湖北省黄冈中学2007年春季高二期中考试
- 格式:doc
- 大小:277.00 KB
- 文档页数:8
湖北省黄冈中学2007年秋季高二数学期中考试试题(文科)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 直线1y x =+的倾斜角为( )A .45°B .60°C .135°D .135°2. 抛物线y x =2的准线方程是( )A .014=+xB .014=+yC .012=+xD .012=+y 3. 双曲线2241x y -=的离心率为( )A .2BC .D .124. 如果双曲线22142x y -=右支上一点P 到双曲线右焦点的距离是2,那么点P 到右准线的距离是( )A B C . D5. 过圆x 2+y 2-4x =0上一点P (1的切线方程为( )A .20x -=B .40x +-=C .40x +=D .20x -+=6. 在同一坐标系中,方程a 2x 2+b 2y 2=1与ax +by 2=0(a >b >0)的曲线大致是( )7. 圆心在直线230x y --=上,且过点(5,2)和点(3,-2)的圆的方程为( )A .22(1)(2)10x y -+-=B .22(2)(1)10x y -+-=C .22(2)(1)100x y -+-=D .22(1)(2)100x y -+-=8. 若,k ∈R 则“3k >”是“方程22133x y k k -=-+表示双曲线”的( ) A .充分但不必要条件B 必要但不充分条件C 充要条件D 既不充分又不必要条件9. 已知ABC ∆的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另一个焦点在BC 边上,则ABC ∆的周长是( )A .B .6C .D .1210.下列方程的曲线关于y 轴对称的是( )A.x 2-x +y 2=1B.x 2y +xy 2=1C. x 2-y 2=1D. x -y =1二、填空题(本大题共5小题,每小题5分,共25分,把答案填在题中横线上)11.双曲线221416x y -= 的渐近线的方程为_________. 12.椭圆短轴长是2,长轴是短轴的2倍,则椭圆焦点到相应的准线距离是_______13.点P (x ,y )在椭圆1163622=+y x 上,F 是椭圆的右焦点,则|FP |max = ___________ ; |FP |m i n = ___________ .14. P 是曲线1cos sin x y αα=-+⎧⎨=⎩上任意一点,则点P 到点A (2,-4)的最远距离为_________. 15.已知圆C 1:22(3)1x y ++=和圆C 2:22(3)9x y -+=,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为_____________.班级:__________ 姓名:____________ 座号:_________ 成绩:___________答 题 卡三、解答题(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(本小题满分12分)已知直线l 的方程为20x +-=,圆C 的方程为 (x -1)2+y 2=1,l 与圆C 的两个交点分别为A 、B ,求线段AB 的长.17.(本小题满分12分)已知双曲线1C 与椭圆2C :2213649x y +=有公共的焦点,并且双曲线的离心率1e 与椭圆的离心率2e 之比为73,求双曲线1C 的方程.18.(本小题满分12分)以抛物线28y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程.19.(本小题满分12分)设F 1、F 2分别是椭圆2214x y +=的左、右焦点,若P 是该椭圆上的一个动点,求12PF PF ⋅的最大值和最小值.x20.(本小题满分13分)已知双曲线的方程为2213y x -=,设F 1、F 2分别是其左、右焦点. (1)若斜率为1且过F 1 的直线l 交双曲线于A 、B 两点,求线段AB 的长 (2)若P 是该双曲线左支上的一点,且1260F PF ∠=,求12F PF ∆的面积S21.(本小题满分14分)在平面直角坐标系xOy中,经过点(0且斜率为k的直线l与椭圆2212xy+=有两个不同的交点P和Q.(1)求k的取值范围;(2)设椭圆与x轴正半轴、y轴正半轴的交点分别为A B,,是否存在常数k,使得向量OP OQ+与AB共线?如果存在,求k值;如果不存在,请说明理由.湖北省黄冈中学2007年秋季高二数学期中考试参考答案1.A 2.B 3.A 4.A 5.D 6.D 7.B 8.A 9.C 10.C11.2y x=±1213.6+-14.615.221(1)8yx x-=-≤16.解:(1,0),1C r=,. 取AB中点D,则CD⊥AB12 CD==2AB AD∴====17.解:1C的焦点坐标为(0,27e=由1273ee=得13e=设双曲线的方程为22221(,0)y xa ba b-=>则2222213139a ba ba⎧+=⎪⎨+=⎪⎩解得229,4a b==双曲线的方程为22194y x-=18.解:设点00(,),(,)M x y P x y,则622xxyy+⎧=⎪⎪⎨⎪=⎪⎩,∴0262x xy y=-⎧⎨=⎩.代入2008y x=得:2412y x=-.此即为点P的轨迹方程.19.解:易知2,1,a b c===12(0),0).F F设P(x, y),则22222 121(,),)313(38).44xPF PF x y x y x y x x ⋅=-⋅-=+-=+--=-因为[2,2]x∈-,故当x=0,即点P为椭圆短轴端点时,21PF PF⋅有最小值-2.当2x =±,即点P 为椭圆长轴端点时,21PF PF ⋅有最大值1.20.解:(1)AB :2y x =+,代入2213y x -=并整理得22470x x --= 设1122()()A x y B x y ,,, 则121272,2x x x x +==-6AB ∴===(2)设21,PF m PF n ==,则m n -=2在12F PF ∆中,由余弦定理有222162cos602m n mn m n mn mn =+-=-+- 12mn ∴=11sin 601222S mn ∴==⨯=21.解:(1)由已知条件,直线l 的方程为y kx =代入椭圆方程得22(12x kx ++=.整理得221102k x ⎛⎫+++= ⎪⎝⎭① 直线l 与椭圆有两个不同的交点P 和Q 等价于2221844202k k k ⎛⎫∆=-+=-> ⎪⎝⎭,解得2k <-或2k >.即k 的取值范围为2⎛⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭,,∞∞. (2)设1122()()P x y Q x y ,,,,则1212()OP OQ x x y y +=++,,由方程①,12212x x k+=-+. ② 又1212()y y k x x +=++ ③而(01)(A B AB =,,.所以OP OQ +与AB 共线等价于1212)x x y y +=+,将②③代入上式,解得2k =.由(1)知k <k >,故没有符合题意的常数k .湖北省黄冈中学2007年秋季高二数学期中考试试题(理科)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线22y x =的焦点坐标为( )A .(1,0)B .1,04⎛⎫ ⎪⎝⎭C .10,4⎛⎫ ⎪⎝⎭D .10,8⎛⎫ ⎪⎝⎭2.如果双曲线22142x y -=右支上一点P 到双曲线右焦点的距离是2,那么点P 到右准线的距离是( )ABC. D3.在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是A 1D 1、C 1D 1的中点,则异面直线AB 1与EF 所成的角的大小为( )A .60°B .90°C .45°D .30° 4.下列说法正确的是( )A .平面α和平面β只有一个公共点B .两两相交的三条直线共面C .不共面的四点中,任何三点不共线D .有三个公共点的两平面必重合5.过双曲线22143x y -=左焦点F 1的直线交双曲线的左支于M 、N 两点,F 2为其右焦点,则|MF 2|+|NF 2|-|MN |的值为( )A .6B .8C .10D .166.P 是曲线1cos sin x y αα=-+⎧⎨=⎩上任意一点,则点P 到点A (2,-4)的最远距离是( ) A .6 BCD .57.抛物线24y x =的焦点为F ,准线为l ,经过Fx 轴上方的部分相交于点A ,AK ⊥l ,垂足为K ,则AKF ∆的面积是( )11 BA .4B .C .D .88.圆22210x y x +--=关于直线230x y -+=对称的圆的方程是( ) A .221(3)(2)2x y ++-=B .221(3)(2)2x y -++=C .22(3)(2)2x y ++-=D .22(3)(2)2x y -++=9.椭圆22221(0)x y a b a b +=>>的中心、右焦点、右顶点、右准线与x 轴的交点依次为O 、F 、A 、H ,则||||FA OH 的最大值为( )A .12B .13C .14D .不能确定10.设椭圆22221(0)x y a b a b +=>>的离心率为12e =,右焦点为F (c, 0),方程20ax bx c +-=的两个实根分别为x 1和x 2,则点P (x 1, x 2)( ) A .必在圆222x y +=内B .必在圆222x y +=上C .必在圆222x y +=外D .以上三种情形都有可能二、填空题(本大题共5小题,每小题5分,共25分,把答案填在题中横线上)11.双曲线221x y m-=的虚轴长是实轴长的2倍,则m =_____________.12.从圆222210x x y y -+-+=外一点P (3,2)向这个圆作一条切线PA ,A 为切点,则PA =_______________.13.已知正方形ABCD ,则以A 、B 为焦点,且过C 、D 两点的椭圆的离心率为_________. 14.已知圆C 1:22(3)1x y ++=和圆C 2:22(3)9x y -+=,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为_____________.15.设F 为抛物线24y x =的焦点,A 、B 、C 为该抛物线上三点,若0FA FB FC ++=,则||||||FA FB FC ++=____________.班级:__________ 姓名:____________ 座号:_________ 成绩:___________答 题 卡三、解答题(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分12分)以抛物线28y x 上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程.17.(本小题满分12分)已知长方体ABCD —A 1B 1C 1D 1中,O 1是上底面对角线A 1C 1、B 1D 1的交点,体对角线A 1C 交截面AB 1D 1于点P ,求证:O 1、P 、A 三点在同一条直线上.x18.(本小题满分12分)设P 是双曲线221416x y -=右支上任一点,过点P 分别作两条渐近线的垂线,垂足分别为E 、F ,求||||PE PF ⋅的值.19.(本小题满分12分)已知椭圆22221(0)y x a b a b+=>>的一个焦点1(0,F -,对应的准线方程为y =(1)求椭圆的方程; (2)直线l 与椭圆交于不同的两点M 、N ,且线段MN 恰被点13,22P ⎛⎫- ⎪⎝⎭平分,求直线l 的方程.20.(本小题满分13分)设F 1、F 2分别是椭圆2214x y +=的左、右焦点.(1)若P 是该椭圆上的一个动点,求12PF PF ⋅的最大值和最小值;(2)设过定点M (0,2)的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.21.(本小题满分14分)如图,在平面直角坐标系xOy 中,过定点C (0,p )作直线与抛物线22(0)x py p =>相交于A 、B 两点.(1)若点N 是点C 关于坐标原点O 的对称点,求ANB ∆面积的最小值;(2)是否存在垂直y 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,说明理由.湖北省黄冈中学2007年秋季高二数学期中考试参考答案1.D 2.A 3.A 4.C 5.B 6. A7.C 8.C 9.C 10.A 11.412.213114.221(1)8y x x -=-≤15.616.解:设点00(,),(,)M x y P x y ,则00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩,∴00262x x y y =-⎧⎨=⎩.代入2008y x =得:2412y x =-.此即为点P 的轨迹方程.17.证明:如答图所示,∵11111,AC B D O = ∴111111,.O AC O B D ∈∈又∵111111111111,,,.AC AC B D AB D O AC O AB D ⊂⊂∴∈∈平面平面平面平面又∵1111111,,..AC AB D P P AC P AB D P AC =∴∈∈∴∈平面平面平面 又∵111,,A AC A AB D ∈∈平面平面∴O 1、P 、A 三点都是平面AB 1D 1与平面A 1C 的公共点. ∴O 1、P 、A 三点在同一条直线上.18.解:渐近线方程为20x y ±=,设P (x 0, y 0),则222200001416416x y x y -=⇒-=由点到直线的距离公式有||||PE PF =,∴2200|4|16||||.55x y PE PF -⋅==19.解:(1)由2222.c ac a b c ⎧-=-⎪⎪-=⎨⎪⎪=+⎩3,1a b ==即椭圆的方程为221.9y x +=(2)易知直线l 的斜率一定存在,设l :313,.2222k y k x y kx ⎛⎫-=+=++ ⎪⎝⎭即设M (x 1, y 1),N (x 2, y 2),由223,221.9k y kx y x ⎧=++⎪⎪⎨⎪+=⎪⎩ 得2222327(9)(3)0.424k k x k k x k +++++-= ∵x 1、x 2为上述方程的两根,则2222327(3)4(9)0424k k k k k ⎛⎫∆=+-+⋅+-> ⎪⎝⎭①∴21223.9k k x x k ++=-+∵MN 的中点为13,22P ⎛⎫- ⎪⎝⎭,∴1212 1.2x x ⎛⎫+=⨯-=- ⎪⎝⎭ ∴223 1.9k k k +-=-+ ∴2239k k k +=+,解得k =3.代入①中,229927184(99)180424⎛⎫∆=-+⋅+-=> ⎪⎝⎭∴直线l :y =3x +3符合要求.20.解:(1)易知2,1,a b c ===12(0),0).F F设P (x, y ),则22222121(,),)313(38).44x PF PF x y x y x y x x ⋅=-⋅-=+-=+--=-因为[2,2]x ∈-,故当x =0,即点P 为椭圆短轴端点时,21PF PF ⋅有最小值-2. 当2x =±,即点P 为椭圆长轴端点时,21PF PF ⋅有最大值1.(2)显然直线x =0不满足题设条件,可设直线l :11222,(,),(,).y kx A x y B x y =+ 联立222,1,4y kx x y =+⎧⎪⎨+=⎪⎩消去y ,整理得221430.4k x kx ⎛⎫+++= ⎪⎝⎭ ∴12122243,.1144k x x x x k k +=-=++ 由2221(4)43430,4k k k ⎛⎫∆=-+⨯=-> ⎪⎝⎭得k k >< ①又0900.AOB OA OB <∠<⇔⋅> ∴12120.OA OB x x y y ⋅=+>又222212121212222381(2)(2)2()44.111444k k k y y kx kx k x x k x x k k k --+=++=+++=++=+++∴222310.1144k k k -++>++即k 2<4. ∴-2<k <2. ②故由①②得2 2.k k -<<<< 21.解法一:(1)依题意,点N 的坐标为N (0,-p ),可设A (x 1, y 1),B (x 2, y 2),直线AB的方程为y kx p =+,与x 2=2py 联立得22,.x py y kx p ⎧=⎨=+⎩ 消去y 得22220.x pkx p --= 由韦达定理得212122,2.x x pk x x p +==-于是121212||||2ABN BCN ACN S S S p x x p x x ∆∆∆=+=⨯-=-=2p =∴当k =0时,2min ().ABN S ∆=(2)假设满足条件的直线l 存在,其方程为y=a , AC 的中点为O ',l 与以AC 为直径的圆相交于点P 、Q ,PQ 的中点为H ,则,O H PQ O ''⊥∵1||||2O P AC '=== 111|||2|,22y p O H a a y p +'=-=--∴22222211111||||||())(2)442p PH O P O H y p a y p a y ⎛⎫''=-=+---=- ⎪⎝⎭∴221||(2||)4().2p PQ PH a y a p a ⎡⎤⎛⎫==-+- ⎪⎢⎥⎝⎭⎣⎦ 令02p a -=,得2p a =,此时|PQ |=p 为定值,故满足条件的直线l 存在,其方程为2py =,即抛物线的通径所在的直线. 解法二:(1)前同解法一,再由弦长公式得12|||2AB x x =-又由点到直线的距离公式得d =11||2222ABN S d AB p ∆=⋅⋅=⋅=(2)假设满足条件的直线l 存在,其方程为y=a ,则以AC 为直径的圆的方程为11(0)()()()0x x x y p y y --+--=,将直线方程y=a 代入得211()()0,x x x a p a y -+--=则21114()()4().2p x a p a y a y a p a ⎡⎤⎛⎫∆=---=-+- ⎪⎢⎥⎝⎭⎣⎦设直线l 与以AC 为直径的圆的交点为P (x 3, y 3),Q (x 4, y 4),则有34||||PQ x x =-=令0,22p p a a -==得,此时|PQ |=p 为定值,故满足条件的直线l 存在,其方程为2py =,即抛物线的通径所在的直线.。
湖北省黄冈中学2007年春高二生物期中考试试题命题人:王实泉本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分。
考试时间90分钟第Ⅰ卷(选择题,共30题45分)注意:本卷共30题,每题1.5分,共45分。
在下列各题的四个选项中,只有一个选项是符合题目要求的,将符合要求的选项填写在答题卡上。
1.测定江滩森林公园的意杨种群密度实习中,操作过程的正确顺序是①选取样方②记数③确定研究对象④计算种群密度A.①③②④B.①②③④C.③①②④D.④③②①2.正常情况下,由尿排出的K+大约是肾小球滤过的K+量的1/10,当给人以大量钾盐时,尿中K+排出可超过由肾小球滤过的K+的量。
这一事实说明A.肾脏排出K+的特点是多吃多排,少吃少排,不吃不排B.K+的分泌和重吸收既可能是主动过程,也可能是被动过程C.肾小管和收集管既能重吸收K+,又有分泌K+的能力D.K+的分泌和Na+的重吸收相关联,都受醛固酮的促进3.下列与人体生命活动有关的叙述中错误的是A.甲状腺机能亢进的患者往往表现为食量大、身体消瘦、精神亢奋B.花粉引起人体过敏反应,毛细血管壁通透性增加,会造成局部红肿C.胰岛素与胰高血糖素的拮抗作用是维持内环境稳态的重要因素之一D.许多流感患者并不用药也可在一周左右痊愈,因为吞噬细胞清除了流感病毒4.下列关于体温调节的叙述,正确的是A.大脑皮层是调节体温的主要中枢B.寒冷时,代谢增强、产热增加与多种激素有关C.人在剧烈运动时主要产热方式是骨骼肌的收缩D.降低新陈代谢是人在炎热环境中散热的主要方式5.组织液大量积累在组织间隙会导致组织水肿。
下列各项不引起组织水肿的是A.营养不良,血浆蛋白含量减少B.花粉过敏引起毛细血管通透性增加C.肾小球肾炎导致蛋白尿D.食物过咸导致血浆渗透压增高6.科学家初步研制出H5N1型禽流感疫苗,应用前必须进行动物实验检测其效果,将未感染H5N1型病毒的一群健康小鸡分为甲、乙两组,实验过程和结果如下图所示:10天20天甲组小鸡———→健康生活———→正常生活↑↑下列相关分析错误的是A .乙组小鸡全部死亡是因为体内没有足够抗H5N1型病毒的抗体B .乙组小鸡全部死亡是因为体内没有控制产生抗H5N1型病毒抗体的基因C .甲组小鸡存活是H5N1型疫苗已使其体内产生足够抗H5N1型病毒的抗体D .甲组小鸡存活最可能是体液免疫和细胞免疫共同作用的结果7.关于人体T 淋巴细胞的叙述中,正确的是A .在反应阶段,能释放出淋巴因子,加强各种细胞的作用来发挥免疫效应B .在淋巴结、脾、扁桃体等淋巴器官产生C .能与靶细胞亲密接触,激活靶细胞内的溶酶体酶,将抗原直接消灭D .既能进行细胞免疫,又能参与体液免疫,与淋巴B 细胞在功能上互相支援8.在光合作用过程中,不属于暗反应的是A .CO 2与五碳化合物结合B .三碳化合物接受ATP 释放的能量C .H 2O 的氢传递给NADP +D .NADPH 的氢传递给三碳化合物9.请分析下表所示两种植物(Ⅰ和Ⅱ)分别具有①~⑤中的哪些特征,下面的组合正确的是①维管束鞘细胞的叶绿体没有基粒 ②C 3植物 ③C 4植物④维管束鞘细胞不含叶绿体Ⅰ玉米Ⅱ菜豆 ⑤围绕维管束鞘的是呈“花环形”的两圈细胞A .Ⅰ①③⑤Ⅱ②④B .Ⅰ①③④Ⅱ②⑤C .Ⅰ①④⑤Ⅱ①③D .Ⅰ①②Ⅱ③④⑤10.通过测定CO 2的交换量,用右图表示光照强度和CO 2浓度对光合速度的影响。
湖北省黄冈中学2007年秋季高二数学期中考试试题(理科)命题:熊斌校对:罗欢一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.抛物线22y x =的焦点坐标为( ) A .(1,0)B .1,04⎛⎫⎪⎝⎭C .10,4⎛⎫ ⎪⎝⎭D .10,8⎛⎫ ⎪⎝⎭2.如果双曲线22142x y -=右支上一点P 到双曲线右焦点的距离是2,那么点P 到右准线的距离是( )ABC. D3.在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是A 1D 1、C 1D 1的中点,则异面直线AB 1与EF 所成的角的大小为( ) A .60° B .90°C .45°D .30°4.下列说法正确的是( )A .平面α和平面β只有一个公共点B .两两相交的三条直线共面C .不共面的四点中,任何三点不共线D .有三个公共点的两平面必重合5.过双曲线22143x y -=左焦点F 1的直线交双曲线的左支于M 、N 两点,F 2为其右焦点,则|MF 2|+|NF 2|-|MN |的值为( ) A .6B .8C .10D .166.P 是曲线1cos sin x y αα=-+⎧⎨=⎩上任意一点,则点P 到点A (2,-4)的最远距离是( )A .6BCD .57.抛物线24y x =的焦点为F ,准线为l ,经过Fx 轴上方的部分相交于点A ,AK ⊥l ,垂足为K ,则AKF ∆的面积是( ) A .4B.C.D .88.圆22210x y x +--=关于直线230x y -+=对称的圆的方程是( ) A .221(3)(2)2x y ++-=B .221(3)(2)2x y -++=C .22(3)(2)2x y ++-=D .22(3)(2)2x y -++=9.椭圆22221(0)x y a b a b +=>>的中心、右焦点、右顶点、右准线与x 轴的交点依次为O 、F 、A 、H ,则||||FA OH 的最大值为( )A .12B .13C .14D .不能确定10.设椭圆22221(0)x y a b a b +=>>的离心率为12e =,右焦点为F (c, 0),方程20ax bx c +-=的两个实根分别为x 1和x 2,则点P(x 1, x 2)( )11BA .必在圆222x y +=内B .必在圆222x y +=上C .必在圆222x y +=外D .以上三种情形都有可能二、填空题(本大题共5小题,每小题5分,共25分,把答案填在题中横线上)11.双曲线221x y m-=的虚轴长是实轴长的2倍,则m =_____________.12.从圆222210x x y y -+-+=外一点P (3,2)向这个圆作一条切线PA ,A 为切点,则PA =_______________. 13.已知正方形ABCD ,则以A 、B 为焦点,且过C 、D 两点的椭圆的离心率为_________.14.已知圆C 1:22(3)1x y ++=和圆C 2:22(3)9x y -+=,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为_____________.15.设F 为抛物线24y x =的焦点,A 、B 、C 为该抛物线上三点,若0FA FB FC ++= ,则||||||FA FB FC ++=____________.班级:__________ 姓名:____________ 座号:_________ 成绩:___________答 题 卡三、解答题(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(本小题满分12分)以抛物线28y x 上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程.17.(本小题满分12分)已知长方体ABCD —A 1B 1C 1D 1中,O 1是上底面对角线A 1C 1、B 1D 1的交点,体对角线A 1C 交截面AB 1D 1于点P ,求证:O 1、P 、A 三点在同一条直线上.x18.(本小题满分12分)设P 是双曲线221416x y -=右支上任一点,过点P 分别作两条渐近线的垂线,垂足分别为E 、F ,求||||P E P F ⋅的值.19.(本小题满分12分)已知椭圆22221(0)y x a b a b +=>>的一个焦点1(0,F -,对应的准线方程为y =.(1)求椭圆的方程;(2)直线l 与椭圆交于不同的两点M 、N ,且线段MN 恰被点13,22P ⎛⎫- ⎪⎝⎭平分,求直线l 的方程.20.(本小题满分13分)设F 1、F 2分别是椭圆2214xy +=的左、右焦点. (1)若P 是该椭圆上的一个动点,求12PF PF ⋅的最大值和最小值;(2)设过定点M (0,2)的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.21.(本小题满分14分)如图,在平面直角坐标系xOy 中,过定点C (0,p )作直线与抛物线22(0)x py p =>相交于A 、B 两点.(1)若点N 是点C 关于坐标原点O 的对称点,求ANB ∆面积的最小值;(2)是否存在垂直y 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,说明理由.湖北省黄冈中学2007年秋季高二数学期中考试参考答案1.D 2.A 3.A 4.C 5.B 6. A7.C 8.C 9.C 10.A 11.412.213114.221(1)8y x x -=-≤15.616.解:设点00(,),(,)M x y P x y ,则00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩,∴00262x x y y =-⎧⎨=⎩.代入2008y x =得:2412y x =-.此即为点P 的轨迹方程.17.证明:如答图所示,∵11111,AC B D O = ∴111111,.O AC O B D ∈∈ 又∵111111111111,,,.AC AC B D AB D O AC O AB D ⊂⊂∴∈∈平面平面平面平面又∵1111111,,..AC AB D P P AC P AB D P AC =∴∈∈∴∈ 平面平面平面 又∵111,,A AC A AB D ∈∈平面平面∴O 1、P 、A 三点都是平面AB 1D 1与平面A 1C 的公共点. ∴O 1、P 、A 三点在同一条直线上.18.解:渐近线方程为20x y ±=,设P (x 0, y 0),则222200001416416x y x y -=⇒-=由点到直线的距离公式有||||PE PF =,∴2200|4|16||||.55x y PE PF -⋅==19.解:(1)由2222.c ac a b c ⎧-=-⎪⎪-=⎨⎪⎪=+⎩3,1a b ==即椭圆的方程为221.9y x +=(2)易知直线l 的斜率一定存在,设l :313,.2222k y k x y kx ⎛⎫-=+=++ ⎪⎝⎭即设M (x 1, y 1),N (x 2, y 2),由223,221.9k y kx y x ⎧=++⎪⎪⎨⎪+=⎪⎩得2222327(9)(3)0.424k k x k k x k +++++-= ∵x 1、x 2为上述方程的两根,则2222327(3)4(9)0424k k k k k ⎛⎫∆=+-+⋅+-> ⎪⎝⎭①∴21223.9k k x x k ++=-+∵MN 的中点为13,22P ⎛⎫- ⎪⎝⎭,∴1212 1.2x x ⎛⎫+=⨯-=- ⎪⎝⎭ ∴223 1.9k k k +-=-+∴2239k k k +=+,解得k =3.代入①中,229927184(99)180424⎛⎫∆=-+⋅+-=> ⎪⎝⎭∴直线l :y =3x +3符合要求.20.解:(1)易知2,1,a b c ===12(0),0).F F设P (x, y ),则22222121(,),)313(38).44x PF PF x y x y x y x x ⋅=-⋅-=+-=+--=-因为[2,2]x ∈-,故当x =0,即点P 为椭圆短轴端点时,21PF PF ⋅有最小值-2. 当2x =±,即点P 为椭圆长轴端点时,21PF PF ⋅有最大值1.(2)显然直线x =0不满足题设条件,可设直线l :11222,(,),(,).y kx A x y B x y =+ 联立222,1,4y kx x y =+⎧⎪⎨+=⎪⎩消去y ,整理得221430.4k x kx ⎛⎫+++= ⎪⎝⎭ ∴12122243,.1144k x x x x k k +=-=++ 由2221(4)43430,4k k k ⎛⎫∆=-+⨯=-> ⎪⎝⎭得k k <① 又0900.AOB OA OB <∠<⇔⋅> ∴12120.OA OB x x y y ⋅=+>又222212121212222381(2)(2)2()44.111444k k k y y kx kx k x x k x x k k k --+=++=+++=++=+++∴222310.1144k k k -++>++即k 2<4. ∴-2<k <2. ②故由①②得2 2.k k -<<<< 21.解法一:(1)依题意,点N 的坐标为N (0,-p ),可设A (x 1, y 1),B (x 2, y 2),直线AB 的方程为y kx p =+,与x 2=2py 联立得22,.x py y kx p ⎧=⎨=+⎩ 消去y 得22220.x pkx p --= 由韦达定理得212122,2.x x pk x x p +==-于是121212||||2ABN BCN ACN S S S p x x p x x ∆∆∆=+=⨯-=-=2p =∴当k =0时,2min ().ABN S ∆=(2)假设满足条件的直线l 存在,其方程为y=a , AC 的中点为O ',l 与以AC 为直径的圆相交于点P 、Q ,PQ 的中点为H ,则,O H PQ O ''⊥点的坐标为11,.22x y p +⎛⎫⎪⎝⎭∵1||||2O P AC '=111|||2|,22y p O H a a y p +'=-=-- ∴22222211111||||||())(2)442p PH O P O H y p a y p a y ⎛⎫''=-=+---=- ⎪⎝⎭∴221||(2||)4().2p PQ PH a y a p a ⎡⎤⎛⎫==-+- ⎪⎢⎥⎝⎭⎣⎦ 令02p a -=,得2p a =,此时|PQ |=p 为定值,故满足条件的直线l 存在,其方程为2py =,即抛物线的通径所在的直线. 解法二:(1)前同解法一,再由弦长公式得12|||2AB x x =-又由点到直线的距离公式得d =11||2222ABN S d AB p ∆=⋅⋅=⋅= (2)假设满足条件的直线l 存在,其方程为y=a ,则以AC 为直径的圆的方程为11(0)()()()0x x x y p y y --+--=,将直线方程y=a 代入得211()()0,x x x a p a y -+--= 则21114()()4().2p x a p a y a y a p a ⎡⎤⎛⎫∆=---=-+- ⎪⎢⎥⎝⎭⎣⎦设直线l 与以AC 为直径的圆的交点为P (x 3, y 3),Q (x 4, y 4),则有34||||PQ x x =-=令0,22p p a a -==得,此时|PQ |=p 为定值,故满足条件的直线l 存在,其方程为2py =,即抛物线的通径所在的直线.。
湖北省黄冈中学2007年春高二政治期中考试试题命题:高二政治备课组校对:邹小红第Ⅰ卷(选择题,共70分)一、本卷共35小题,每小题2分,共计70分。
在每小题列出的四个选项中,只有一项是最符合题目要求的。
1.人“最为天下贵也”,从哲学上讲是因为()A.人具有主观能动性,动物却没有B.人能够制造工具进行劳动,动物则不能C.人有认识能力,办事情比动物周到、完善D.人脱离动物界,成为主宰世界的主人2.人们发挥主观能动性能否取得积极的效果,归根到底取决于()A.人们对发挥主观能动性的重视程度B.人们的活动能否取得统治阶级的支持C.是否具有必胜的信心D.人们能否尊重客观规律、正视客观条件3.所谓真理是指人们()A.对客观事物及其发展规律的正确认识B.对客观事物系统化、理论化的认识C.对事物现象的正确认识D.对事物本质和规律的认识长期以来,我们总认为,只要积极进取就能搞好工作;我们无视价值规律的存在,认为加强统一的计划经济就可以把经济搞好。
在这种思想的支配下,我们制定了一些脱离实际的政策,严重阻碍了国民经济的发展。
运用所学知识,完成4~5题。
4.上述材料中的认识和做法()A.夸大了人的主观能动性,忽视了规律的客观性B.夸大了规律的客观性,忽视了人的主观能动性C.否认了意识对物质的能动作用D.把规律的客观性与人的主观能动性混为一谈5.由于我们制定的政策脱离实际,因而严重阻碍了国民经济的发展。
这一事实说明()A.错误的意识不是对物质的反映B.意识对客观事物的发展具有巨大的反作用C.社会的存在和发展是由人的意识支配的D.物质资料的生产是人类社会存在和发展的基础“床前明月光,疑是地上霜。
……”在人们的心目中,月亮是圣洁和美丽的化身。
然而,俄罗斯科学家研究认为月球是地球上许多自然灾害的祸源。
于是,科学家们呼吁加强对月球的研究,为人类造福。
回答6~7题。
6.上述材料中,俄罗斯科学家对月球有新的不同认识。
这表明()①人们改造自然以自然的客观存在为基础②认识是一个由浅入深、不断发展的过程③知识构成是影响人们对客观事物认识的重要因素④认识的目的是透过现象达到本质A.①②B.①③C.③④D.①④7.俄罗斯科学家呼吁加强对月球的研究,为人类造福。
2007学年度第一学期高二年级期中考试物理试卷(考试时间:90分钟,满分:100分)考生注意: 1、1.天冷了,我们可以自己用双手互搓取暖,又可以把手放在炉边烤火取暖,这说明 ___________和_____________在改变物体的内能上是等效的。
2.两个温度不同的物体相互接触后,热量会自发地从_______________物体传递给________________物体。
3.物体内部具有的能量,叫做内能;包括分子_______________和分子_______________。
4.气缸中的气体从外界吸收了3×103J 的热量,同时气体推动活塞对外界做了5×103J 的功,那么气体的内能_________________(填“增加”或“减少”)_________________J 。
5.如图所示为电场中的一条电场线,电子从A 点运动到B 点电场力做_________________功(选填正、负),电势能________________(选填增大、减少、不变)。
6. 人们通过实验发现,一般物体所带电荷的电量不是任意的,而是某个最小电量的_________________倍,这个最小电量就叫做___________________。
7.在空间某一区域,有一匀强电场,一质量为m 的液滴,带正电荷,电量为q ,在此电场中恰能沿竖直方向作匀速直线运动,则此区域的电场强度的大小为________________N /C ,方向_______________________。
二、单选题(每题3分,共30分)8.物理学中引入点电荷的概念所采用的科学方法是 ( ) A .提出假设 B .类比引用 C .建立模型 D .等效替代9.物体沿斜面匀速下滑时,其机械能和内能的变化情况是 ( ) A .机械能减少,内能增加 B .机械能、内能均不变 C .机械能不变,内能增加 D .机械能增加,内能不变 10.关于电场线的说法,正确的是()A .电场线是在电场里实际存在的线B .电场强度方向总是跟电场力方向一致C .电场线上任一点切线方向总是跟置于该点的电荷受力方向一致D .电场中任何两条电场线都不可能相交11.关于物体内能的改变 ( )(1)如果做功和热传递同时发生,物体的内能一定要改变(2)物体内能的改变一定要通过做功或热传递或者两者同时进行(3)功和热量都可以用来量度物体的内能(4)功和热量都可以用来量度物体的内能的变化 A .(2)、(4)正确 B .(2)、(3)正确 C .(3)、(4)正确 D .(2)、(3)、(4)正确 12.下列说法中正确的是 ( )A .摩擦产创造了电荷。
湖北省黄冈中学2007年秋季高二语文期中考试试题命题人:潘文珍一、(30分,每小题3分)1.下列各组词语中加点的字,读音全都正确的一组是()A.愆.期(qiān) 租赁.(lìn) 朔.风凛冽(sù) 踵.武前贤(zhòng)B.纤.弱(qiān) 肇.始(zhào) 肆无忌惮.(diàn) 引吭.高歌(kàng)C.哽噎.(yè) 炽.烈(zhì) 匪.夷所思(fěi) 罄.竹难书(qìng)D.浸渍.(zì) 坍.塌(tān) 大腹便便..(pián) 自出机杼.(zhù)2.下列各组词语中,没有错别字的一组是()A.掇拾窈窕山青水秀陨身不恤B.驰骋廖落人才倍出飞扬跋扈C.蹊跷官邸戛然而止不能自已D.喧嚣气慨怡笑大方星斗阑干3.下列各句中,加点词语使用不恰当的一句是()A.金风阵阵,菊香遍野,梁子湖的螃蟹个儿大,只只都脑满..肠.肥.,吃起来鲜美无比。
B.这是一架电子分析天平,它能精确地称量微量物质,其准确性可以说是毫厘不爽....。
C.逸兴遄飞....的文化情怀,波澜壮阔的文化创造,是我们古老祖国永葆活力的源泉。
D.当今时代,新事物、新知识不断涌现,没有“增量”,只吃“存货”,谁都难免会有江郎才尽....的时候。
4.下列各句中,没有语病的一句是()A.在温总理访问非洲七国期间,承诺将继续向七国的社会发展提供援助,包括建立农业示范中心和乡村小学、派遣医疗队、赠送抗疟疾药品、培训各类人才等,受到了各国高度赞扬。
B.鲁迅文学奖因涉及广泛的题材、体裁,及时反映当前文学创作成就而备受关注;这个见证时代精神的文学奖项不仅成为衡量民族文学成就的标准,更是我国文化“软实力”的重要展示。
C.青藏铁路这条穿越世界屋脊的“雪域天路”被人们描绘成“商贸金桥、藏族坦途、文化通衢”。
它为青藏高原架起了通往祖国各地的通道,也使得更多的百姓圆了前往青藏旅游的梦想。
2008-2009学年度湖北省黄冈中学第一学期高二期中考试数学试卷(文)一、选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的). 1.直线20x y +-=的倾斜角为A .4π-B .4πC .23πD .43π 2.椭圆2255x y +=的焦点坐标是A .)0,2(±B .)2,0(±C .)0,4(±D . )4,0(±3.若图中的直线123l l l 、、的斜率分别为123k k k 、、,则有:A .123k k k <<B .312k k k <<C .321k k k <<D .132k k k << 4.若直线10ax y +-=与直线4(3)40x a y +-+=平行,则实数a 的值等于A .4B .4或1-C .35D .32-5.椭圆2211612x y +=上一点到其焦点1F 的距离为3,则该点到椭圆另一焦点2F 的距离为 A .13B .9C .5D .16.若不等式6|2|<+ax 的解集为(-1,2),则实数a 等于A .8B .2C .-4D .-87.曲线422=+y x 与曲线))2,0[(sin 22cos 22πθθθ∈⎩⎨⎧+=+-=参数y x 关于直线l 对称,则直线l 的方程为A .02=+-y xB .0=-y xC .02=-+y xD .2-=x y9.如果椭圆22221(0)x y a b a b+=>>上存在一点P ,使点P 到左准线的距离与它到右焦点的距离相等,那么椭圆的离心率的范围是A .1]B .1,1)C .1]D .1,1)10.经济学中的“蛛网理论”(如下图),假定某种商品的“需求—价格”函数的图像为直线1l ,“供给—价格”函数的图像为直线2l ,它们的斜率分别为21,k k ,1l 与2l 的交点P 为“供给—需求”平衡点,在供求两种力量的相互作用下,该商品的价格和产销量,沿平行于坐标轴的“蛛网”路径,箭头所指方向发展变化,最终能否达于均衡点P ,与直线1l 、2l 的斜率满足的条件有关,从下列三个图中可知最终能达于均衡点P 的条件为A .021>+k kB .021=+k kC .021<+k kD .21k k +可取任意实数 二、填空题:(本大题共5小题,每小题5分,共25分.把答案填在题中横线上). 11.倾斜角为3π且在y 轴上截距为2的直线方程是______ ______. 12.中心在原点,准线方程为4x =±,离心率为21的椭圆方程是_________ __ . 13.已知圆C :221x y +=,点()2,0A -及点(3,)B a ,从A 点观察B 点,要使视线被圆C挡住,则实数a 的取值范围是 .14.过点(1,2)的直线l 将圆22(2)4x y -+=分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率k = .15.若直线1y kx =+与圆2240x y kx my +++-=交于M 、N 两点,且M 、N 关于直线0x y +=对称,则不等式组1001kx y kx my y -+≥⎧⎪-≤⎨⎪≥-⎩表示的平面区域面积是____ ________.三、解答题:( 本大题共6小题,共75分.解答应写出文字说明或演算步骤.) 16.(本小题12分)若||1a ≤,||1b ≤,试比较||||a b a b ++-与2的大小关系. 17.(本小题12分)设圆上点(2,3)A 关于直线y =x 的对称点仍在圆上,且该圆与直线20x y -+=相交所得的弦长为18.(本小题12分) 已知ABC ∆的顶点)3,1(--B ,AB 边上高线CE 所在直线的方程为013=--y x ,BC 边上中线AD 所在的直线方程为0398=-+y x .(Ⅰ)求点A 的坐标; (Ⅱ)求直线AC 的方程;(Ⅲ)求直线AB 到直线BC 的角的正切值.19.(本小题12分)点)1,3(-P 在椭圆)0(12222>>=+b a by a x 的左准线上,已知一束光线过点P 且沿斜率为25-的直线传播,经直线02=+y 反射后通过椭圆的左焦点. (Ⅰ)求反射光线所在直线方程; (Ⅱ)求椭圆的离心率.20.(本小题13分) 某研究所计划利用“神七”宇宙飞船进行新产品搭载实验,计划搭载新产品A 、B ,该所要根据该产品的研制成本、产品重量、搭载实验费用、和预计产生收益来决定具体安排.通过调查,有关数据如下表:试问:如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?21.(本小题14分) 已知椭圆22122:1(0)x y C a b a b+=>>直线:2l y x =+与以原点为圆心、椭圆1C 的短半轴长为半径的圆相切. (Ⅰ)求椭圆1C 的方程;(Ⅱ)设椭圆1C 的左焦点为1F ,右焦点为2F ,直线1l 过点1F 且垂直于椭圆的长轴,动直线2l 垂直1l 于点P ,线段2PF 的垂直平分线交2l 于点M ,求动点M 的轨迹2C 的方程; (Ⅲ)过椭圆1C 的焦点2F 作直线l 与曲线2C 交于A 、B 两点,当l 的斜率为12时,直线1l 上是否存在点M ,使?AM BM 若存在,求出M 的坐标,若不存在,说明理由.。
湖北省黄冈中学2007年春季高二数学期末考试试题(文)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,用时120分钟.第Ⅰ卷(选择题,满分50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.函数的单调减区间为( )A.(1,2)B.(-1,1)C.(,-1)D.2.A 一个学生通过某种英语听力测试的概率是12,他连续测试2次,那么其中恰有1次获得通过的概率是 ( )A .12B .13C .14D .343.从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有 ( )A .300种B .240种C .144种D .96种 4. “p 或q 为真命题”是“p 且q 为真命题”的 ( )A 充分不必要条件;B 必要不充分条件;C 充要条件;D 既不充分又不必要条件5.下列命题中不正确的是(其中,l m 表示直线,,,αβγ表示平面)( )A.,,l m l m αβαβ⊥⊥⊥⇒⊥ B.,,l m l m αβαβ⊥⊂⊂⇒⊥ C.,//αγβγαβ⊥⇒⊥ D. //,,l m l m αβαβ⊥⊂⇒⊥6.已知(p x x -22)6的展开式中,不含x 的项是2720,那么正数p 的值是 ( ) A . 1 B .2 C .3 D .47.在一次歌手大奖赛上,七位评委为歌手打出的分数如下: 9.4, 8.4, 9.4, 9.9, 9.6, 9.4, 9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为 ( ) A.9.5, 0.04 B.9.5, 0.016 C.9.4, 0. 484D.9.4, 0.0168.已知n n n x a x a a x x x +++=++++++ 102)1()1()1(,121509n a a a n -+++=-,则n 的值 ( )A .7B .8C .9D .10 9. 一个电路如图所示,A 、B 、C 、D 、E 、F 为6个开关,其闭合的概率都是1,2且是互相独立的,则灯亮的概率是 .( )A .164B .5564C .18D .11610.若函数f (x )=32ax bx cx d +++的图象如图所示,则一定有( )A.a <0 b >0 c >0 d <0 B .a <0 b <0 c >0 d <0 C .a <0 b >0 c <0 d <0 D .a <0 b <0 c <0 d <0第Ⅱ卷(非选择题,满分100分)二、填空题:本大题共5小题,每小题5分,共25分.11.某企业三月中旬生产A 、B 、C 三种产品共3000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:由于不小心,表格中A 、C 产品的有关数据已被污染看不清楚,统计员只记得A 产品的样本容量比C 产品的样本容量多10,请你根据以上信息补全表格中的数据. 12.曲线326310x x y ---=在点(1,2)-处的切线方程为________。
湖北省黄冈中学2007年春高二语文期中考试试题命题:刘折谷审稿:郭建设本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(主观题)两部分。
共150分,考试时间150分钟第Ⅰ卷(选择题,共48分)一、(18分,每小题3分)1.下列加点的字读音全都正确的一组是( )A.蹉.跎(cuō) 庇.护(pì) 稗.官(bài) 汗涔.涔(jīn)B.挑剔.(tī) 沏.茶(qī) 褊.(biǎn)小轻鸢.(yuān)剪掠C.叱咤.(chà) 饿殍.(piǎo) 筵.席(yán) 一蹴.(cù)而就D.嗜.好(shì) 沟壑.(hè) 殓.衾(liàn) 溘.然长逝(hé)2.下列词语中没有错别字的一组是( )A.慰籍福址笑靥无倚无靠根深蒂固B.坟茔澄彻篡位妍媸必露朝暾夕月C.谲诈累赘邂逅清风夜戾未雨绸缪D.谬悠暮霭伉俪流言飞语金榜题名3.依次填入下列各处横线上的词语,最恰当的一组是( )①有着一百多年种植罂粟历史的缅甸佤邦是“金三角”一大毒源地,随着“6·26”国际禁毒日的临近,佤邦成为举世瞩目的____________。
②诗人是随便什么人都可以当的吗?“__________”,一员武将的故事,还要多少持刀舞剑者的鲜血才能写成,那么,有思想光芒又有艺术魅力的诗人,要有多少时代的运动,历史的风云,正与邪的搏击,爱与恨的纠缠,才能铸造啊!③节约是实现可持续发展的重要举措,__________今天要厉行节约,__________我们的国家很富了,也要保持勤俭节约的优良作风。
A.交点一将功成万骨枯固然/然而B.焦点一将功成万骨枯不但/即使C.交点不斩楼兰终不还不但/即使D.焦点不斩楼兰终不还固然/然而4.下列各项中,加点的熟语使用恰当的一项是( )A.记得有一次,妈妈坚持要求我背乘法表,背不出就不准我吃饭。
妈妈唱红脸...,所以当时我更喜欢爸爸...,爸爸就唱白脸些。
社区营造助推老旧社区“微改造”作者:黄旭欣李嘉梵林丰煌来源:《社会与公益》2020年第02期摘要:随着我国人口结构的变化,老旧社区增设电梯问题已成为社会关注的民生热点话题。
在2019年政府工作报告中,去年“鼓励有条件的加装电梯”转变成今年的“支持加装电梯”。
随着城市化不断深化发展,城市社区“陌邻化”问题日益突出,增梯第一步却被“协商难”问题阻拦了。
如何助推老楼增梯,既是实践的难题,也是理论的难题。
本文基于社区营造理论助推老旧社区“微改造”,以集体行动来处理共同面对的社区生活问题,解决问题的同时创造共同的生活福祉,逐渐在居民彼此之间以及居民和社区环境之间建立起紧密的社会联系,打破“陌邻化”以实现老旧社区再生。
关键词:增设电梯;协商;社区营造;老旧社区;微改造一、研究背景及问题提出(一)人口老龄化的现实紧迫性按照老龄化率划分标准,人口老龄化率的占比超过20%就代表这个地方进入中度老龄。
根据广州市民政局1018年8月份发布的数据,广州市已经有3个区进人中度老龄化,分别是越秀区、海珠区、荔湾区(见表1)。
随着社会的发展,子女们的居住观念发生转变,导致空巢老人居家养老问题突出,目前推崇的居家养老方式使得老人在日常生活中需要更多的独立自主性,老人出行成为首要考虑的问题,老旧社区增设电梯诉求就显得尤为迫切。
(二)陌邻化问题日益突出随着我国城市化进程加快,社会结构加速转型、城镇化进程深化推进,人口流动性加剧,还有单位社会的终结,过去基于血缘、地缘关系的社区、单位制社区形成的“熟人社区”已去“熟悉化”,加重了城市社区的“陌邻感”。
社区结构从“熟人社区”向“陌邻社区”转型,由于成员具有高流动性、空间结构的开放性、权利关系扁平化以及公共服务的社会化,社区居民归属感不强、参与的积极性不高,导致社区关系纽带的弱化和社群自主治理能力的缺失,社区实务实际上成了政府的“独角戏”,很难得到居民的有效配合,这在无形中给老旧社区增设电梯设置了“拦路石”。
湖北省黄冈中学高二上学期期中考试(数学理)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列命题中,正确的是( )A .点在区域内B .点在区域内C .点在区域内D .点在区域内2.若关于 ,x y 的方程 2220x y m x y x y n +++-+= 表示的曲线是圆,则 n m + 的取值范围是(A )5(,)4-∞ (B )5,4⎛⎤-∞ ⎥⎝⎦ (C )5(,)4+∞ (D )5,4⎡⎫+∞⎪⎢⎣⎭3.已知两条直线和互相垂直,则等于( )A .2B .1C .0D .4. 图中共顶点的椭圆①、②与双曲线③、④的离心率分别 为,其大小关系为( ) A.B. C. D.5.一动圆与两圆和都外切,则动圆圆心轨迹为( )A.圆B.椭圆C.双曲线的一支D.双曲线6.已知为两个不相等的非零实数, 则方程与所表示的曲线可能是( )7.直线与曲线不相交,则的值为( )A.或3 B. C.3 D.[,3]中的任意值8.设分别为具有公共焦点、的椭圆和双曲线的离心率,为两曲线的一个公共点,且满足,则的值为()A.1 B. C.2 D.不确定9.若圆上有且仅有两个点到直线的距离等于1,则半径的取值范围是()A. B. C. D.10.过原点作两条相互垂直的直线分别与椭圆交于、与、,则四边形面积最小值为()A. B. C. D.二、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上.)11.圆心在直线上且与轴相切于点(1,0)的圆的方程为.12.椭圆:的长轴长为,右准线方程为.13.轴上有一点,它与两定点,的距离之差最大,则点坐标是.14.点在椭圆上运动,、分别在两圆和上运动,则的取值范围为_________.15已知椭圆的左焦点为,设过点且不与坐标轴垂直的直线交椭圆于、两点,线段的垂直平分线与轴交于点,则在以下四个值中,①;②;③;④0,点横坐标的可能取值为_________.三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.)16.(本小题满分11分)(I)画出(为参数)表示的图形;(II)求由曲线所围成图形的面积.17.(本小题满分12分)若双曲线过点,其渐近线方程为.(I)求双曲线的方程;(II)已知,,在双曲线上求一点,使的值最小.18.(本小题满分12分)直线过点.(I)若直线的倾斜角的正弦值为,求的方程;(II)若直线分别交轴、轴的正半轴于、两点,当取最小时,求直线的方程.19.(本小题满分12分)预算用元购买单件为50元的桌子和椅子,希望使桌椅的总数尽可能的多,但椅子不少于桌子数,且不多于桌子数的1.5倍,问桌、椅各买多少张才行?本小题满分14分)已知圆.(I)若直线过点,且与圆交于两点、,=,求直线的方程;(II)过圆上一动点作平行于轴的直线,设直线与轴的交点为,若向量,求动点的轨迹方程;(Ⅲ)若直线,点A在直线N上,圆上存在点,且(为坐标原点),求点的横坐标的取值范围.21. (本小题满分14分)已知椭圆上存在一点到椭圆左焦点的距离与到椭圆右准线的距离相等.(I)求椭圆的离心率的取值范围;(II)若椭圆上的点到焦点距离的最大值为,最小值为,求椭圆的方程;(Ⅲ)若直线与(II)中所述椭圆相交于、两点(、不是左右顶点),且以为直径的圆经过椭圆的右顶点,求证:直线过定点,并求出该定点坐标.参考答案AADAC CACCA; 14,; ; ; ②③16. (I)略;(II) 17.(Ⅰ)(II),最小值为18.(I)或,所以的方程为或(II)设直线方程为,则∵,∴,即时取“=”号.所求直线的方程为.19. 设桌椅分别买X,Y张,把所给的条件表示成不等式组,即约束条件为由∴B点的坐标为(25,)因为X∈N,Y∈N*,故取Y=37 ,故有买桌子25张,椅子37张是最好选择Ⅰ)①当直线垂直于轴时,则此时直线方程为,满足题意.②若直线不垂直于轴,设其方程为,即设圆心到此直线的距离为,则∴,,故所求直线方程为,综上所述,所求直线为或(Ⅱ)设点,,则∵,∴即,又∵,∴由已知,直,线M //OX轴,所以,,∴点的轨迹方程是() .(Ⅲ)依题意点,设.过点作圆的切线,切点为,则.从而,即,就是,,,解得.21. (Ⅰ)设点P的坐标为,则|PF|=,∴=,整理得:,而,∴,解得(II),,∴椭圆的方程为.(Ⅲ)设,联立得.则又,∵椭圆的右顶点为,解得:,且均满足,当时,的方程为,直线过定点,与已知矛盾.当时,的方程为,直线过定点,∴直线过定点,定点坐标为.。
湖北省黄冈中学2007年春高二英语期中考试试卷本试卷共150分。
考试用时120分钟。
第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,共7.5分)听下面5段对话,每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷和相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.How much did the man pay for the cap?A.$10. B.$40. C.$50.2.Where is Tom now?A.America.B.Brazil. C.Britain.3.What does the woman suggest the man should do?A.Pay less rent. B.Make fewer telephone calls. C.Pay several bills.4.What does the woman suggest they do?A.Check the figures later today. B.Do the calculations again tomorrow.C.Bring a calculator tomorrow.5.Why will Ed not immediately suggest to Cindy?A.He will be out for several months. B.He wants to wait for the holidays.C.He doesn’t see the romance in the relationship.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题。
每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
湖北省黄冈中学2007年春季高二期中考试物 理 试 题命题人:丁汝辉第Ⅰ卷(选择题 共45分)一、本题共15小题.每小题3分,共45分.在每小题给出的四个选项中,有的只有一个选项正确,有的多个选项正确,全部选对的得3分,选对但不全的得2分,有选错的得0分. 1.由阿伏加德罗常数和一个水分子的质量、一个水分子的体积,不能..确定的物理量是 A .1摩尔水的质量B .1摩尔水蒸气的质量C .1摩尔水的体积D .1摩尔水蒸气的体积2.夏天,在平静无风的沙漠上,向远方望去,有时眼前会突然出现亭台楼阁、城墙古堡,或者其他物体的幻影,虚无缥缈,变幻莫测,这就是沙漠中的“蜃景”,如图所示.下列关于沙漠中“蜃景”的成因及说法正确的是 A .沙漠中“蜃景”的形成是由于光发生了全反射 B .沙漠中“蜃景”的形成是由于光发生了干涉 C .沙漠地表附近的空气折射率从下到上逐渐增大 D .沙漠地表附近的空气折射率从下到上逐渐减小3.将甲分子固定在坐标原点O ,乙分子位于x 轴上.甲、乙分子间作用力与距离间关系的函数图象如图所示.若把乙分子从r 3处由静止释放,仅在分子力作用下,则乙分子从r 3到r 1的过程中 A .两分子的势能一直增大 B .两分子的势能先增大后减小 C .乙分子的动能一直增大D .乙分子的动能先减小后增大4.下列关于波的说法正确的是A .偏振是横波特有的现象B .光导纤维传递信号利用了光的全反射原理C .太阳光下的肥皂泡表面呈现出彩色条纹,这是光的衍射现象D .凸透镜的弯曲表面向下压在另一块平板玻璃上,让光从上方射入,能看到亮暗相间的同心圆,这是光的干涉现象5.如图所示,一细束复色光从空气中射到半球形玻璃体球心O 点,经折射分为a 、b 两束光,分别由P 、Q 两点射出玻璃体.PP'、QQ'均与过O 点的界面法线垂直.设光线a 、b 在玻璃体内穿行所用的时间分别为t a 、t b ,则t a :t b 等于 A .QQ':PP' B .PP':QQ' C .OP':OQ' D .OQ':OP'6.太阳光中包含的某种紫外线的频率为v 1,VCD 影碟机中读取光盘数字信号的红色激光的频率为v 2,人体透视使用的X 光的频率为v 3,则下列结论正确的是 A .这三种频率的大小关系是v 1<v 2<v 3B .紫外线是原子的内层电子受激发产生的C .红色激光是原子的外层电子受激发产生的D .X 光是原子核受激发产生的7.下列说法中正确的是A .热现象过程中不可避免地出现能量耗散现象,能量耗散不符合热力学第二定律B .布朗运动是液体分子的运动,它说明分子永不停息地做无规则运动C .一定质量的理想气体在等温膨胀过程中,一定从外界吸收热量,在单位时间内与容器壁单位面积碰撞的气体分子数一定减少D .热机可以将内能全部转化为机械能8.太阳表面的温度约为6000K ,主要发出可见光.人体的温度约为310K ,主要发出红外线.宇宙间的平均温度约为3K ,所发出的辐射称为“3K 背景辐射”.“3K 背景辐射”属于电磁波谱中的哪一个波段? A .X 射线 B .紫外线 C .可见光 D .无线电波9.飞机在万米高空飞行时,舱外气温往往在-50℃以下.在研究大气现象时可把温度、压强相同的一部分气体作为研究对象,叫做气团.气团直径可达几千米.由于气团很大,边缘部分与外界的热交换对整个气团没有明显影响,可以忽略.用气团理论解释高空气温很低的原因,应该是A .地面的气团在上升到高空的过程中不断膨胀,同时大量向外界放热,使气团温度降低B .地面的气团在上升到高空的过程中不断收缩,同时大量从外界吸热,使周围温度降低C .地面的气团在上升到高空的过程中不断膨胀,气团对外界做功,气团内能大量减少,气团温度降低D .地面的气团在上升到高空的过程中不断收缩,外界对气团做功,气团内能大量减少,气团温度降低10.2005年诺贝尔物理学奖授予对激光研究作出杰出贡献的三位科学家.如图所示是研究激光相干性的双缝干涉示意图,挡板上有两条狭缝S 1、S 2,由S 1和S 2发出的两列波到达屏上时会产生干涉条纹.已知入射激光波长为λ,屏上的P 点到两缝S 1和S 2的距离相等,如果把P 处的亮条纹记作第0号亮纹,由P 向上数与0号亮纹相邻的亮纹为1号亮纹,与1号亮纹相邻的亮纹为2号亮纹,设P 1处的亮纹恰好是10号亮纹,直线S 1P 1的长度为r 1,S 2P 1的长度为r 2,则r 2-r 1等于A .5λB .10λC .20λD .40λ11.如图所示,用三块完全相同且两面平行的玻璃板组成一等边三角形.由红光和蓝光组成的一细束复色光平行底面BC 从AB 面射入,由AC 面射出,则从AC 面射出的光A .分成两束,上边为蓝光,下边为红光B .分成两束,上边为红光,下边为蓝光C .仍为一束,并与底面BC 平行D .仍为一束,并向底面BC 偏折12.如图所示的四种明暗相间的条纹,分别是红光、蓝光各自通过同一个双缝干涉仪器形成的干涉图样以及黄光、紫光各自通过同一个单缝形成的衍射图样(黑色部分表示亮纹).则在下面的四个图中从左往右排列,亮条纹的颜色依次是A.红黄蓝紫B.红紫蓝黄C.蓝紫红黄D.蓝黄红紫13.一物理实验爱好者利用如图所示的装置研究气体压强、体积、温度三量间的变化关系.导热良好的汽缸开口向下,其内盛有理想气体,汽缸固定不动,缸内活塞可无摩擦滑动且不漏气.一温度计通过缸底小孔插入缸内,插口处密封良好,活塞下挂一个沙桶,沙桶装满沙子时,活塞恰好静止.现给沙桶底部钻一个小洞,细沙慢慢漏出,外部环境温度恒定,则A .气体压强增大,内能增加B .外界对气体做正功,温度计示数不变C .气体体积减小,同时向外界放热D .外界对气体做正功,温度计示数增加14.如图所示,在距离竖直墙壁为d 处,有一个点光源S .一个小球从S 处以初速度v 0水平抛出,到小球碰到墙之前,关于小球在墙壁上的影子的运动,下列说法正确的是 A .影子做自由落体运动 B .影子做匀速直线运动C .若小球的初速度v 0减小,则影子的速度增大D .点光源与墙壁的间距d 增大,则影子的速度增大15.在研究材料A 的热膨胀特性时,可采用如图所示的干涉实验法.A 的上表面是一光滑平面,在A 的上方放一个两面平P 1PS S 激光整的玻璃板B ,B 与A 上表面平行,在它们之间形成一厚度均匀的空气薄膜.现用波长为λ的单色光垂直照射玻璃板B ,同时对A 缓慢加热,在B 上方观察到B 板的亮度发生周期性变化.当温度为t 1时最亮,然后亮度逐渐减弱至最暗;当温度升到t 2时,亮度再一次增到最亮.则A .出现最亮时,B 上表面反射光与B 下表面反射光叠加后加强 B .出现最亮时,B 下表面反射光与A 上表面反射光叠加后加强C .温度从t 1升至t 2过程中,A 的高度增加λ/4D .温度从t 1升至t 2过程中,A 的高度增加λ/2第Ⅱ卷(非选择题 共55分)二、本题共3小题.每小题5分,共15分.把答案填写在题中的横线上或按题目要求作答.16.几位同学做“用插针法测定玻璃的折射率”实验,图示直线aa ′、bb ′表示在白纸上画出的玻璃的两个界面.几位同学进行了如下操作:A .甲同学选定的玻璃两个光学面aa ′、bb ′不平行,其它操作正确.B .乙同学在白纸上正确画出平行玻璃砖的两个界aa ′、bb ′后,将玻璃砖向aa ′方向平移了少许,其它操作正确.C .丙同学在白纸上画aa ′、bb ′界面时,其间距比平行玻璃砖两光学界面的间距稍微宽些,其它操作正确. 上述几位同学的操作,对玻璃折射率的测定结果没有影响的是______(填写字母代号).17.如图所示,在“用双缝干涉测光的波长”的实验中,光具座上放置的光学元件有光源、遮光筒和其他元件,其中a 、b 、c 、d 各装置的名称依次是下列选项中的_________.A .a 单缝、b 滤光片、c 双缝、d 光屏B .a 单缝、b 双缝、c 滤光片、d 光屏C .a 滤光片、b 单缝、c 双缝、d 光屏D .a 滤光片、b 双缝、c 单缝、d 光屏 对于某种单色光,为增加相邻亮纹(或暗纹)之间的距离,可采用的方法是(任写一种方法)_______________________.18.在“用油膜法估测分子的大小”的实验中,用移液管量取0.10ml 油酸,倒入标称250ml 的容量瓶中,再加入酒精使油酸溶解,最后得到250ml 的溶液.然后用滴管吸取这种溶液,向小量筒中滴入100滴,溶液的液面达到量筒中1ml 的刻度处.再用滴管取配好的油酸溶液,向撒有痱子粉的盛水的浅盘中滴下5滴,在液面上形成油酸薄膜,待油膜稳定后,放在带有正方形坐标格的玻璃板下观察油膜,如图所示.坐标格的正方形的大小为2cm×2cm .由图可以估算出油膜的面积是_______m 2;由此估算出油酸分子的直径是_________m (两空结果都保留两位有效数字).三、本题共4小题,共40分.解答应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位. 19.(8分)风能是一种环保型能源,我国的风力资源丰富,风力发电有广阔前景.风力发电是将风的动能转化为电能.如图所示为某地的风力发电站,共有N 台风力发电机,设每台发电机风叶长均为L ,叶片旋转所围成的圆面积内的所有风能转化为电能的效率为η,当地空气密度为ρ,平均风速为v .求该风力发电站总装机容量(发电总功率)P 的数学表达式.光源 a b cd20.(10分)如图所示,透明液体折射率为n h=1m处水平放置一平面镜,平面镜的反射面朝上、下表面涂黑,并可绕过中点O的水平轴在竖直平面内逆时针旋转,一束激光垂直液面射向平面镜O点,并被平面镜反射,在上方可看到液面O'点处有一个光点.t0=0时刻平面镜开始逆时针匀速转动,t1=0.5s时刻光点从液面上A点(图中未画出)消失,求:(1)A点到O'点的距离和平面镜转动的角速度ω;(2)光点再次在液面上出现的时刻t2.21.(10分)如图所示,ABCA =30°.一束光线在纸面内从AB 的中点O 射入棱镜,光线与AB 面间的夹角为α.若不考虑光在AB 面和BC 面上的反射. (1)若α=45°,请作出光路图并标明相应的角度.(2)要使射入O 点的光线能从AC 面射出,夹角α(0°<α<90°)应满足什么条件?结果可用反三角函数表示.22.(12分)如图甲所示,abcd 是位于竖直平面内的正方形闭合金属线框,金属线框的质量为m ,电阻为R .在金属线框的下方有一匀强磁场区域, MN 和M'N'是匀强磁场区域的水平边界,并与线框的bc 边平行,磁场方向与线框平面垂直.现使金属线框由距MN 的某一高度处从静止开始下落,金属线框由开始下落到完全穿过匀强磁场区域瞬间整个运动过程中的速度—时间图象如图乙所示,图象中坐标轴上所标出的字母均为已知量.求:(1)金属线框的边长; (2)磁场的磁感应强度;(3)金属线框在整个下落过程中所产生的热量.湖北省黄冈中学2007年春季高二期中考试物理试题答题卡16.(5分)___________ 17.(5分)___________、________________________________________________________ 18.(5分)___________、____________1 2 3 4v v vN ′MNM ′a cd 图甲图乙19.(8分)16.(5分)___AB_____ 17.(5分)____C___、仅增加双缝到光屏的距离(或仅减小双缝间距等等)18.(5分)_2.4(±0.2)×10-2、8.3(±1)×10-10 19.(8分)解析:对每台风力发电机,叶片旋转所形成的圆面积为2S L π=t 秒内流过该圆面积的空气柱体积为2V Svt L vt π== (2分)空气柱体的质量为2m V L vt ρρπ== 风柱体的动能为2231122k E mv L v t ρπ==(2分) 转化成的电能为2231122k E E mv L v t ηηηρπ===(2分) 风力发电站发电总功率为2312E P N N L v t ηρπ==(2分)20.(10分)解析:(1)设光从水射向空气发生全反射的临界角为C ,则1sin C n ==rad 4C π= (1分) 此时,光点从液面上A 点消失,如图所示,则 A 点到O'点的距离tan 1m s h C ==. (1分) 此过程中平面镜转过的角度为rad 28C πθ== (2分) 所以,角速度1/rad/s 4t πωθ==(2分)(2)平面镜继续旋转,反射光正好照射到B 点(与A 关于O' 的对称点)时,光从水面射出.此时平面镜共转过的角度为15228C πθπ'=-=(2分) 则27.5s t θω'==.(2分)21.(10分)解析:(1)光线射向AB 面的入射角θ1=45°,根据折射定律,有12sin sin θθ=,解得θ2=30°(1分) 设光在该透明介质中的临界角为C ,则sin C =C =45° (1分)光线射向AC 面的入射角θ3=90°-30°=60°>C ,故发生全反射.而θ4=θ3,故反射光线垂直于BC 面从棱镜中射出,其光路如图所示. (3分) (2)当射向AC 面的光线恰好发生全反射时,由几何关系可知,在AB 界面的折射角θ2'=15° (2分) 设此时1αα=,则o 1osin(90)sin15α-=解得o o 190)α=- (1分) 当α角为90°时,射向AC 的光线入射角30°,不会发生全反射,故要使射入O 点的光线能从AC 面射出,夹角α应满足o o o 90)90α-<<(2分)22.(12分)解析:(1)由图象可知,金属线框进入磁场过程中做匀速直线运动,速度为v 1,运动时间为t 2-t 1,所以金属框的边长121()l v t t =- (2分)(2)在金属线框进入磁场的过程中,金属线框所受安培力大小等于重力大小,则mg BIl = (1分)1Blv I R=(1分)解得B (1分)(3)金属线框在进入磁场过程中,重力做正功,安培力做负功,由动能定理得 W 重-W 安=0(1分) 设金属线框产生的热量为Q 1,则1Q W =安(1分) 所以,Q 1=W 重=mgl(1分)金属线框在离开磁场过程中,重力做正功,安培力做负功,由动能定理得22321122W W mv mv '-=重安- (2分)设金属线框产生的热量为Q 2,则2Q W '=安(1分)线框产生的总热量Q =Q 1+Q 2解得221212312()()2Q mgv t t m v v =-+-(1分)。
湖北省黄冈中学2006年秋—2007年春高二期末考试数学(文)试题命题人:卞清胜 袁小幼 校对:袁小幼一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的4个选项中,只有1项是符合题目要求的.)1.已知直线y kx =被圆222x y +=所截得的弦AB 的长等于A .2B .4C.D2.垂直于同一条直线的两条直线的位置关系是A .平行B .相交C .异面D .平行、相交、异面都有可能3.右图是一个无盖的正方体盒子展形后的平面图,A 、B 、C 是展开图上的三点,则在正方体盒子中,∠ABC 的值为 A .180°B .120°C .60°D .45°4.已知平面α、β,直线m 、n ,若,,,,m n m n αβαβ⊥⊂⊂⊥且 则必有A .m β⊥B .n α⊥C .m n βα⊥⊥且D .m n βα⊥⊥或5.抛物线y =25x 2的通径长是A .25B .252C .125D .2256.一个与球心距离为1的平面截球所得的圆面积为π,则球的半径为A .2BCD .17.如图,正三棱柱ABC —A 1B 1C 1的各棱长均为2,E 、F 分别是 AB 、A 1C 1的中点,则EF 的长是 A .2BCDA 18.如图,已知正四棱锥S —ABCD,E 是SA 的中点,则异面直线BE 与SC 所成的角的大小是 A .90°B .60°C .45°D .30°9.已知底面三角形的边长分别为3,4,5,高为6的直三棱柱形的容器,其内放置一气球,使气球充气且尽可能地膨胀(保持为球的形状),则气球表面积的最大值为 A .2πB .3πC .4πD .5π10.点P 是椭圆2212516x y +=上一点,F 1、F 2是该椭圆的两个焦点,若△PF 1F 2的内切圆半径为32,则当点P 在第一象限时,点P 的纵坐标为 A .2 B .4C. D二、填空题(本大题共5小题,每小题5分,共25分.)11.赤道上有A 、B 两点,它们经度相差60°,若地球半径为R ,则AB 两点的球面距离为____________.12.双曲线2214x y m-=的渐近线方程是y x =,则双曲线的焦距为_________. 13.如右图,设P 是60°的二面角α—l —β内的一点,,PA PB αβ⊥⊥, A 、B 是垂足,P A =4,PB =2,则AB 的长是__________.14.已知点P (x, y )的坐标满足条件41x y y x x +⎧⎪⎨⎪⎩≤≥≥,点O 为坐标原点,那么|PO |的最小值等于_________,最大值等于____________.15.正方体ABCD —A 1B 1C 1D 1的棱长为1,在正方体的表面上与点A的点的集合形成一条曲线,这条曲线的长度为____________.BA E SD答 题 卡三、解答题(本大题共6小题,共75分. 解答时应写出文字说明、证明过程或演算步骤.)16.(本小题满分12分)设直线l : y =3x -1与双曲线22221y x a b -=相交于A 、B 两点,且弦AB中点的横坐标为1,2求:(1)22a b 的值; (2)求双曲线离心率.17.(本小题满分12分)山坡所在平面β与水平面α成30°角,坡面上有一条与水平线AB 成30°角的直线小路CD ,小明沿小路上坡走了200米的路程到达他外婆家(点E ),求小明外婆家到水平面的距离.A18.(本小题满分12分)已知椭圆4x 2+y 2=1及直线y=x+m . (1)当直线和椭圆有公共点时,求实数m 的取值范围; (2)求被椭圆截得的最长弦所在的直线方程.19.(本小题满分12分)在底面边长为a ,侧棱长为2a 的正四棱柱ABCD —A 1B 1C 1D 1中, (1)求证:平面BD 1⊥平面AB 1C ; (2)求点B 到平面AB 1C 的距离.BDCA1A 1C 1D 120.(本小题满分13分)如图,在四棱锥P—ABCD中,底面是矩形且AD=2,AB PA==,P A⊥底面ABCD,E是AD的中点,F在PC上.(1)求异面直线P A与EB的距离;(2)F在何处时,EF⊥平面PBC;(3)求直线BE与平面PBC所成的角.D21.(本小题满分14分)如图,在斜三棱柱ABC —A 1B 1C 1中,侧面AA 1B 1B ⊥底面ABC ,侧棱AA 1与底面ABC 成60°的角,AA 1=2,底面是边长为2的正三角形,其重心为点G . E是线段BC 1上一点,且11.3BE BC (1)求此三棱柱的体积;(2)求证:GE ∥侧面AA 1B 1B ;(3)求平面B 1GE 与底面ABC 所成锐二面角的大小.高二文科数学答案1.C y=kx 过圆心(0,0),∴2AB r ==2.D 3.C 复原后的图为△ABC 为正△,∴∠ABC =60°4.D 5.C 21122525x y p ==6.B r =1, d =1,∴R =7.C EF ==8.B如图,连AC ,取AC 中点O ,连OB 、EO ,则EO ∥SC ,∴∠BEO 为所求角1122EO SC BO BD ====,又∵BO ⊥平面SAC ,∴BO ⊥EO ,∴tan 2BOBEO EO ∠===BEO =60°. 9.C 21(345)1,44.2R S R ππ=+-===10.B12163,2PF F p p S y y ∆==12121211(||||||)(106)812.22PF F S PF PF F F r r r ∆=++=+==∴312,4p p y y =∴=11.33RAB R ππ=12.22b a == ∴m =3, ∴c2=7, ∴C =13.∠APB =120°,2AB == 14如图,△ABC 为可行域,A (1,3),B (1,1),C (2,2)min max|||OP OP====15.6这条曲线在面ADD1A1上是一段以A为圆心,3为半径,圆心角为6π的一段圆弧,在面A1B1C1D1上的一段以A12π的一段圆弧,由正方体的对称性知,这条曲线的长度为233533().62πππ+=16.(1)设A(x1, y1), B(x2, y2),则有2211221x ya b-=①2222221x ya b-=②①-②得1212121222()()()()x x x x y y y ya b+-+--=∴2121221212y y y y bx x x x a+-=+-∴221312312ba-=∴226ba=(2)设a2=k, b2=6k, c2=7k, ∴e=17.过点E作EH⊥α于H,过E作EF⊥BC于F,连FH易得∠EFH=30°,EF=200·sin30°=100, EH=EF·sin30°=50,∴E到α的距离为50米.18.(1)由方程组2241x yy x m⎧+=⎨=+⎩消去y得225210xmx m++-=,由题意知220160m∆=-≥,∴22m-≤≤(2)2121221,55mx x m x x-+=-=∴弦长21212|()l x x x x=-=+=当m=0时,maxl=y=x.19.(1)AC⊥BD,AC⊥BB1,∴AC⊥平面BD1,∴平面AB1C⊥平面BD1,(2)设0A CB D =,连B1O,过B作BH⊥B1O于H,又BH⊥AC,∴BH⊥平面AB1C,11,2,BO BB a B O====,∴1123BO BBBH aB O==20.(1)过A作AH⊥BE于H,AH⊥P A,∴AH为异面直线P A与EB的公垂线1263AE ABAHEB===,∴P A与EB(3)由(2)得EF⊥平PBC,∴∠FBE为所求角又∵1,BE EF==∴sinEFFBEBE∠===∴FBE∠=∴直线BE与平面PBC所成角为arcsin(2)F为PC中点,取PB中点G,∵P A=AB,∴AG⊥PB,又AG⊥BC,∴AG⊥平面PBC.连GF,∵GF=12BC ,AE=12BC,∴GF=AE,∴四边形AEFG为∴EF∥AG,∴EF⊥平面PBC.21.(1)过A1作A1H⊥AB于H,∵平面AA1B1B⊥底面ABC ,∴A1H⊥平面ABC,113sin6023A HAA===,∴43 3.V==(2)取BC中点D,连AD,ED,AB1,∵111BD BEB C C E=,∴11EDB EB C∆∆∴E在B1D上,又∵11,2DE DGB E AG==∴EG∥AB1又∵EB1⊂平面AA1B1B,∴EG∥平面ABB1A1.(3)过B1作B1F⊥AB于F,则11B F A H==B1F⊥平面ABC,过B1作B1M⊥AD 于M,连MF,则MF⊥AD. ∴∠B1MF为平面B1GE与底面ABC所在二面角的平面角∴111,2BF BB == ∴AF =3, ∴33sin 30.2MF == ∴1112tan .332B F B MF FM ∠=== ∴12arctan 3B MF ∠=∴平面B 1GE 与底面ABC 所成锐二面角的大小为2arctan .3。
湖北省黄冈中学2007年秋季高二地理期中考试试题命题:沈丹凤校对:方正章本试卷分第Ⅰ卷(选择题,共60分)和第Ⅱ卷(非选择题,共40分)两部分。
考试时间为90分钟。
满分为100分。
第Ⅰ卷(选择题共60分)一、单项选择题(共30小题,每小题2分,共60分。
)茫茫宇宙,奥秘无穷。
人类从来没有停止对宇宙的探索和认识。
据此完成1~4题。
1.下列各组行星中、全部属于类地行星的是()A.水星、土星 B. 火星、木星C.天王星、海王星 D.金星、地球2.不属于地球上存在生命物质的地球自身条件的是()A.有适宜生物呼吸的大气 B.大小行星各行其道、互不干扰C. 有液态水存在 D.地球自转周期适中3.发射同步卫星与地球自转线速度密切相关,据此分析,下列发射场中最有利卫星发射的是()A.拜科努尔(46N) B. 库鲁(5N) C.酒泉(40N) D.肯尼迪(28N)4.下列自然现象与太阳辐射无关的是()A. 生物的活动B.大气和水体的运动C.煤、石油的形成D.火山的爆发下图斜线部分表示7月7日,非斜线部分表示7月8日,每条经线之间的间隔相等,箭头表示地球自传方向,据此回答5~8题。
5.此时A点的区时是()A.7月8日12时 B.7月7日24时 C.7月8日6时 D.7月8日16时北京时间是()A.7月8日15时B.7月8日14时C.7月8日20时D.7月7日14时7.有关A、B、C点地球自转角速度和线速度的叙述,正确的是()B. 三点自转角速度和线速度都不相同C. 三点自转角速度相同,线速度B点大于C点D. 三点自转线速度相同,角速度A点大于B点8.有关A、B、C三点所在位置的叙述,正确的是( )A. A点在B点的东北方向上B. B点在C点的东南方向上C. A点在C点的西南方向上D. C点在B点的东南方向上一天,我国某城市于北京时间4时30分日出,18时30分日落,回答9~10题。
9.该城市的经度为()A.123.5EB.112.5EC. 127.5ED. 135E10.该日,太阳直射在()读以北极为中心的地球部分示意图(AB为晨昏线,阴影部分为气压带),完成11~13题。
湖北省黄冈中学2008年春季高二数学(理)期中考试试题命题人:罗 欢 校对:董明秀一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.某师范大学的2名男生和4名女生被分配到两所中学作实习教师,每所中学分配1名男生和2名女生,则不同的分配方法有( )A .6种B .8种C .12种D .16种 2.三人射击,甲命中目标的概率为12,乙命中目标的概率为13,丙命中目标的概率为14,现在三人同时射击目标,则目标被击中的概率为( ) A .34 B .23 C .45 D .7103.已知随机变量ξ服从二项分布,且E ξ=2.4,D ξ=1.44,则二项分布的参数,n p 的值为( )A .n =4,p =0.6B .n =6,p =0.4C .n =8,p =0.3D .n =24,p =0.14.在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选一人表演节目. 若选到男教师的概率为209,则参加联欢会的教师共有( ) A .120人. B .144人 C .240人 D .360人5.若()(12)(13)mnf x x x =+++的展开式中x 的系数为13,则2x 的系数为( )A .31B .40C .31或40D .不确定 6.若随机变量ξ的分布满足:111(1),(0),(1)326P P P ξξξ=====-=,设随机变量 121ηξ=-,则η的数学期望为( )A .16B .1C .2D .127.已知随机变量ξ的分布列如下表,则ξ的标准差σ为( )A .3.56BC .3.2 D8.在某城市中,A 、B 两地有如右图所示道路网,从A 地到B 地 最近的走法有( )种BA .25B .2254C C + C .2254C CD . 49C9.若,m n 均为非负整数,在做m n +的加法时各位均不进位(例如,134+3802=3936),则称(,)m n 为“简单的”有序对,而m n +称为有序数对(,)m n 的值,那么值为1942的“简单的”有序对的个数是( )A .20B .16C .150D .30010.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样,分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…270;使用系统抽样时,将学生统一随机编号为1,2,…270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250, ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270; 关于上述样本的下列结论中,正确的是( )A .②③都不能为系统抽样B . ②④都不能为分层抽样C .①④可能为系统抽样D . ①③可能为分层抽样二、填空题:本大共5小题,每小题5分,共25分,把答案填在答题卡的相应位置.11.电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有 种不同的播放方式(结果用数值表示). 12.若1()nx x+的展开式各项的二项式系数之和是64,则展开式的常数项是 . 13.从分别标有数字1,2,3,…,n 的n 张卡片中任取一张,设卡片上的数字为随机变量ξ,则ξ的数学期望为 .14. 若262*2020()n n C C n N ++=∈,2012(2)n n n x a a x a x a x -=++++,则012a a a -++(1)nn a +-= .15.设正四面体ABCD 的棱长为1米,有一个小虫从点A 开始按以下规则前进:在每一个顶点处等可能地选择连接这个顶点的三条棱之一.....,并且沿着这条棱爬到另一个顶点,则它爬了4米之后恰好位于顶点A 的概率为 .答题卡三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)从1到9的九个数字中取三个偶数四个奇数组成没有重复数字的七位数,试问:(1)能组成多少个不同的七位数?(2)七位数中,三个偶数排在一起的有几个?17.(本小题满分12分)一个口袋中装有大小相同的2个白球和3个黑球.(1)从中摸出两个球,求两球恰好颜色不同的概率;(2)从中摸出一个球,放回后再摸出一个球,求两球恰好颜色不同的概率.18.(本小题满分12分)已知23)n x 展开式中各项的系数和比各项的二项式系数和大992,求展开式中系数最大项.19.(本小题满分12分)某家具城进行促销活动,促销方案是:顾客每消费1000元,便可以获得奖券一张,每张奖券中奖的概率为 15.若中奖,则家具城返还顾客现金1000元. 某顾客购买一张价格为3400元的餐桌,得到3张奖券. 设该顾客购买餐桌的实际支出为 ξ (元).(1) 求 ξ 的所有可能取值; (2) 求 ξ 的分布列.20.(本小题满分13分) 美国NBA篮球总决赛采用七局四胜制,即先胜四局的队获胜,比赛结束.2005年美国东部活塞队与西部马刺队分别进入总决赛,已知马刺队与活塞队的实力相当,即单局比赛每队获胜的概率均为12,若比赛组织者每局比赛可获利100万美元,设各局比赛相互间没有影响.(1)设组织者在总决赛期间获利ξ万美元,求ξ的分布列和期望.(2)求组织者在总决赛期间获利不低于500万美元的概率.21.(本小题满分14分)7、9、10班同学做乙题,其他班同学任选一题,若两题都做,则以较少得分计入总分.甲题:某种电子玩具按下按钮后,会出现红球或绿球.已知第一次按下按钮后,出现红球与绿球的概率都是12,从第二次按下按钮起:若前次出现红球,则下次出现红球、绿球的概率分别是13、23;若前次出现绿球,则下次出现红球、绿球的概率分别是35、25.记第n 次按下按钮后出现红球的概率为n p . (1)求2p 的值;(2)当,2n N n ∈≥时,求用1n p -表示n p 的表达式; (3)求n p 关于n 的表达式.乙题:包含甲在内的(2)m m ≥个人练习传球,球首先从甲手中传出,传球n 次,设第n 次传给甲的传球方法种数为n a ;第n 次不传给甲的传球方法种数为n b . (1)若甲、乙、丙三人传球,由甲开始,第四次传回甲的方法有多少种? (2)求1a 、2a 、1b ,并从排列、组合的角度给出1n n a b +=的合理解释; (3)设(1)n n na c m =-,试证:1{}n c m-为等比数列; (4)求n a 关于,m n 的表达式.湖北省黄冈中学2008年春季高二数学(理)期中考试答案选择题 1~5 CABAC 6~10 BDCDD 填空题11. 48 12. 20 13.12n + 14. 81 15. 727解答题16. 解:①符合题意的七位数有347457100800C C A =个. ②上述七位数中,三个偶数排在一起的有3453455314400C C A A =个17. 解:(1)记“摸出两个球,两球恰好颜色不同”为A ,摸出两个球共有方法1025=C 种,其中,两球一白一黑有61312=⋅C C 种. ∴ 53)(251312==C C C A P . (2)“有放回摸两次,颜色不同”指“先白再黑”或“先黑再白”.∴ 2512552332)(=⨯⨯+⨯=B P18.解:令1x =得各项系数和为(13)4nn+=,而二项式系数和为2n42992n n ∴=+,解得232n =(231)n =-舍去5n ∴=,设第1r +项的系数最大,则1155115531336133351r rr r r r r r C Cr r C C r r --++⎧≥⎪⎧≥⎪⎪-⇒⎨⎨≥⎪⎪⎩≥⎪-+⎩141844r ∴≤≤,又,4r N r ∈∴= ∴系数最大的项是22642433415(3)405T C x x x +==19. 解:(1) ξ 的所有可能取值为3400,2400,1400,400.(2) P (ξ = 3400) = ( 45 ) 3 = 64125 P (ξ = 2400) = C 31( 15 ) ( 45 ) 2 = 48125P (ξ = 1400) = C 32( 15 ) 2 ( 45 ) = 12125 P (ξ = 400) = C 33( 15 ) 3 = 1125ξ20.解:(1)ξ可能取值为400,500,600,70044334433233356111111(400)2(),(500)2(),28222411151115(600)2()(),(700)2()()2221622216P C P C P C P C ξξξξ============故ξ的分布列为:1155400500600700581.25841616E ξ=⨯+⨯+⨯+⨯=(2)收入不低于500万美元,即总决赛至少比赛五场,其概率为4441712()28P C =-=21.甲题:(1)若第一次、第二次按下后均出现红球,概率为111236⨯= 若第一次、第二次依次出现绿球、红球,概率为1332510⨯= 故所求概率为213761015P =+= (2)第1n -次按下按钮后出现红球的概率为1n P -(,2)n N n ∈≥,则出现绿球的概率是11n P --,若第1n -次,第n 次按下按钮后均出现红球,概率为113n P -⨯若第1n -次,第n 次按下按钮后依次出现绿球、红球,概率为13(1)5n P --⨯所以,1111343(1)(,2)35155n n n n P P P P n N n ---=+-=-+∈≥ (3)由(2)得1949()191519n n P P --=--,故9{}19n P -构成首项为138,公比为415-的等比数列,所以1*149(),()381519n n P n N -=-+∈乙题: (1)共有6种方法(2)1120,1,1a b m a m ==-=-,1n a +表示传球1n +次,第1n +次传给甲,可以分两步进行:第一步传球n 次,第n 次不传给甲,共有n b 种,第二次再传给甲,只有一种,由分步原理可知1n n a b += (3)1(1),(1)n n n n n n a b m a a m ++=-∴+=-,又(1)nn na c m =-11111n n c c m m +∴+=-- 1111()1n n c c m m m +∴-=---1{}n c m ∴-是以11m --为公比的等比数列。
湖北省黄冈中学2007年春季高二期中考试物 理 试 题命题人:丁汝辉第Ⅰ卷(选择题 共45分)一、本题共15小题.每小题3分,共45分.在每小题给出的四个选项中,有的只有一个选项正确,有的多个选项正确,全部选对的得3分,选对但不全的得2分,有选错的得0分.1.由阿伏加德罗常数和一个水分子的质量、一个水分子的体积,不能..确定的物理量是 A .1摩尔水的质量B .1摩尔水蒸气的质量C .1摩尔水的体积D .1摩尔水蒸气的体积2.夏天,在平静无风的沙漠上,向远方望去,有时眼前会突然出现亭台楼阁、城墙古堡,或者其他物体的幻影,虚无缥缈,变幻莫测,这就是沙漠中的“蜃景”,如图所示.下列关于沙漠中“蜃景”的成因及说法正确的是 A .沙漠中“蜃景”的形成是由于光发生了全反射 B .沙漠中“蜃景”的形成是由于光发生了干涉 C .沙漠地表附近的空气折射率从下到上逐渐增大 D .沙漠地表附近的空气折射率从下到上逐渐减小3.将甲分子固定在坐标原点O ,乙分子位于x 轴上.甲、乙分子间作用力与距离间关系的函数图象如图所示.若把乙分子从r 3处由静止释放,仅在分子力作用下,则乙分子从r 3到r 1的过程中 A .两分子的势能一直增大 B .两分子的势能先增大后减小 C .乙分子的动能一直增大D .乙分子的动能先减小后增大4.下列关于波的说法正确的是A .偏振是横波特有的现象B .光导纤维传递信号利用了光的全反射原理C .太阳光下的肥皂泡表面呈现出彩色条纹,这是光的衍射现象D .凸透镜的弯曲表面向下压在另一块平板玻璃上,让光从上方射入,能看到亮暗相间的同心圆,这是光的干涉现象5.如图所示,一细束复色光从空气中射到半球形玻璃体球心O 点,经折射分为a 、b 两束光,分别由P 、Q 两点射出玻璃体.PP'、QQ'均与过O 点的界面法线垂直.设光线a 、b 在玻璃体内穿行所用的时间分别为t a 、t b ,则t a :t b 等于 A .QQ':PP' B .PP':QQ' C .OP':OQ' D .OQ':OP'6.太阳光中包含的某种紫外线的频率为v 1,VCD 影碟机中读取光盘数字信号的红色激光的频率为v 2,人体透视使用的X 光的频率为v 3,则下列结论正确的是 A .这三种频率的大小关系是v 1<v 2<v 3B .紫外线是原子的内层电子受激发产生的C .红色激光是原子的外层电子受激发产生的D .X 光是原子核受激发产生的7.下列说法中正确的是A .热现象过程中不可避免地出现能量耗散现象,能量耗散不符合热力学第二定律B .布朗运动是液体分子的运动,它说明分子永不停息地做无规则运动C .一定质量的理想气体在等温膨胀过程中,一定从外界吸收热量,在单位时间内与容器壁单位面积碰撞的气体分子数一定减少D .热机可以将内能全部转化为机械能8.太阳表面的温度约为6000K ,主要发出可见光.人体的温度约为310K ,主要发出红外线.宇宙间的平均温度约为3K ,所发出的辐射称为“3K 背景辐射”.“3K 背景辐射”属于电磁波谱中的哪一个波段?A .X 射线B .紫外线C .可见光D .无线电波9.飞机在万米高空飞行时,舱外气温往往在-50℃以下.在研究大气现象时可把温度、压强相同的一部分气体作为研究对象,叫做气团.气团直径可达几千米.由于气团很大,边缘部分与外界的热交换对整个气团没有明显影响,可以忽略.用气团理论解释高空气温很低的原因,应该是A .地面的气团在上升到高空的过程中不断膨胀,同时大量向外界放热,使气团温度降低B .地面的气团在上升到高空的过程中不断收缩,同时大量从外界吸热,使周围温度降低C .地面的气团在上升到高空的过程中不断膨胀,气团对外界做功,气团内能大量减少,气团温度降低D .地面的气团在上升到高空的过程中不断收缩,外界对气团做功,气团内能大量减少,气团温度降低10.2005年诺贝尔物理学奖授予对激光研究作出杰出贡献的三位科学家.如图所示是研究激光相干性的双缝干涉示意图,挡板上有两条狭缝S 1、S 2,由S 1和S 2发出的两列波到达屏上时会产生干涉条纹.已知入射激光波长为λ,屏上的P 点到两缝S 1和S 2的距离相等,如果把P 处的亮条纹记作第0号亮纹,由P 向上数与0号亮纹相邻的亮纹为1号亮纹,与1号亮纹相邻的亮纹为2号亮纹,设P 1处的亮纹恰好是10号亮纹,直线S 1P 1的长度为r 1,S 2P 1的长度为r 2,则r 2-r 1等于A .5λB .10λC .20λD .40λ11.如图所示,用三块完全相同且两面平行的玻璃板组成一等边三角形.由红光和蓝光组成的一细束复色光平行底面BC 从AB 面射入,由AC 面射出,则从AC 面射出的光A .分成两束,上边为蓝光,下边为红光B .分成两束,上边为红光,下边为蓝光C .仍为一束,并与底面BC 平行D .仍为一束,并向底面BC 偏折12.如图所示的四种明暗相间的条纹,分别是红光、蓝光各自通过同一个双缝干涉仪器形成的干涉图样以及黄光、紫光各自通过同一个单缝形成的衍射图样(黑色部分表示亮纹).则在下面的四个图中从左往右排列,亮条纹的颜色依次是A .红黄蓝紫B.红紫蓝黄C.蓝紫红黄D.蓝黄红紫13.一物理实验爱好者利用如图所示的装置研究气体压强、体积、温度三量间的变化关系.导热良好的汽缸开口向下,其内盛有理想气体,汽缸固定不动,缸内活塞可无摩擦滑动且不漏气.一温度计通过缸底小孔插入缸内,插口处密封良好,活塞下挂一个沙桶,沙桶装满沙子时,活塞恰好静止.现给沙桶底部钻一个小洞,细沙慢慢漏出,外部环境温度恒定,则A.气体压强增大,内能增加B .外界对气体做正功,温度计示数不变C .气体体积减小,同时向外界放热D .外界对气体做正功,温度计示数增加14.如图所示,在距离竖直墙壁为d 处,有一个点光源S .一个小球从S 处以初速度v 0水平抛出,到小球碰到墙之前,关于小球在墙壁上的影子的运动,下列说法正确的是 A .影子做自由落体运动 B .影子做匀速直线运动C .若小球的初速度v 0减小,则影子的速度增大D .点光源与墙壁的间距d 增大,则影子的速度增大15.在研究材料A 的热膨胀特性时,可采用如图所示的干涉实验法.A 的上表面是一光滑平面,在A 的上方放一个两面平整的玻璃板B ,B 与A 上表面平行,在它们之间形成一厚度均匀的空气薄膜.现用波长为λ的单色光垂直照射玻璃板B ,同时对A 缓慢加热,在B 上方观察到B 板的亮度发生周期性变化.当温度为t 1时最亮,然后亮度逐渐P 1PS S 激光减弱至最暗;当温度升到t 2时,亮度再一次增到最亮.则A .出现最亮时,B 上表面反射光与B 下表面反射光叠加后加强 B .出现最亮时,B 下表面反射光与A 上表面反射光叠加后加强C .温度从t 1升至t 2过程中,A 的高度增加λ/4D .温度从t 1升至t 2过程中,A 的高度增加λ/2第Ⅱ卷(非选择题 共55分)二、本题共3小题.每小题5分,共15分.把答案填写在题中的横线上或按题目要求作答.16.几位同学做“用插针法测定玻璃的折射率”实验,图示直线aa ′、bb ′表示在白纸上画出的玻璃的两个界面.几位同学进行了如下操作:A .甲同学选定的玻璃两个光学面aa ′、bb ′不平行,其它操作正确.B .乙同学在白纸上正确画出平行玻璃砖的两个界aa ′、bb ′后,将玻璃砖向aa ′方向平移了少许,其它操作正确.C .丙同学在白纸上画aa ′、bb ′界面时,其间距比平行玻璃砖两光学界面的间距稍微宽些,其它操作正确. 上述几位同学的操作,对玻璃折射率的测定结果没有影响的是______(填写字母代号).17.如图所示,在“用双缝干涉测光的波长”的实验中,光具座上放置的光学元件有光源、遮光筒和其他元件,其中a 、b 、c 、d 各装置的名称依次是下列选项中的_________.A .a 单缝、b 滤光片、c 双缝、d 光屏B .a 单缝、b 双缝、c 滤光片、d 光屏C .a 滤光片、b 单缝、c 双缝、d 光屏D .a 滤光片、b 双缝、c 单缝、d 光屏对于某种单色光,为增加相邻亮纹(或暗纹)之间的距离,可采用的方法是(任写一种方法)_______________________.18.在“用油膜法估测分子的大小”的实验中,用移液管量取0.10ml 油酸,倒入标称250ml 的容量瓶中,再加入酒精使油酸溶解,最后得到250ml 的溶液.然后用滴管吸取这种溶液,向小量筒中滴入100滴,溶液的液面达到量筒中1ml 的刻度处.再用滴管取配好的油酸溶液,向撒有痱子粉的盛水的浅盘中滴下5滴,在液面上形成油酸薄膜,待油膜稳定后,放在带有正方形坐标格的玻璃板下观察油膜,如图所示.坐标格的正方形的大小为2cm×2cm .由图可以估算出油膜的面积是_______m 2;由此估算出油酸分子的直径是_________m (两空结果都保留两位有效数字).三、本题共4小题,共40分.解答应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位. 19.(8分)风能是一种环保型能源,我国的风力资源丰富,风力发电有广阔前景.风力发电是将风的动能转化为电能.如图所示为某地的风力发电站,共有N 台风力发电机,设每台发电机风叶长均为L ,叶片旋转所围成的圆面积内的所有风能转化为电能的效率为η,当地空气密度为ρ,平均风速为v .求该风力发电站总装机容量(发电总功率)P 的数学表达式.光源 a b cd20.(10分)如图所示,透明液体折射率为n h=1m处水平放置一平面镜,平面镜的反射面朝上、下表面涂黑,并可绕过中点O的水平轴在竖直平面内逆时针旋转,一束激光垂直液面射向平面镜O点,并被平面镜反射,在上方可看到液面O'点处有一个光点.t0=0时刻平面镜开始逆时针匀速转动,t1=0.5s时刻光点从液面上A点(图中未画出)消失,求:(1)A点到O'点的距离和平面镜转动的角速度ω;(2)光点再次在液面上出现的时刻t2.21.(10分)如图所示,ABCA =30°.一束光线在纸面内从AB 的中点O 射入棱镜,光线与AB 面间的夹角为α.若不考虑光在AB 面和BC 面上的反射. (1)若α=45°,请作出光路图并标明相应的角度.(2)要使射入O 点的光线能从AC 面射出,夹角α(0°<α<90°)应满足什么条件?结果可用反三角函数表示.22.(12分)如图甲所示,abcd 是位于竖直平面内的正方形闭合金属线框,金属线框的质量为m ,电阻为R .在金属线框的下方有一匀强磁场区域, MN 和M'N'是匀强磁场区域的水平边界,并与线框的bc 边平行,磁场方向与线框平面垂直.现使金属线框由距MN 的某一高度处从静止开始下落,金属线框由开始下落到完全穿过匀强磁场区域瞬间整个运动过程中的速度—时间图象如图乙所示,图象中坐标轴上所标出的字母均为已知量.求:(1)金属线框的边长; (2)磁场的磁感应强度;(3)金属线框在整个下落过程中所产生的热量.湖北省黄冈中学2007年春季高二期中考试物理试题答题卡16.(5分)___________ 17.(5分)___________、________________________________________________________ 18.(5分)___________、____________1 2 3 4v v vN ′MNM ′a cd 图甲图乙19.(8分)16.(5分)___AB_____ 17.(5分)____C___、仅增加双缝到光屏的距离(或仅减小双缝间距等等)18.(5分)_2.4(±0.2)×10-2、8.3(±1)×10-10 19.(8分)解析:对每台风力发电机,叶片旋转所形成的圆面积为2S L π=t 秒内流过该圆面积的空气柱体积为2V Svt L vt π== (2分)空气柱体的质量为2m V L vt ρρπ== 风柱体的动能为2231122k E mv L v t ρπ==(2分) 转化成的电能为2231122k E E mv L v t ηηηρπ===(2分) 风力发电站发电总功率为2312E P N N L v t ηρπ==(2分)20.(10分)解析:(1)设光从水射向空气发生全反射的临界角为C ,则1sin C n ==rad 4C π= (1分)此时,光点从液面上A 点消失,如图所示,则 A 点到O'点的距离tan 1m s h C ==. (1分) 此过程中平面镜转过的角度为rad 28C πθ== (2分) 所以,角速度1/rad/s 4t πωθ==(2分)(2)平面镜继续旋转,反射光正好照射到B 点(与A 关于O' 的对称点)时,光从水面射出.此时平面镜共转过的角度为15228C πθπ'=-=(2分) 则27.5s t θω'==.(2分)21.(10分)解析:(1)光线射向AB 面的入射角θ1=45°,根据折射定律,有12sin sin θθ,解得θ2=30°(1分) 设光在该透明介质中的临界角为C ,则sin C =C =45° (1分)光线射向AC 面的入射角θ3=90°-30°=60°>C ,故发生全反射.而θ4=θ3,故反射光线垂直于BC 面从棱镜中射出,其光路如图所示. (3分) (2)当射向AC 面的光线恰好发生全反射时,由几何关系可知,在AB 界面的折射角θ2'=15° (2分) 设此时1αα=,则o 1osin(90)sin15α-=解得o o 190)α=- (1分) 当α角为90°时,射向AC 的光线入射角30°,不会发生全反射,故要使射入O 点的光线能从AC 面射出,夹角α应满足o o o 90)90α-<<(2分)22.(12分)解析:(1)由图象可知,金属线框进入磁场过程中做匀速直线运动,速度为v 1,运动时间为t 2-t 1,所以金属框的边长121()l v t t =-(2分)(2)在金属线框进入磁场的过程中,金属线框所受安培力大小等于重力大小,则mg BIl = (1分)1Blv I R=(1分)解得B (1分)(3)金属线框在进入磁场过程中,重力做正功,安培力做负功,由动能定理得 W 重-W 安=0(1分) 设金属线框产生的热量为Q 1,则1Q W =安(1分) 所以,Q 1=W 重=mgl(1分)金属线框在离开磁场过程中,重力做正功,安培力做负功,由动能定理得22321122W W mv mv '-=重安- (2分) 设金属线框产生的热量为Q 2,则2Q W '=安(1分)线框产生的总热量Q =Q 1+Q 2解得221212312()()2Q mgv t t m v v =-+-(1分)。