^2 - b^2$二、几何公式1. 三角形:- 面积公式:$S = \frac{1}{2}bh$ (b为底边长度,h为高)- 周长公式:$C = a + b + c$ (a、b、c为三边长度)2. 圆:- 面积公式:$S = \pi r^2$ (r为半径)- 周长公式:$C = 2 \pi r$ (r为半径)3. 矩形:- 面积公式:$S = lw$ (l为长度,w为宽度)- 周长公式:$C = 2(l + w)$ (l为长度,w为宽度)三、统计公式1. 平均数公式:- 算术平均数:$A = \frac{a_1 + a_2 + ... + a_n}{n}$ (a为数据集,n为数据个数)- 加权平均数:$A = \frac{a_1 w_1 + a_2 w_2 + ... + a_nw_n}{w_1 + w_2 + ... + w_n}$ (a为数据集,w为权重)2. 中位数公式:- 当数据个数为奇数时,中位数为中间的数值;- 当数据个数为偶数时,中位数为中间两个数的平均值。
以上是初中数学常用的公式总结大全,希望对你有帮助!。
初中数学的公式总结(通用12篇)篇1:初中数学公式总结参考三角形的面积=底×高÷2。
公式S=a×h÷2正方形的面积=边长×边长公式S=a×a长方形的面积=长×宽公式S=a×b平行四边形的面积=底×高公式S=a×h梯形的面积=(上底+下底)×高÷2公式S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π公式:L=πd=2πr圆的面积=半径×半径×π公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
公式:V=1/3Sh分数加减定律:分母相同的分数加减,只加减分子,分母不变。
不同分母的分数相加和相减,首先相除,然后相加和相减。
分数的乘法是:用分子的乘积做分子,分母的乘积做分母。
分数的除法法则:除以一个数等于乘以这个数的倒数。
阅读理解会应用以下定义定理、性质、公式。
1.算术1.加法交换律:两个数相加并交换加数,和不变的位置。
2.加法组合定律:三个数相加时,先加前两个数,或先加后两个数,再加第三个数,和不变。
3.乘法交换定律:两个数相乘,交换因子的位置不变。
4.乘法结合律:三个数相乘时,前两个数相乘,或者后两个数先相乘,再相乘第三个数,它们的乘积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
1. 代数公式加法交换律:a + b = b + a加法结合律:(a + b) + c = a + (b + c)乘法交换律:a × b = b × a乘法结合律:(a × b) × c = a × (b × c)乘法分配律:a × (b + c) = a × b + a × c2. 平方差公式(a + b)(a b) = a^2 b^23. 完全平方公式(a + b)^2 = a^2 + 2ab + b^2(a b)^2 = a^2 2ab + b^24. 分式公式a/b × c/d = ac/bda/b ÷ c/d = ad/bc(a/b + c/d) = (ad + bc)/bd5. 一元一次方程ax + b = 0,其中a ≠ 0,解为 x = b/a6. 一元二次方程ax^2 + bx + c = 0,其中a ≠ 0,解为x = (b ± √(b^2 4ac)) / 2a7. 三角函数公式正弦函数:sin(θ) =对边/斜边余弦函数:cos(θ) = 邻边/斜边正切函数:tan(θ) = 对边/邻边8. 平面几何公式圆的周长:C = 2πr圆的面积:A = πr^2三角形面积:A = (底× 高) / 29. 立体几何公式长方体体积:V = 长× 宽× 高球体体积:V = (4/3)πr^3圆柱体积:V = πr^2h1. 平行线性质如果两条直线被第三条直线所截,那么同位角相等,内错角相等,同旁内角互补。
2. 相似三角形相似三角形的对应角相等,对应边成比例。
3. 毕达哥拉斯定理在直角三角形中,斜边的平方等于其他两边的平方和,即a^2 + b^2 = c^2。
4. 分数的加减乘除分数的加法:(a/b) + (c/d) = (ad + bc) / bd分数的减法:(a/b) (c/d) = (ad bc) / bd分数的乘法:(a/b) × (c/d) = ac / bd分数的除法:(a/b) ÷ (c/d) = ad / bc5. 平均数平均数是一组数据之和除以数据的个数。
初中数学公式大全归纳总结一、数的性质1. 乘法运算律- 乘法交换律:a × b = b × a- 乘法结合律:(a × b) × c = a × (b × c)- 乘法分配律:a × (b + c) = a × b + a × c2. 除法运算律- 除法相关性质3. 加法运算律- 加法交换律:a + b = b + a- 加法结合律:(a + b) + c = a + (b + c)- 加法的逆元:a + (-a) = 04. 减法运算律- 减法的定义:a - b = a + (-b)- 减法的性质5. 数的相反数和绝对值- 相反数的定义- 数的绝对值的定义二、代数式与方程1. 代数式- 代数式的定义- 代数式的四则运算2. 方程- 方程的定义- 解方程的方法- 一元一次方程- 一元一次方程的解法三、比例与相似1. 比例- 比例与比例关系- 比例的性质- 比例的四则运算2. 相似- 全等与相似的关系- 相似的判定条件- 相似比的计算四、数与量的计算1. 单位换算- 长度单位换算- 面积和体积单位换算2. 数的四则运算- 加法- 减法- 乘法- 除法3. 百分数与整数的关系- 百分数的定义- 百分数与整数的相互换算五、几何初步1. 点、线、面- 点的定义- 线的定义- 面的定义2. 几何图形的性质- 三角形及其性质- 四边形及其性质- 圆及其性质3. 三角形和平行四边形的面积- 三角形的面积计算- 平行四边形的面积计算六、统计与概率1. 数据收集与整理- 数据收集- 数据整理2. 统计图- 条形图- 折线图- 饼图3. 概率- 概率的定义- 概率的计算方法以上是初中数学公式大全的归纳总结,希望对你有帮助!。
初中数学公式总结1.代数公式- 二项式定理:(a+b)^2 = a^2 + 2ab + b^2,(a-b)^2 = a^2 - 2ab + b^2-完全平方公式:(a+b)(a-b)=a^2-b^2- 和差化积公式:sin(a+b) = sinacosb + cosasinb,cos(a+b) = cosacosb - sinasinb2.平面几何公式-周长公式:长方形周长=2*(长+宽),正方形周长=4*边长,三角形周长=边1+边2+边3-面积公式:矩形面积=长*宽,正方形面积=边长^2,三角形面积=1/2*底*高- 直角三角形定理:勾股定理 a^2 + b^2 = c^2,正弦定理 a/sinA = b/sinB = c/sinC,余弦定理 a^2 = b^2 + c^2 - 2bc*cosA3.概率统计公式-百分率公式:百分数=(所占数量/总数量)*100%-平均值公式:平均值=总和/数量-方差公式:方差=Σ[(x-μ)^2]/n,其中x是每个数据点,μ是平均数,n是数量4.数列公式-等差数列通项公式:an = a1 + (n-1)*d,其中 an 是第 n 项,a1是首项,d 是公差-等比数列通项公式:an = a1 * r^(n-1),其中 an 是第 n 项,a1是首项,r 是公比-等差数列前 n 项和公式:Sn = (a1 + an) * n/2,其中 Sn 是前 n 项和,a1 是首项,an 是第 n 项5.三角函数公式- 正弦公式:sinA/a = sinB/b = sinC/c,其中 A、B、C 是三角形的角,a、b、c 是对应的边长- 余弦公式:c^2 = a^2 + b^2 - 2ab*cosC,其中 C 是三角形的角,a、b、c 是对应的边长- 正切公式:tanA = sinA/cosA6.指数与对数公式-指数运算法则:a^m*a^n=a^(m+n),(a^m)^n=a^(m*n),a^0=1- 对数运算法则:log(a*b) = loga + logb,log(a/b) = loga - logb,loga^b = b*loga- 自然对数的性质:ln(xy) = ln(x) + ln(y),ln(x/y) = ln(x) -ln(y)这些是初中数学中常用的公式,可以帮助学生快速解决问题,提高数学运算的效率。
初中数学公式大全总结数学作为一门学科,离不开各种公式的应用。
对于初中数学学习来说,熟练掌握一些重要的数学公式是非常必要的。
下面是一份初中数学公式大全的总结,以供参考。
一、代数公式1. 一元二次方程求根公式对于一元二次方程ax^2+bx+c=0,它的根可以通过求解公式x = (-b±√(b^2-4ac))/(2a)来得到。
2. 四则运算加法:a+b=b+a减法:a-b ≠ b-a乘法:a×b=b×a除法:a÷b ≠ b÷a3. 平方差公式(a+b)² = a²+2ab+b²(a-b)² = a²-2ab+b²4. 两数平方差公式a²-b² = (a-b)(a+b)5. 平方根公式√a×√b = √(a×b)6. 乘方公式(a^m)^n = a^(mn)7. 同底数幂相乘公式a^m × a^n = a^(m+n)二、几何公式1. 勾股定理直角三角形中,c² = a² + b²2. 正弦定理在任意三角形ABC中,a/sinA = b/sinB = c/sinC3. 余弦定理在任意三角形ABC中,c² = a² + b² - 2abcosC4. 直角三角形中的三角函数关系sinθ = 对边/斜边,cosθ = 邻边/斜边,tanθ = 对边/邻边5. 面积公式矩形的面积为长×宽,三角形的面积为底×高的一半,圆的面积为πr²,其中r为半径。
三、立体几何公式1. 体积公式长方体的体积为V = 长×宽×高,正方体的体积为V = 边长³,圆柱体的体积为V = πr²h,其中r为底面半径,h为高。
2. 表面积公式长方体的表面积为A = 2(长×宽 + 长×高 + 宽×高),正方体的表面积为A = 6边长²,圆柱体的表面积为A = 2πrh +2πr²,其中r为底面半径,h为高。
初中常用数学公式总结归纳
1、二次根式:ax2+bx+c=0的解:
X1=(-b+√(b2-4ac))/2a;X2=(-b-√(b2-4ac))/2a。
2、三角函数:
(1)正弦函数:y=sinea=sinθ=a/h;
(2)余弦函数:y=cosinea=cosθ=b/h;
(3)正切函数:y=tana=tanθ=a/b;
(4)余切函数:y=cotana=cotθ=b/a;
(5)反正弦函数:y=asinθ=sin-1a;
(6)反余弦函数:y=acosθ=cos-1a;
(7)反正切函数:y=atanθ=tan-1a;
(8)反余切函数:y=acotθ=cot-1a。
3、勾股定理:a2+b2=c2;
4、立方差分:3ax2+2bx+c=0的解:x1=a/3;X2=b-√(b2-3ac)/3a;
X3=b+√(b2-3ac)/3a;
5、一元二次方程的解:ax2+bx+c=0的解:X1=-b/2a+√(b2-4ac)/2a;X2=-b/2a-√(b2-4ac)/2a;
6、垂直平分线定理:若在△ABC的内角A,内切于BC的过线段AD,
则有:AD⊥BC,AD=BC/2;
7、相似三角形定理:若两个三角形的对应角相等,则两个三角形相似;
8、平行四边形定理:若四边形ABCD,AB⊥CD,AD⊥BC,且AB=CD,AD=BC,则ABCD是平行四边形;
9、梯形定理:若在梯形ABCD中,AB⊥CD,BC⊥AD,且AB=CD,BC =AD,则ABCD是等腰梯形;
10、等比定理:若两个比数:a/c=b/d,则它们三者构成等比数列;
11、等差定理:若三个数:b-a=c-b,则它们三者构成等差数列;。