3-4《不等式的实际应用》(含答案)
- 格式:doc
- 大小:86.50 KB
- 文档页数:9
专题六 方程与不等式的实际应用解决方程与不等式的实际应用题的一般步骤:①认真审题,理解题意,弄清题中的已知量、未知量以及它们之间的关系;②设未知数(合理地选择未知数是解题的关键);③列方程(组)或不等式;④解方程(组)或不等式(注意:解分式方程时必须要有“验根”这一步);⑤检验,对所求结果进行检验,看是否符合题意;⑥作答.解决方程与不等式的实际应用题时,首先要认真审题,从题中找出已知量与未知量之间的关系,然后根据题意列出关系式,进而解决相关问题.在解决问题的过程中要注意方程与不等式的解是否符合题意,涉及函数要检验自变量的取值范围,当题干中出现方案设计问题或最值问题时,往往需要根据题干中的已知条件和函数的增减性来解决方案设计或最值问题.中考重难点突破一次方程(组)的实际应用【例1】(2021·陕西中考)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等.求这种服装每件的标价.【解析】设这种服装每件的标价是x 元,根据“这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等”列出方程,然后解方程即可求解.【解答】解:设这种服装每件的标价是x 元.根据题意,得10×0.8x =11(x -30).解得x =110.答:这种服装每件的标价为110元.1.现有一条长度为359 mm 的铜管料,把它锯成长度分别为39 mm 和29 mm 的两种不同规格的小铜管(要求没有余料).每锯一次损耗1 mm 的铜管料.为了使铜管料损耗最少,应分别锯成39 mm 的小铜管__6__段,29 mm 的小铜管__4__段.2.某中学组织七年级全体学生参加社会实践,若只调配45座客车若干辆,则有15人没有座位;若只调配30座客车,则用车数量将增加3辆,且空出15个座位.(1)该学校七年级总共有多少学生?(2)若同时调配45座和30座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?解:(1)设只调配45座客车x 辆,则该学校七年级共有学生(45x +15)人,只调配30座客车需要(x +3)辆.由题意,得30(x +3)-(45x +15)=15.解得x =4.∴45x +15=45×4+15=180+15=195.答:该学校七年级共有学生195人;(2)设需要调配45座客车m 辆,30座客车n 辆,由题意,得45m +30n =195.∴n =13-3m 2. 又∵m ,n 均为正整数,∴⎩⎪⎨⎪⎧m =1,n =5 或⎩⎪⎨⎪⎧m =3,n =2. 答:需调配45座客车1辆,30座客车5辆或调配45座客车3辆,30座客车2辆.分式方程的实际应用【例2】(2021·常州中考)为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20 t 水可以比原来多用5天.该景点在设施改造后平均每天用水多少吨?【解析】本题考查了分式方程的应用,读懂题意,找到合适的等量关系是解决问题的关键.设该景点在设施改造后平均每天用水x t ,则在改造前平均每天用水2x t ,根据“20 t 水可以比原来多用5天”列出方程并解答.【解答】解:设该景点在设施改造后平均每天用水x t ,则在改造前平均每天用水2x t.根据题意,得20x -202x=5. 解得x =2.经检验,x =2是原方程的解,且符合题意.答:该景点在设施改造后平均每天用水2 t .3.(2021·徐州中考)某网店开展促销活动,其商品一律按8折销售,促销期间用400元在该网店购得某商品的数量较打折前多出2件.问:该商品打折前每件多少元?解:设该商品打折前每件x 元,则打折后每件0.8x 元.根据题意,得400x +2=4000.8x. 解得x =50.经检验,x =50是原方程的解,且符合题意.答:该商品打折前每件50元.方程与不等式的综合应用【例3】某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.(1)求每副围棋和象棋各是多少元?(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋?【解析】(1)设每副围棋x 元,则每副象棋(x -8)元,根据“420元购买象棋数量=756元购买围棋数量”列出方程求解即可;(2)设购买围棋m 副,则购买象棋(40-m )副,根据题意列出不等式求解即可.【解答】解:(1)设每副围棋x 元,则每副象棋(x -8)元.根据题意,得420x -8=756x .解得x =18. 经检验,x =18是原方程的解,且符合题意.∴x -8=10.答:每副围棋18元,每副象棋10元;(2)设该校购买m 副围棋,则购买(40-m )副象棋.根据题意,得18m +10(40-m )≤600.解得m ≤25.∵m 为正整数,∴m 的最大值是25.答:该校最多可再购买25副围棋.4.(2021·玉林中考)某市垃圾处理厂利用焚烧垃圾产生的热能发电.有A ,B 两个焚烧炉,每个焚烧炉每天焚烧垃圾均为100 t ,每焚烧一吨垃圾,A 焚烧炉比B 焚烧炉多发电50度,A ,B 焚烧炉每天共发电55 000度.(1)求焚烧一吨垃圾,A 焚烧炉和B 焚烧炉各发电多少度?(2)若经过改进工艺,与改进工艺之前相比每焚烧一吨垃圾,A 焚烧炉和B 焚烧炉的发电量分别增加a %和2a %,则A ,B 焚烧炉每天共发电至少增加(5+a )%,求a 的最小值.解:(1)设焚烧一吨垃圾,A 焚烧炉发电m 度,B 焚烧炉发电n 度.根据题意,得⎩⎪⎨⎪⎧m -n =50,100(m +n )=55 000. 解得⎩⎪⎨⎪⎧m =300,n =250.答:焚烧一吨垃圾,A 焚烧炉发电300度,B 发焚烧炉发电250度;(2)由题意,得改进工艺后每焚烧一吨垃圾A 焚烧炉发电300(1+a %)度,则B 焚烧炉发电250(1+2a %)度,由题意,得100×300(1+a %)+100×250(1+2a %)≥55 000[1+(5+a )%].整理,得5a ≥55.解得a ≥11.∴a 的最小值为11.一元二次方程的实际应用【例4】(2021·烟台中考)直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件.(1)若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元?(2)小明的线下实体商店也销售同款小商品,标价为每件62.5元.为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过(1)中的售价,则该商品至少需打几折销售?【解析】(1)根据日利润=每件利润×日销售量,可求出售价为60元时的原利润,设售价应定为x 元,则每件的利润为(x -40)元,日销售量为20+10(60-x )5=(140-2x )件,根据日利润=每件利润×日销售量,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)设该商品需要打a 折销售,根据销售价格不超过50元,列出不等式求解即可.【解答】解:(1)设售价应定为x 元,则每件的利润为(x -40)元,日销售量为20+10(60-x )5=(140-2x )件. 由题意,得(x -40)(140-2x )=(60-40)×20.整理,得x 2-110x +3 000=0.解得x 1=50,x 2=60(舍去).答:每件售价应定为50元;(2)设该商品需要打a 折销售.由题意,得62.5×a 10≤50. 解得a ≤8.答:该商品至少需打8折销售.5.列方程(组)解应用题:某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为600 m 2的矩形试验茶园,便于成功后大面积推广.如图,茶园一面靠墙,墙长35 m ,另外三面用69 m 长的篱笆围成,其中一边开有一扇1 m 宽的门(不包括篱笆).求这个茶园的长和宽.解:设茶园AB 边的长为x m ,则BC 边的长为(69+1-2x ) m .根据题意,得x (69+1-2x )=600.整理,得x 2-35x +300=0.解得x 1=15,x 2=20.当x =15时,70-2x =40>35,不符合题意,舍去;当x =20时,70-2x =30<35,符合题意.答:这个茶园的长和宽分别为30 m ,20 m .6.如图,某城建部门计划在新建的城市广场的一块长方形空地上修建一个面积为1 200 m 2的停车场,将停车场四周余下的空地修建成同样宽的通道,已知整个长方形空地的长为50 m ,宽为40 m.(1)求四周通道的宽度;(2)某建筑公司希望用80万元的承包金额承揽这项工程,城建部门认为金额太高需要降价,经过两次协商,最终以51.2万元达成一致,若两次降价的百分率相同,求每次降价的百分率.解:(1)设四周通道的宽度为x m ,则停车场的长为(50-2x ) m ,宽为(40-2x ) m.由题意,得(50-2x )(40-2x )=1 200.整理,得x 2-45x +200=0.解得x 1=5,x 2=40.当x =5时,40-2x =40-2×5=30,符合题意;当x =40时,40-2x =40-2×40=-40<0,不符合题意,舍去.答:四周通道的宽度为5 m ;(2)设每次降价的百分率为a .由题意,得80(1-a )2=51.2.解得a 1=0.2=20%,a 2=1.8(不合题意,舍去).答:每次降价的百分率为20%.中考专题过关1.(2021·吉林中考)港珠澳大桥是世界上最长的跨海大桥,它由桥梁和隧道两部分组成,桥梁和隧道全长共55 km.其中桥梁长度比隧道长度的9倍少4 km.求港珠澳大桥的桥梁长度和隧道长度.解:设港珠澳大桥隧道长度为x km ,桥梁长度为y km.由题意,得⎩⎪⎨⎪⎧x +y =55,y =9x -4. 解得⎩⎪⎨⎪⎧x =5.9,y =49.1. 答:港珠澳大桥的桥梁长度和隧道长度分别为49.1 km 和5.9 km.2.(2021·郴州中考)“七·一”建党节前夕,某校决定购买A ,B 两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A 奖品比B 奖品每件多25元,预算资金为1 700元,其中800元购买A 奖品,其余资金购买B 奖品,且购买B 奖品的数量是A 奖品的3倍.(1)求A ,B 奖品的单价;(2)购买当日,正逢该店搞促销活动,所有商品均按原价八折销售,故学校调整了购买方案:不超过预算资金且购买A 奖品的资金不少于720元,A ,B 两种奖品共100件,求购买A ,B 两种奖品的数量,有哪几种方案?解:(1)设A 奖品的单价为x 元,则B 奖品的单价为(x -25)元.由题意,得800x ×3=1 700-800x -25. 解得x =40.经检验,x =40是原方程的解,且符合题意.∴x -25=15.答:A 奖品的单价为40元,B 奖品的单价为15元;(2)设购买A 奖品的数量为m 件,则购买B 奖品的数量为(100-m )件.由题意,得⎩⎪⎨⎪⎧40×0.8×m ≥720,40×0.8×m +15×0.8×(100-m )≤1 700. 解得22.5≤m ≤25.∵m 为正整数,∴m 的值为23,24,25.∴有三种方案:①购买A 奖品23件,B 奖品77件;②购买A 奖品24件,B 奖品76件;③购买A 奖品25件,B 奖品75件.3.(2021·朝阳中考)某商场以每件20元的价格购进一种商品,规定这种商品每件售价不低于进价,又不高于38元,经市场调查发现:该商品每天的销售量y (件)与每件售价x (元)之间符合一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)该商场销售这种商品要想每天获得600元的利润,每件商品的售价应定为多少元?(3)设商场销售这种商品每天获利w (元),当每件商品的售价定为多少元时,每天销售利润最大?最大利润是多少?解:(1)设y 与x 之间的函数关系式为y =kx +b (k ≠0).由所给函数图象可知,⎩⎪⎨⎪⎧25k +b =70,35k +b =50. 解得⎩⎪⎨⎪⎧k =-2,b =120. ∴y 与x 之间的函数关系式为y =-2x +120(20≤x ≤38);(2)根据题意,得(x -20)(-2x +120)=600.整理,得x 2-80x +1 500=0.解得x =30或x =50(不合题意,舍去).答:每件商品的售价应定为30元;(3)∵y =-2x +120,∴w =(x -20)y=(x -20)(-2x +120)=-2x 2+160x -2 400=-2(x -40)2+800.∵-2<0,20≤x ≤38,∴当x =38时,w 最大=792.∴当每件商品的售价定为38元时,每天销售利润最大,最大利润是792元.。
3.4不等式的实际应用学习目标:1、通过实际问题的情景,让学生掌握不等式的实际应用,掌握解决这类问题的一般步骤,2、让学生经历从实际情景中抽象出不等式模型的过程。
3、通过实例,让学生体验数学与日常生活的联系,感受数学的实用价值,增强学生的应用意识,提高他们的实践能力。
学习重点和难点:重点:不等式的实际应用难点:数学建模【预习达标】1.实际问题中,有许多不等式模型,必须在首先领悟问题的实际背景,确定问题中量与量之间的关系,然后适当设 ,将量与量间的关系变成 或不等式组.2.实际问题中的每一个量都有其 ,必须充分注意定义域的变化.3.探究:一个正的真分数的分子与分母同时增加同一个数,分数值变 。
若一个假分数呢?试证明之。
【典例解析】例1.某工厂有一面14m 的旧墙,现准备利用这面旧墙建造平面图形为矩形,面积为126m 2的厂房。
工程条件是:①建1m 新墙的费用为a 元;②修1m 旧墙的费用为4a 元;③用拆去1m 旧墙所得的材料建1m 新墙的费用为2a 元。
现在有两种建设方案:(Ⅰ)利用旧墙的一段Xm(x<14)为矩形厂房的一个边长;(Ⅱ)利用旧墙的矩形厂房的一个边长为Xm(x≥14)。
问如何利用这堵旧墙,才使建墙费用最低?(Ⅰ)(Ⅱ)两个方案哪个更好?例2.有纯农药一桶,倒出8升后用水补满,然后倒出4升再用水补满,此时桶中的农药不超过容积的28%.问桶的容积最大为多少?分析:若桶的容积为x, 倒前纯农药为x 升第一次 :倒出纯农药8升,纯农药还剩(x-8)升,桶内溶液浓度xx 8- 第二次 :倒出溶液4升,纯农药还剩[(x-8)—(x x 8-)4], 中本题的不等关系是:桶中的农药不超过容积的28%解答:学生完成。
例3.某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上一年减少51,本年度当地旅游业收入估计万400万元,预计今后的旅游业收入每年会比上年增加41.(1)设n 年内(本年度万第一年)总投入万a n 万元,旅游业总收入万b n 万元,写出a n 、b n 的表达式。
张喜林制3.4 不等式的实际应用教材知识检索考点知识清单1.在许多实际问题中,需要设 ,列 求解.2.解有关不等式的应用题时,首先要用 表示题中 ,然后由题中给出的 关系,列出关于未知数 ,解所列出的关于 ,写出要点核心解读1.在不等式的应用中建立不等式的主要途径(1)利用问题的几何意义;(2)利用判别式;(3)利用函数的有界性;(4)利用函数的单调性;(5)利用均值不等式等,只要建立起数学模型,问题就不难解决了.2.解答不等式应用题的一般步骤 解答不等式应用题,一般可分为如下四步:(1)阅读理解材料:应用题所用语言多为“文字语言,符号语言,图形语言”并用,我们要细心领悟商题的实际背景,分析各八量之间的关系,形成思路,想办法把实际问题抽象成数学模型。
(2)建立数学模型:根据题意,把实际问题用“符号语言”“图形语言”抽象成数学模型,并且建立所得数学模型和已知数学模型的对应关系埘^便确立下一步的努力方向。
(3)讨论不等关系:根据(2)中建立起来的数学模型和题目要求,讨论和结论有关的不等关系,得到有关理论参数的值.(4)作出同题结论:根据(3)中得到的理论参数的值,结合题目要求作出问题的结论。
典例分类剖析考点1 作差法解决实际问题 命题规律(1)利用作差法原理,即b a b a >⇔>-0解决实际中的一些应用问题.(2)往往以“速度问题,提价、降价问题等”来考查运用作差法解决实际问题的能力.[例1] 现有A 、B 、C 、D 四个长方体容器,A ,B 的底面积为,2a 高分别为a 和b ,C ,D 的底面积均为 ,2b 高分别为a 和b (其中a ≠b ).现规定一种游戏规则:每人一次从四个容器中取两个.盛水多者为胜,问先取者有没有必胜的方案?若有的话有几种?[解析】 依题可知A ,B ,C ,D 四个容器的容积分别为,3a .,,322b ab b a 按照游戏规则,问题可转化为比较两两容积和的大小.[答案] (1)A ,B 与C ,D)()()()(223223b a b b a a b ab b a a +-+=+-+,))((2b a b a +-=显然,0)(2>+b a 而a 与b 的大小不能确定,2))((b a b a +-∴的正负不能确定,即b a a 23+与32b ab +的大小不定. (2)A ,C 与B ,D)()()()(22223223b a b b a a b b a ab a +-+=+-+).)((22b a b a +-=由(1)知,仍是无法比较大小. (3)A ,D 与B ,C=+-+-+=+-+)())(()()(222233b a ab b ab a b a ab b a b a )()2)((22b a b ab a b a +=+-+ 222))(()2(b a b a b ab a -+=+-又因.0))((,0,0,2>-+∴>>=/b a b a b a b a即.2233ab b a b a +>+综上,先取A .D 是唯一必胜的方案.[方法技巧] (1)由本题可以得到如下结论:已知),,0(,,+∞∈=/b a b a 那么,2233ab b a b a +>+此式可等价于.22b a a b ba +>+ (2)此题解法用到分类讨论的思想,使用这种思想时,先确定分类标准,再列出各情况,必须做到不重不漏.母题迁移 1.在春节期间有甲、乙两家旅行社对家庭旅游提出优惠方案.甲旅行社提出:如果户主买全票一张,其余人可享受五五折优惠;乙旅行社提出:家庭旅游算集体票,按七五折优惠.如果这两家旅行社的原价相同,那么哪家旅行社价格更优惠? 考点2 一元二次不等式在实际中的应用命题规律(1)利用一元二次不等式解决实际应用中的问题。
不等式的实际应用教案一、教学目标1. 理解不等式的概念,掌握不等式的基本性质。
2. 能够将实际问题转化为不等式问题,并运用不等式解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1. 不等式的定义与基本性质2. 实际问题转化为不等式问题3. 不等式在实际问题中的应用三、教学重点与难点1. 教学重点:不等式的概念与基本性质,实际问题转化为不等式问题的方法。
2. 教学难点:不等式在实际问题中的应用。
四、教学方法1. 讲授法:讲解不等式的定义与基本性质,引导学生理解不等式的概念。
2. 案例分析法:通过实际问题,引导学生将问题转化为不等式问题,并解决实际问题。
3. 小组讨论法:分组讨论不等式在实际问题中的应用,促进学生之间的交流与合作。
五、教学准备1. 教学课件:制作课件,展示不等式的定义与基本性质,实际问题转化为不等式问题的案例。
2. 练习题:准备一些实际问题,供学生在课堂上练习解决。
【章节一:不等式的定义与基本性质】1. 引入不等式的概念,讲解不等式的定义。
2. 讲解不等式的基本性质,如传递性、同向可加性等。
3. 通过示例,让学生理解不等式的表示方法,如“<”、“>”、“≤”、“≥”等。
【章节二:实际问题转化为不等式问题】1. 引入实际问题,如“两个人比赛跑步,A跑得比B快,如何用不等式表示?”2. 引导学生将实际问题转化为不等式问题,如“A跑得比B快”可以表示为“A 的速度> B的速度”。
3. 通过其他案例,让学生练习将实际问题转化为不等式问题。
【章节三:不等式在实际问题中的应用】1. 引入实际问题,如“一个班级有男生和女生,男生人数多于女生人数,如何用不等式表示?”2. 引导学生将实际问题转化为不等式问题,如“男生人数多于女生人数”可以表示为“男生人数> 女生人数”。
3. 通过其他案例,让学生练习将实际问题转化为不等式问题,并解决实际问题。
【章节四:不等式的解集与图像】1. 讲解不等式的解集的概念,如“解不等式2x + 3 > 7的解集是什么?”2. 引导学生通过图像法或代数法求解不等式的解集。
一元一次不等式组在实际生活中的应用一、解答题。
1.已知一种卡车每辆至多能载3吨货物.现有100吨黄豆,若要一次运完这批黄豆,至少需要这种卡车多少辆?二、选择题。
2.如图是测量一颗玻璃球体积的过程:(1)将300mL的水倒进一个容量为500mL的杯子中;(2)将四颗相同的玻璃球放入水中,结果水没有满;(3)再加一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积在(1mL水的体积为1cm3)()A.20cm3以上,30cm3以下B.30cm3以上,40cm3以下C.40cm3以上,50cm3以下D.50cm3以上,60cm3以下3.小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买()支笔.A.1 B.2 C.3 D.44.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,娜娜得分要超过90分,则她至少要答对()A.10道题B.12道题C.13道题D.16道题5.某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其它费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()A.40% B.33.4% C.33.3% D.30%三、填空题(共2小题,每小题3分,满分6分)7.一罐饮料净重500克,罐上注有“蛋白质含量≥0.4%”,则这罐饮料中蛋白质的含量至少为克.8.小颖家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不超过5立方米,则每立方米收费1.8元;若每户每月用水超过5立方米,则超出部分每立方米收费2元,小颖家每月用水量至少是立方米.四、解答题。
9.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.10.为了加强公民节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的,该市自来水收费见价目表.例如:某居民元月份用水9吨,则应收水费2×6+4×(9﹣6)=24元每月用水量(吨)单价不超过6吨 2元/吨超过6吨,但不超过10吨的部分4元/吨超过10吨部分 8元/吨(1)若该居民2月份用水12.5吨,则应收水费多少元?(2)若该居民3、4月份共用15吨水(其中4月份用水多于3月份)共收水费44元(水费按月结算),则该居民3月、4月各用水多少吨?11.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?12.甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元):实际花费130 290 (x)累计购物在甲商场127 …在乙商场126 …(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?一元一次不等式组在实际生活中的应用参考答案与试题解析一、解答题。
中考数学复习之一次不等式的实际应用(含答案)1. 为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A. 16个B. 17个C. 33个D. 34个2. 甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3∶2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了.这是因为()A. 商贩A的单价大于商贩B的单价B. 商贩A的单价等于商贩B的单价C. 商贩A的单价小于商贩B的单价D. 赔钱与商贩A、商贩B的单价无关3. 2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高之和不超过115 cm.某厂家生产符合该规定的行李箱,已知行李箱的宽为20 cm,长与高的比为8∶11,则符合此规定的行李箱的高的最大值为____________cm.4. 东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,每套悠悠球的售价至少是多少元?5. 为了美化市容市貌,政府决定将城区旁边一块162亩的荒地改建为湿地公园,规划公园分为绿化区和休闲区两部分.(1)若休闲区面积是绿化区面积的20%,求改建后的绿化区和休闲区各有多少亩?(2)经预算,绿化区的改建费用平均每亩35000元,休闲区的改建费用平均每亩25000元,政府计划投入资金不超过550万元,那么绿化区的面积最多可以达到多少亩?6. 为迎接“七·一”党的生日,某校准备组织师生共310人参加一次大型公益活动,租用4辆大客车和6辆小客车恰好..全部坐满,已知每辆大客车的座位数比小客车多15个.(1)求每辆大客车和每辆小客车的座位数;(2)经学校统计,实际参加活动的人数增加了40人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为使所有参加活动的师生均有座位,最多租用小客车多少辆?7. 某电子超市销售甲、乙两种型号的蓝牙音箱,每台进价分别为240元,140元,下表是近两周的销售情况:(1)求甲、乙两种型号蓝牙音箱的销售单价;(2)若超市准备用不多于6000元的资金再采购这两种型号的蓝牙音箱共30台,求甲种型号的蓝牙音箱最多能采购多少台?8. (2018娄底)“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买A、B两种型号的垃圾处理设备共10台.已知每台A型设备日处理能力为12吨,每台B型设备日处理能力为15吨,购回的设备日处理能力不低于140吨.(1)请你为该景区设计购买A、B两种设备的方案;(2)已知每台A型设备价格为3万元,每台B型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠,问:采用(1)设计的哪种方案,使购买费用最少,为什么?9. 某地2015年为做好“精准扶贫”工作,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天补助8元,1000户以后每天补助5元,按租房400天计算,求2017年该地至少有多少户享受到优先搬迁租房奖励.10.某中学展开了“保护环境,绿化校园”主题月活动,在校团委的倡议下,全校师生共捐款4363元用于购买桂花树和丁香树绿化校园.(1)若购买5棵桂花树和4棵丁香树需花费410元,购买3棵桂花树和2棵丁香树需花费230元,求桂花树和丁香树的单价;(2)按校团委规划,准备购买桂花树和丁香树共100棵,且购买桂花树的数量不少于34棵,请你分析有哪几种购买方案.参考答案:1-2 AA3. 554. 解:(1)设第一批悠悠球每套的进价是x 元,根据题意,得1.5×500x =900x +5,解得x =25,经检验,x =25是原方程的解,且符合题意,答:第一批悠悠球每套的进价是25元;(2)设每套悠悠球售价为a 元,根据题意,得(50025+90025+5)a -(500+900)≥(500+900)×25% 解得a ≥35,答:每套悠悠球的售价至少是35元.5. 解:(1)设改建后绿化区的面积为x 亩,则休闲区的面积为20%x 亩,根据题意得,x +20%x =162,解得x =135,∴休闲区的面积为135×20%=27,答:改建后的绿化区的面积为135亩,休闲区的面积为27亩;(2)设绿化区的面积为x 亩,则休闲区的面积为(162-x )亩,根据题意得35000x +25000(162-x )≤5500000,解得x ≤145,答:绿化区的面积最多可以达到145亩.6. 解:(1)设每辆大客车的座位数为x 个,每辆小客车的座位数为y 个,根据题意得⎩⎨⎧x -y =15 4x +6y =310, 解得⎩⎨⎧x =40y =25, 答:每辆大客车的座位数为40个,每辆小客车的座位数为25个;(2)设租用小客车a 辆,则租用大客车(10-a )辆,根据题意得40(10-a )+25a ≥310+40,解得a ≤103,∵a 为整数,∴a 的最大值为3.答:最多租用小客车3辆.7. 解:(1)设甲种型号蓝牙音箱的销售单价为x 元,乙种型号蓝牙音箱的销售单价为y 元,根据题意得,⎩⎨⎧3x +7y =21605x +14y =4020, 解得⎩⎨⎧x =300y =180. 答:甲种型号蓝牙音箱的销售单价为300元,乙种型号蓝牙音箱的销售单价为180元;(2)设甲种型号的蓝牙音箱采购a 台,根据题意得,240a +140(30-a )≤6000,解得a ≤18.答:甲种型号的蓝牙音箱最多能采购18台.8. 解:(1)设购买A 型设备x 台,则购买B 型设备(10-x )台,根据题意得,12x +15(10-x )≥140,解得 x ≤103,∵x 为非负整数,∴x 可取值为0,1,2,3,∴共有4种方案:①A 型0台,B 型10台;②A 型1台,B 型9台;③A 型2台,B 型8台;④A 型3台,B 型7台;(2)方案①:A 型0台,B 型10台时,购买费用为4.4×10=44万元,∴44×90%=39.6万元, 方案②:A 型1台,B 型9台时,购买费用为3×1+4.4×9=42.6万元,∴42.6×90%=38.34万元,方案③:A 型2台,B 型8台时,购买费用为3×2+4.4×8=41.2万元,∴41.2×90%=37.08万元,方案④:A 型3台,B 型7台时,购买费用为3×3+4.4×7=39.8万元,∴采用方案③A 型2台,B 型8台时,购买费用最少.9. 解:(1)设该地投入异地安置资金的年平均增长率为x ,根据题意得:1280(1+x )2=1280+1600,解得x =0.5或x =-2.5(舍),答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%;(2)设2017年该地有a 户享受到优先搬迁租房奖励,根据题意得,∵1000×8×400=3200000<5000000,∴a >1000,∴1000×8×400+(a -1000)×5×400≥5000000,解得a ≥1900,答:2017年该地至少有1900户享受到优先搬迁租房奖励.10.解:(1)设桂花树的单价为x 元,丁香树的单价为y 元,根据题意得,⎩⎨⎧5x +4y =4103x +2y =230, 解得⎩⎨⎧x =50y =40, 答:桂花树和丁香树的单价分别为50元和40元;(2)设购买a 棵桂花树,则购买(100-a )棵丁香树,则有50a +40(100-a )≤4363, 解得a ≤36.3,∵a ≥34且a 为正整数,∴a =34,35,36,∴共有3种购买方案,方案一:购买桂花树34棵,丁香树66棵;方案二:购买桂花树35棵,丁香树65棵;方案三:购买桂花树36棵,丁香树64棵;答:有三种购买方案;分别是购买桂花树34棵,丁香树66棵;购买桂花树35棵,丁香树65棵;购买桂花树36棵,丁香树64棵.。
基本不等式在实际问题中的应用高中数学 1.熟练掌握基本不等式及变形的应用.2.会用基本不等式解决生活中简单的最大(小)值问题.3.能够运用基本不等式解决几何中的应用问题.导语同学们,我们说数学是和生活联系非常紧密的学科,我们学习数学,也是为了解决生活中的问题,比如:“水立方”是2008年北京奥运会标志性建筑之一,如图为水立方平面设计图,已知水立方地下部分为钢筋混凝土结构,该结构是大小相同的左右两个矩形框架,两框架面积之和为18 000 m 2,现地上部分要建在矩形ABCD 上,已知两框架与矩形ABCD 空白的宽度为10 m ,两框架之间的中缝空白宽度为5 m ,请问作为设计师的你,应怎样设计矩形ABCD ,才能使水立方占地面积最小?要解决这个问题,还得需要我们刚学习过的基本不等式哦,让我们开始今天的探究之旅吧!一、基本不等式在生活中的应用问题 利用基本不等式求最大(小)值时,应注意哪些问题?提示 一正:x ,y 都得是正数;二定:积定和最小,和定积最大;三相等:检验等号成立的条件是否满足实际需要.例1 (教材46页例3改编)小明的爸爸要在家用围栏做一个面积为16m 2的矩形游乐园,当这个矩形的边长为多少时,所用围栏最省,并求所需围栏的长度.解 设矩形围栏相邻两条边长分别为x m ,y m ,围栏的长度为2(x +y )m.方法一 由已知xy =16,由≥,可知x +y ≥2=8,x +y2xy xy 所以2(x +y )≥16,当且仅当x =y =4时,等号成立,因此,当这个矩形游乐园是边长为4 m 的正方形时,所用围栏最省,所需围栏的长度为16 m.方法二 由已知xy =16,可知y =,16x所以2(x +y )=2≥2×2=16.(x +16x )x ·16x 当且仅当x =y =4时,等号成立,因此,当这个矩形游乐园是边长为4 m 的正方形时,所用围栏最省,所需围栏的长度为16 m.延伸探究 如果小明的爸爸只有12 m 长的围栏,如何设计,才能使游乐园的面积最大?解 由已知得2(x +y )=12,故x +y =6,面积为xy ,由≤==3,或=≤=3,xy x +y262xy x (6-x )x +6-x 2可得xy ≤9,当且仅当x =y =3时,等号成立.因此,当游乐园为边长为3的正方形时,面积最大,最大面积为9 m 2.反思感悟 利用基本不等式解决实际问题的步骤(1)理解题意,设变量,并理解变量的实际意义;(2)构造定值,利用基本不等式求最值;(3)检验,检验等号成立的条件是否满足题意;(4)结论.跟踪训练1 要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,求该容器的最低总造价.解 设该长方体容器底面的长和宽分别为a m ,b m ,成本为y 元,由于长方体容器的容积为4 m 3,高为1 m ,所以底面面积S =ab =4,y =20S +10[2(a +b )]=20(a +b )+80,由基本不等式可得y =20(a +b )+80≥20×2+80=160(元),ab 当且仅当a =b =2时,等号成立,因此,该容器的最低总造价为160元.二、基本不等式在几何中的应用例2 如图所示,设矩形ABCD (AB >BC )的周长为24,把它沿AC 翻折,翻折后AB ′交DC 于点P ,设AB =x .(1)用x 表示DP ,并求出x 的取值范围;(2)求△ADP 面积的最大值及此时x 的值.解 (1)矩形ABCD (AB >BC )的周长为24,∵AB =x ,∴AD =-x =12-x ,242在△APC 中,∠PAC =∠PCA ,所以AP =PC ,从而得DP =PB ′,∴AP =AB ′-PB ′=AB -DP =x -DP ,在Rt △ADP 中,由勾股定理得(12-x )2+DP 2=(x -DP )2,∵AB >BC =AD ,得x >12-x ,∴6<x <12,∴DP =12-(6<x <12).72x (2)在Rt △ADP 中,S △ADP =AD ·DP =(12-x )=108-(6<x <12).1212(12-72x )(6x +432x )∵6<x <12,∴6x +≥2·=72,当且仅当6x =,即x =6时取等号.432x 6x ·432x 2432x 2∴S △ADP =108-≤108-72,∴当x =6时,△ADP 的面积取最大值108-72.(6x +432x )222反思感悟 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.跟踪训练2 如图所示,将一矩形花坛ABCD 扩建为一个更大的矩形花坛AMPN ,要求点B 在AM 上,点D 在AN 上,且对角线MN 过点C ,已知AB =4米,AD =3米,当BM =________时,矩形花坛AMPN 的面积最小.答案 4解析 设BM =x (x >0),则由DC ∥AM 得=,解得ND =,NDND +344+x 12x ∴矩形AMPN 的面积为S =(4+x )=24+3x +≥24+2=48,当且仅当(3+12x )48x 3x ×48x 3x =,即x =4时等号成立.48x1.知识清单:(1)基本不等式在生活中的应用.(2)基本不等式在几何中的应用.2.方法归纳:配凑法.3.常见误区:生活中的变量有它自身的意义,容易忽略变量的取值范围.1.用一段长为8 cm 的铁丝围成一个矩形模型,则这个模型的最大面积为( )A .9 cm 2 B .16 cm 2C .4 cm 2 D .5 cm 2答案 C解析 设矩形模型的长和宽分别为x ,y ,则x >0,y >0,由题意可得2(x +y )=8,所以x +y =4,所以矩形菜园的面积S =xy ≤==4,当且仅当x =y =2时取等号,(x +y )24424所以当矩形菜园的长和宽都为2 cm 时,面积最大,为4 cm 2.2.港珠澳大桥通车后,经常往来于珠港澳三地的刘先生采用自驾出行.由于燃油的价格有升也有降,现刘先生有两种加油方案,第一种方案:每次均加30升的燃油;第二种方案:每次加200元的燃油,则下列说法正确的是( )A .采用第一种方案划算 B .采用第二种方案划算C .两种方案一样 D .无法确定答案 B解析 任取其中两次加油,假设第一次的油价为m 元/升,第二次的油价为n 元/升.第一种方案的均价为=≥;30m +30n60m +n 2mn 第二种方案的均价为=≤.400200m+200n 2mn m +n mn 所以无论油价如何变化,第二种都更划算.3.某工厂生产某种产品,第一年产量为A ,第二年的增长率为a ,第三年的增长率为b ,这两年的平均增长率为x (a ,b ,x 均大于零),则( )A .x =B .x ≤C .x >D .x ≥a +b2a +b2a +b2a +b2答案 B解析 由题意得,A (1+a )(1+b )=A (1+x )2,则(1+a )(1+b )=(1+x )2,因为(1+a )(1+b )≤2,(1+a +1+b2)所以1+x ≤=1+,2+a +b2a +b2所以x ≤,当且仅当a =b 时取等号.a +b24.在如图所示的锐角三角形空地中,欲建一个内接矩形花园(阴影部分),矩形花园面积的最大值为________.答案 400解析 由题意设矩形花园的长为x >0,宽为y >0,矩形花园的面积为xy ,根据题意作图如下,因为花园是矩形,则△ADE 与△ABC 相似,所以=,又因为AG =BC =40,AFAG DEBC所以AF =DE =x ,FG =y ,所以x +y =40,由基本不等式x +y ≥2,得xy ≤400,xy 当且仅当x =y =20时,矩形花园面积最大,最大值为400.课时对点练1.三国时期赵爽在《勾股方圆图注》中对勾股定理的证明可用现代数学表述为如图所示,我们教材中利用该图作为“( )”的几何解释( )A .如果a >b >0,那么>a bB .如果a >b >0,那么a 2>b 2C .对任意正实数a 和b ,有a 2+b 2≥2ab ,当且仅当a =b 时等号成立D .对任意正实数a 和b ,有a +b ≥2,当且仅当a =b 时等号成立ab 答案 C解析 可将直角三角形的两直角边长度取作a ,b ,斜边为c (c 2=a 2+b 2),则外围的正方形的面积为c 2,也就是a 2+b 2,四个阴影面积之和刚好为2ab ,对任意正实数a 和b ,有a 2+b 2≥2ab ,当且仅当a =b 时等号成立,故选C.2.汽车上坡时的速度为a ,原路返回时的速度为b ,且0<a <b ,则汽车全程的平均速度比a ,b 的平均值( )A .大 B .小C .相等 D .不能确定答案 B解析 令单程为s ,则上坡时间为t 1=,下坡时间为t 2=,sa sb 平均速度为==<<.2st 1+t 22ssa+s b 21a+1b ab a +b23.将一根铁丝切割成三段做一个面积为2 m 2,形状为直角三角形的框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是( )A .6.5 m B .6.8 m C .7 m D .7.2 m答案 C解析 设两直角边分别为a ,b ,直角三角形的框架的周长为l ,则ab =2,∴ab =4,l =a +b +≥2+=4+2≈6.828(m).故C 既够用,浪12a 2+b 2ab 2ab 2费也最少.4.如图所示,矩形ABCD 的边AB 靠在墙PQ 上,另外三边是由篱笆围成的.若该矩形的面积为4,则围成矩形ABCD 所需要篱笆的( )A .最小长度为8B .最小长度为42C .最大长度为8D .最大长度为42答案 B解析 设BC =a ,CD =b ,因为矩形的面积为4,所以ab =4,所以围成矩形ABCD 所需要的篱笆长度为2a +b =2a +≥2=4,4a 2a ·4a 2当且仅当2a =,即a =时,等号成立.4a 25.气象学院用32万元买了一台天文观测仪,已知这台观测仪从启动的第一天连续使用,第n 天的维修保养费为(4n +46)(n ∈N *)元,使用它直至“报废最合算”(所谓“报废最合算”是指使用的这台仪器的平均每天耗资最少)为止,一共使用了( )A .300天 B .400天 C .600天 D .800天答案 B解析 设一共使用了n 天,则使用n 天的平均耗资为=+2n +48,当且仅当=2n 时,取得最小值,此时320 000+(50+4n +46)n2n320 000n320 000nn =400.6.(多选)已知某出租车司机为升级服务水平,购入了一辆豪华轿车投入运营,据之前的市场分析得出每辆车的营运总利润y (万元)与运营年数x 的关系为y =-x 2+12x -25,则下列判断正确的是( )A .车辆运营年数越多,收入越高B .车辆在第6年时,总收入最高C .车辆在前5年的平均收入最高D .车辆每年都能盈利答案 BC解析 由题意,y =-x 2+12x -25,是开口向下的二次函数,故A 错误;对称轴x =6,故B 正确;=-x +12-=-+12≤-2+12=2,当且仅当x =5时,等号成立,yx 25x (x +25x )25故C 正确;当x =1时,y =-14,故D 错误.7.矩形的长为a ,宽为b ,且面积为64,则矩形周长的最小值为________.答案 32解析 由题意,矩形中长为a ,宽为b ,且面积为64,即ab =64,所以矩形的周长为2a +2b =2a +≥2=32,128a 2×128当且仅当a =8时,等号成立,即矩形周长的最小值为32.8.某工厂建造一个无盖的长方体贮水池,其容积为4 800 m 3,深度为3 m .如果池底每1 m 2的造价为150元,池壁每1 m 2的造价为120元,要使水池总造价最低,那么水池底部的周长为________m.答案 160解析 设水池底面一边的长度为x m ,则另一边的长度为m ,4 8003x 由题意可得水池总造价y =150×+120×=240 000+7204 8003(2×3x +2×3×4 8003x )(x >0),(x +1 600x)则y =720+240000≥720×2+240 000=720×2×40+240 000=297(x +1 600x)x ·1 600x 600,当且仅当x =,即x =40时,y 有最小值297 600,1 600x 此时另一边的长度为=40(m),4 8003x 因此,要使水池总造价最低,则水池的底面周长为160 m.9.经观测,某公路段在某时段内的车流量y (千辆/小时)与汽车的平均速度v (千米/小时)之间有函数关系:y =(v >0).在该时段内,当汽车的平均速度v 为多少时车流量y 900vv 2+5v +1 000最大?解 y ==,900vv 2+5v +1 000900v +1 000v +5∵v +≥2=20,1 000v v ·1 000v 10∴y =≤=,900v +1 000v +59002010+5180410+1当且仅当v =,即v =10时等号成立.1 000v 10∴当汽车的平均速度v =10千米/小时时车流量y 最大.1010.根据交通法规,某路段限制车辆最高时速不得超过100千米/小时,现有一辆运货卡车在该路段上以每小时x 千米的速度匀速行驶130千米.假设汽油的价格是每升2元,而汽车每小时耗油升,司机的工资是每小时14元.(2+x 2360)(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.解 (1)由题意,y =2·+14·=+(0<x ≤100).(2+x 2360)130x 130x 2 340x 13x18(2)因为y =+≥2=26,当且仅当x =18时,等号成立,2 340x 13x18 2 340x ·13x181010又0<18<100,10所以当x =18千米/小时时,这次行车的总费用最低,为26元.101011.无字证明是指只用图象而无需文字解释就能不证自明的数学命题,由于其不证自明的特性,这种证明方式被认为比严格的数学证明更为优雅与条理,请写出该图验证的不等式( )A .a 2+b 2≥a +bB .4ab ≥a 2+b 2C .a +b ≥2D .a 2+b 2≥2abab 答案 D解析 从图形可以看出正方形的面积比8个直角三角形的面积和要大,当中心小正方形缩为一个点时,两个面积相等;因此(a +b )2≥8×ab =4ab ,所以a 2+b 2≥2ab .1212.中国南宋大数学家秦九韶提出了“三斜求积术”,即已知三角形三边长求三角形面积的公式:设三角形的三条边长分别为a ,b ,c ,则三角形的面积S 可由公式S =求得,其中p 为三角形周长的一半,这个公式也被称为海伦一秦九韶公p (p -a )(p -b )(p -c )式.现有一个三角形的边长满足a =6,b +c =8,则此三角形面积的最大值为( )A .3 B .8 C .4 D .9773答案 A解析 由题意p =7,S ==≤·=3,7(7-a )(7-b )(7-c )7(7-b )(7-c )77-b +7-c27当且仅当7-b =7-c ,即b =c =4时,等号成立,此三角形面积的最大值为3.713.某商场对商品进行两次提价,现提出四种提价方案,提价幅度较大的一种是( )A .先提价p %,后提价q %B .先提价q %,后提价p %C .分两次提价%p +q2D .分两次提价%(以上p ≠q )p 2+q 22答案 D解析 由题意可知,A ,B 选项的两次提价均为(1+p %)(1+q %);C 选项的提价为2,D 选项的提价为(1+p +q 2%)2,(1+p 2+q 22%)又∵<,∴(1+p %)(1+q %)<2<2,p +q2p 2+q 22(1+p +q 2%)(1+p 2+q 22%)∴提价最多的为D 选项.14.某公司租地建仓库,每月土地费用与仓库到车站距离成反比,而每月货物的运输费用与仓库到车站距离成正比.如果在距离车站10 km 处建仓库,则土地费用和运输费用分别为2万元和8万元,那么要使两项费用之和最小,仓库应建在离车站________ km 处.答案 5解析 设仓库到车站距离为x ,每月土地费用为y 1,每月货物的运输费用为y 2,由题意可设y 1=,y 2=k 2x ,k 1x 把x =10,y 1=2与x =10,y 2=8分别代入上式得k 1=20,k 2=0.8,∴y 1=,y 2=0.8x ,20x 费用之和y =y 1+y 2=0.8x +≥2×4=8,20x 当且仅当0.8x =,即x =5时等号成立.20x 当仓库建在离车站5 km 处两项费用之和最小.15.一家商店使用一架两臂不等长的天平秤黄金,一位顾客到店里购买10 g 黄金,售货员先将5 g 的砝码放在天平的左盘中,取出一些黄金放在天平右盘中使天平平衡;再将5 g 的砝码放在天平右盘中,再取出一些黄金放在天平左盘中使天平平衡;最后将两次秤得的黄金交给顾客,你认为顾客购得的黄金是( )A .大于10 gB .大于等于10 gC .小于10 gD .小于等于10 g 答案 A解析 由于天平两臂不等长,可设天平左臂长为a (a >0),右臂长为b (b >0),则a ≠b ,再设先称得黄金为x g ,后称得黄金为y g ,则bx =5a ,ay =5b ,∴x =,y =,5a b 5b a ∴x +y =+=5≥5×2=10,5ab 5b a (a b +b a )a b ·b a 当且仅当=,即a =b 时等号成立,但a ≠b ,等号不成立,即x +y >10,a b ba 因此,顾客购得的黄金大于10 g.16.某书商为提高某套丛书的销售量,准备举办一场展销会,据市场调查,当每套丛书售价定为x 元时,销售量可达到(10-0.1x )万套.现出版社为配合该书商的活动,决定进行价格改革,每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为20元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格.(1)求每套丛书利润y 与售价x 的函数关系,并求出每套丛书售价定为80元时,书商能获得的总利润是多少万元?(2)每套丛书售价定为多少元时,每套丛书的利润最大?并求出最大利润.解 (1)∵Error!∴0<x <100,y =x -=x --20(0<x <100),(20+1010-0.1x )100100-x 当x =80时,y =80--20=55(元),100100-80此时销量为10-0.1×80=2(万套),总利润为2×55=110(万元).(2)y =x --20,100100-x ∵0<x <100,∴100-x >0,∴y =-+80[100100-x +(100-x )]≤-2+80=60,100100-x ·(100-x )当且仅当=100-x ,即x =90元时,每套利润最大为60元.100100-x。
3.4不等式的实际应用一、选择题(每题5分,共20分)1.某公司租地建仓库,每月土地费用与仓库到车站距离成反比,而每月货物的运输费用与仓库到车站距离成正比.如果在距离车站10 km 处建仓库,则土地费用和运输费用分别为2万元和8万元,那么要使两项费用之和最小,仓库应建在离车站( )A .5 km 处B .4 km 处C .3 km 处D .2 km 处【解析】 设仓库建在离车站x km 处,则土地费用y 1=k 1x,运输费用y 2=k 2x 把x =10,y 1=2代入得k 1=20,把x =10,y 2=8代入得k 2=45, 故总费用y =20x +45x ≥220x ·45x =8, 当且仅当20x =45x 即x =5时等号成立. 【答案】 A2.银行计划将某资金给项目M 和N 投资一年,其中40%的资金给项目M,60%的资金给项目N ,项目M 能获得10%的年利润,项目N 能获得35%的年利润,年终银行必须回笼资金,同时按一定的回扣率支付给储户,为了使银行年利润不小于给M 、N 总投资的10%而又不大于总投资的15%,则给储户的回扣率最小值为( )A .5%B .10%C .15%D .20% 【解析】 设给储户的回扣率为x ,由题意:⎩⎪⎨⎪⎧0.4×0.1+0.6×0.35-x ≥0.10.4×0.1+0.6×0.35-x ≤0.15, 解得0.1≤x ≤0.15,故x 的最小值是0.1=10%.【答案】 B3.天文台用3.2万元买一台观测仪,已知这台观测仪从启用的第一天起连续使用,第n 天的维修保养费为n +4910元(n ∈N *),使用它直至报废最合算(所谓报废最合算是指使用的这台仪器的日平均耗资最少)为止,一共使用了( )A .600天B .800天C .1 000天D .1 200天【解析】 日平均耗资为3 2000+n ·12·⎝⎛⎭⎫5+n +4910n=3 2000n +n 20+9920≥2 3 2000n ·n 20+9920=80+9920,当且仅当3 2000n =n 20,即n =800时取等号. 【答案】 B4.用长度分别为2、3、4、5、6(单位:cm)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为( )A .85 cm 2B .610 cm 2C .355 cm 2D .20 cm 2【解析】 设三角形各边长为x 、y 、z ,且x 、y 、z ∈N +,则x +y +z =20.由于在周长一定的三角形中,各边长越接近的三角形面积越大,于是当三边长为7 cm 、7 cm 、6 cm 时面积最大,则S △=12×6×72-32=610(cm 2),故选B.【答案】 B二、填空题(每题5分,共10分)5.建造一个容积为8 m 2,深为2 m 的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为________元.【解析】 设池底长x m ,则宽4xm , 总造价y =(4x +16x)×80+4×120 ≥24x ·16x×80+480=1 760, 当且仅当4x =16x即x =2时等号成立. 【答案】 1 7606.某省每年损失耕地20万亩,每亩耕地价格24 000元,为了减少耕地损失,决定以每年损失耕地价格的t %征收耕地占用税,这样每年的耕地损失可减少52t 万亩,为了既减少耕地的损失又保证此项税收一年不少于9 000万元,则t 的取值范围是____. 【解析】 由题意得(20-52t )×2 4000×t %≥9 000, 化简得t 2-8t +15≤0解得3≤t ≤5.【答案】 3≤t ≤5三、解答题(每题10分,共20分)7.某工厂建造一间地面面积为12 m 2的背面靠墙的矩形小房,房屋正面的造价为1 200元/m 2,房屋侧面的造价为800元/m 2,屋顶的造价为5 800元,如果墙高为3 m ,且不计房屋背面的费用,则建造此小房的最低总造价是多少元?【解析】 设房子的长为x m ,宽为y m ,总造价为t 元,则xy =12.t =3x ·1 200+3y ·800·2+5 800=1 200(3x +4y )+5 800≥1 200·212xy +5 800=34600(当且仅当3x =4y 时取等号).故最低总造价是34 600元.8.一批救灾物资随26辆汽车从某市以v km/h 的速度匀速直达灾区,已知两地公路线长400 km ,为了安全起见,两辆汽车的间距不得小于(v 20)2 km ,那么这批物资全部安全到达灾区,最少需要多少小时? 【解析】 第一辆汽车到达用400v h ,由题意每隔(v 20)2v h 到达一辆汽车, ∴400v +25×(v 20)2v =400v +v 16≥2400v ×v 16=10(h), 当且仅当400v =v 16,v =80 km/h 时取等号. ∴每辆汽车以80 km/h 的速度行驶,最少需10 h 这批物资全部安全到达灾区.9.(10分)工厂对某种原料的全年需要量是Q 吨.为保证生产,又节省开支,打算全年分若干次等量订购,且每次用完后可立即购买.已知每次订购费用是a 元.又年保管费用率是p ,它与每次购进的数量(x 吨)及全年保管费(S 元)之间的关系是S =12px .问全年订购多少次才能使订购费与保管费用之和最少?并求这个最少费用的和(为简便计算,不必讨论订购次数是否为整数).【解析】 设每次购进的数量为x 吨,则全年定购费用=a ·Q x ,全年保管费S =12px , 定购费与保管费之和y =a ·Q x +12px . 由于a ·Q x +12px ≥212paQ =2paQ , 当且仅当a ·Q x =12px ,即x =2aQp p时取等号, 即最优批量订购数为x 0=2aQp p(吨), 最小费用数为y min =2paQ (元),全年最佳定购次数n =Q x 0=2paQ 2a(次). 故全年订购2paQ 2a次,才能使全年的订购费用与保管费用之和最少,最少费用为2paQ 元.高$考じ试(题╬库。
§3.4 不等式的实际应用教学目标1.掌握建立一元二次不等式模型解决实际问题.2.掌握建立均值不等式模型解决实际问题.教学知识总结知识点一 不等式模型思考 一般情况下,建筑民用住宅时,民用住宅商户的总面积应小于该住宅的占地面积,而窗户的总面积与占地面积的比值越大,住宅的采光条件越好,同时增加相等的窗户面积和占地面积,如何研究住宅的采光条件是变好了还是变差了?【答案】 设a 和b 分别表示住宅原来窗户的总面积和占地面积,m 表示增加的面积,则只需比较a b 与a +m b +m的大小即可. 梳理 建立不等式模型解决实际问题的过程:(1)理解题意,设出变量(必要时可画出示意图帮助理解);(2)建立相应的等量或不等量关系,把实际问题抽象为数学问题;(3)解决数学问题;(4)回归实际问题,写出准确答案.知识点二 常见的不等式模型1.一元二次不等式模型根据题意抽象出的模型是一元二次不等式或一元二次函数,需要求变量的范围或者最值,解决办法是解一元二次不等式或配方法求最值,注意实际含义对变量取值范围的影响.2.均值不等式模型根据题意抽象出的模型是(1)y =x +a x(a >0),(2)a +b ,ab 中有一个是定值,求另一个的最值,解决办法是应用均值不等式,注意均值不等式成立的条件a >0,b >0,以及等号成立的条件是否具备.题型探究类型一 一元二次不等式的实际应用 命题角度1 范围问题例1 国家为了加强对烟酒生产的宏观调控,实行征收附加税政策.现知某种酒每瓶70元,不加收附加税时,每年大约产销100万瓶,若政府征收附加税,每销售100元要征税R 元(叫作税率R %),则每年的产销量将减少10R 万瓶,要使每年在此项经营中所收取附加税金额 不少于112万元,则R 应怎样确定?解 设产销量每年为x 万瓶,则销售收入每年70x 万元,从中征收的金额为70x·R%万元,其中x=100-10R.由题意,得70(100-10R)·R%≥112,整理,得R2-10R+16≤0.因为Δ=36>0,所以方程R2-10R+16=0的两个实数根分别为R1=2,R2=8.由二次函数y=R2-10R+16的图象,得不等式的解集为{R|2≤R≤8}.所以当2≤R≤8时,每年在此项经营中所收取附加税金额不少于112万元.反思与感悟解有关不等式应用题的步骤(1)选用合适的字母表示题中的未知数.(2)由题中给出的不等量关系,列出关于未知数的不等式(组).(3)解所列出的不等式(组).(4)结合问题的实际意义写出答案.跟踪训练1某热带风暴中心B位于海港城市A东偏南30°的方向,与A市相距400km.该热带风暴中心B以40km/h的速度向正北方向移动,影响范围的半径是350km.问:从此时起,经多少时间后A市将受热带风暴影响,大约受影响多长时间?解如图,以A市为原点,正东方向为x轴建立直角坐标系,因为AB=400,∠BAx=30°,所以热带风暴中心B的坐标为(2003,-200),x h后热带风暴中心B到达点P(2003,40x -200)处,由已知,A市受热带风暴影响时,有|AP|≤350,即(2003)2+(40x-200)2≤3502,整理得16x2-160x+375≤0,解不等式,得3.75≤x≤6.25,A市受热带风暴影响的时间为6.25-3.75=2.5,故在3.75h后,A市会受到热带风暴的影响,时间长达2.5h.命题角度2最值问题例2甲、乙两公司同时开发同一种新产品,经测算,对于函数f(x),g(x),当甲公司投入x 万元作宣传时,若乙公司投入的宣传费小于f(x)万元,则乙公司对这一新产品的开发有失败的风险,否则,没有失败的风险;当乙公司投入x万元作宣传时,若甲公司投入的宣传费用小于g (x )万元,则甲公司对这一新产品的开发有失败的风险,否则,没有失败的风险.(1)若f (0)=10,g (0)=20,试解释它们的实际意义;(2)设f (x )=x 4+10,g (x )=x +20,甲、乙两公司为了避免恶性竞争,经过协商,同意在双方均无失败风险的情况下尽可能少地投入宣传费用,问甲、乙两公司应投入多少宣传费? 解 (1)f (0)=10表示当甲公司不投入宣传费时,乙公司要避免新产品的开发有失败风险,至少要投入10万元宣传费;g (0)=20表示当乙公司不投入宣传费时,甲公司要避免新产品的开发有失败的风险,至少要投入20万元宣传费.(2)设甲公司投入宣传费x 万元,乙公司投入宣传费y 万元,若双方均无失败的风险,依题意,当且仅当⎩⎪⎨⎪⎧y ≥f (x )=14x +10,x ≥g (y )=y +20成立. 故y ≥14(y +20)+10, 则4y -y -60≥0,所以(y -4)(4y +15)≥0,得y ≥4,故y ≥16,x ≥y +20≥24,即在双方均无失败风险的情况下尽可能少地投入宣传费用,甲公司应投入24万元宣传费,乙公司应投入16万元宣传费.反思与感悟 与最值相关的二次函数问题的解题方法(1)此类问题一般涉及最大值、最小值的确定,实质是求一元二次函数的最值,一般是根据题意列出相应的一元二次函数,再通过配方求最值.(2)需要注意一元二次函数的对称轴与实际问题中自变量范围的关系,若对称轴在取值范围内,则最值在对称轴处取,若不在取值范围内,则根据函数的单调性确定在哪一个端点处取最值.(3)对于列出的函数是分段函数的,则在每一段上求最值,再比较每个最值的大小.跟踪训练2 已知不等式sin 2x -2a sin x +a 2-2a +2>0对一切x ∈R 恒成立,求实数a 的取值范围.解 设f (x )=sin 2x -2a sin x +a 2-2a +2,则f (x )=(sin x -a )2+2-2a .当a <-1时,f (x )在sin x =-1时取到最小值,且f (x )min =a 2+3,a 2+3>0显然成立, ∴a <-1.当-1≤a ≤1时,f (x )在sin x =a 时取到最小值,且f (x )min =2-2a ,由2-2a >0,解得a <1, ∴-1≤a <1.当a >1时,f (x )在sin x =1时取到最小值,且f (x )min =a 2-4a +3,由a 2-4a +3>0,解得a <1或a >3,∴a >3.综上所述,a 的取值范围为(-∞,1)∪(3,+∞).类型二 均值不等式的实际应用例3 某单位决定投资3200元建一长方体仓库,高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米造价40元,两侧用砖墙,每米造价45元,顶部每平方米造价20元.(1)仓库底面积S (m 2)的最大允许值是多少?(2)为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?解 (1)设铁栅长为x m ,一侧砖墙长为y m ,则有S =xy .由题意得40x +2×45y +20xy =3200.由均值不等式,得3200≥240x ·90y +20xy =120xy +20xy =120S +20S ,∴S +6S ≤160,即(S +16)(S -10)≤0. ∵S +16>0,∴S -10≤0,∴S ≤100.∴S 的最大允许值是100m 2.(2)由(1)知取得最大值的条件是40x =90y ,而xy =100,由此求得x =15,即铁栅的长应是15 m. 反思与感悟 (1)求最值或者求取值范围问题,首先考虑建立函数关系,通过函数的方法来求.均值不等式也是求最值的重要方法,尤其是出现和与积的形式,把所求的量放在不等式中去考查.(2)建立函数时一定要注意函数的定义域,定义域是函数的三要素之一,不能忽视.在利用均值不等式解题时,要注意“一正、二定、三相等”,若取等号时的自变量的值取不到,此时应考虑用函数的单调性.跟踪训练3 把一段长16米的铁丝截成两段,分别围成正方形,则两个正方形面积之和的最小值为( )A.4B.8C.16D.32【答案】B【解析】设截成的两段铁丝长分别为x ,16-x ,0<x <16,则围成的两个正方形面积之和为S =⎝⎛⎭⎫x 42+⎝⎛⎭⎫16-x 42≥⎝⎛⎭⎫x 4+16-x 422=8,当且仅当x 4=16-x 4,即x =8时,等号成立.故两个正方形面积之和的最小值为8,故选B.教学检测1.某工厂第一年产量为A ,第二年增长率为a ,第三年的增长率为b ,这两年的平均增长率为x ,则( )A.x =a +b 2B.x ≤a +b 2C.x >a +b 2D.x ≥a +b 2【答案】B【解析】由题意知A (1+x )2=A (1+a )(1+b ), 即x =(1+a )(1+b )-1≤1+a +1+b 2-1=a +b 2, 当且仅当1+a =1+b ,即a =b 时,取等号.2.某校要建一个面积为392m 2的长方形游泳池,并且在四周要修建出宽为2m 和4m 的小路(如图所示),则占地面积的最小值为m 2.【答案】648【解析】设游泳池的长为x m ,则游泳池的宽为392xm , 又设占地面积为y m 2,依题意,得y =(x +8)⎝⎛⎭⎫392x +4=424+4⎝⎛⎭⎫x +784x ≥424+224=648(m 2). 当且仅当x =784x,即x =28时,取“=”. 3.某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距离车站10公里处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么,要使这两项费用之和最小,仓库应建在离车站公里处.【答案】5【解析】设仓库到车站距离为x 公里,则y 1=k 1x ,y 2=k 2x 且k 1=20,k 2=45, 则两项费用之和S =20x +45x ≥8(万元), 当且仅当20x =45x , 即x =5公里时,两项费用之和最小为8万元.4.要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000cm 2,四周空白的宽度为10cm ,两栏之间的中缝空白的宽度为5cm ,请确定广告的高与宽的尺寸(单位:cm),使矩形广告面积最小,并求出最小值.解 设矩形栏目的高为a cm ,宽为b cm ,ab =9000.①广告的高为a +20,宽为2b +25,其中a >0,b >0.广告的面积S =(a +20)(2b +25)=2ab +40b +25a +500=18500+25a +40b ≥18500+225a ×40b=18500+21000ab =24500.当且仅当25a =40b 时,等号成立,此时b =58a ,代入①式得a =120,从而b =75,即当a =120,b =75时,S 取得最小值24500,故广告的高为140cm ,宽为175cm 时,可使广告的面积最小,最小值为24500cm 2. 课堂小结1.解不等式实际应用题的解题思路 实际问题―――――――――→建模审题、抽象概括、转化数学问题―――→建模推理演算数学模型答案――→验证实际问题结论 2.建立一元二次不等式模型求解实际问题操作步骤为:(1)理解题意,搞清量与量之间的关系;(2)建立相应的不等关系,把实际问题抽象为数学中的一元二次不等式问题;(3)解这个一元二次不等式,得到实际问题的解.。
不等式(组)的实际应用1.某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示A B进价(万元/套) 1.5 1.2售价(万元/套) 1.65 1.4该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元。
(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍。
若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?解答:(1)设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,{1.51.2660.150.29,解得:{2030,答:该商场计划购进A,B两种品牌的教学设备分别为20套,30套;(2)设A种设备购进数量减少a套,则B种设备购进数量增加1.5a套,1.5(20a)+1.2(30+1.5a)⩽69,解得:a⩽10,答:A种设备购进数量至多减少10套。
2.2016年5月6日,中国第一条具有自主知识产权的长沙磁悬浮线正式开通运营,该线路连接了长沙火车南站和黄花国际机场两大交通枢纽,沿线生态绿化带走廊的建设尚在进行中,届时将会给乘客带来美的享受。
星城渣土运输公司承包了某标段的土方运输任务,拟派出大、小两种型号的渣土运输车运输土方。
已知2辆大型渣土运输车与3辆小型渣土运输车一次共运输土方31吨,5辆大型渣土运输车与6辆小型渣土运输车一次共运输土方70吨。
(1)一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨?(2)该渣土运输公司决定派出大、小两种型号渣土运输车共20辆参与运输土方,若每次运输土方总量不小于148吨,且小型渣土运输车至少派出2辆,则有哪几种派车方案?解答:(1)设一辆大型渣土运输车一次运输x吨,一辆小型渣土运输车一次运输y 吨,{23315670,解得{85.即一辆大型渣土运输车一次运输8吨,一辆小型渣土运输车一次运输5吨;(2)由题意可得,设该渣土运输公司决定派出大、小两种型号的渣土运输车分别为x辆、y 辆,2085y⩾148y⩾2,解得{182或{173或{164,故有三种派车方案,第一种方案:大型运输车18辆,小型运输车2辆;第二种方案:大型运输车17辆,小型运输车3辆;第三种方案:大型运输车16辆,小型运输车4辆。
单元提分卷(9)不等式的实际应用1、—服装厂生产某种风衣,日产量(单位:件)为 x 时,售价为p 元/件,每天的总成本为R 元,且1602,50030p x R x =-=+,要使获得的日利润不少于1300元,则该厂的日产量 x 的取值范围为( ) A. ()0,45 B. (]0,45 C. (]0,20 D. []20,452、如果一辆汽车每天行驶的路程(单位: km )比原来多19km ,那么在8天内,它行驶的路程S 就超过2200km ;如果它每天行驶的路程比原来少12?km ,那么它行驶同样的路程S 就得花9天多的时间,那么这辆汽车原来每天行驶的路程的取值范围为( )A.(259,260)B.(258,260)C.(257,260)D.(256,260) 3、做一个面积为21m ,形状为直角三角形的铁架框,在下面四种长度的铁管中,最合理(够用,又浪费最少)的是( ) A. 4.6?m B. 4.8m C. 5m D. 5.2m4、设计用232m 的材料制造某种长方体车厢(无盖),按交通规定车厢宽为2m ,则车厢的最大容积是( )A. (338m - B. 316mC. 3D. 314m5、将进货单价为80元的商品按90元一个售出时,能卖出400个,每涨价1元,其销售量就减少20个,为获得最大利润,售价应定在( )A.每个95元B.每个100元C.每个105元D.每个110元6、在面积为S (S 为定值)的扇形中,当扇形中心角为θ,半径为r 时,扇形周长最小,这时θ、r 的值分别是( )A. 1,r θ==B. 2,r θ==C. 2,r θ==D. 2,r θ==7、把长为12cm 的细铁丝截成两段,各自摆成一个正三角形,那么这两个三角形的面积之和的最小值为( )A.22B. 24cmC. 2D. 28、气象学院用3.2万元买了一台天文观测仪,已知这台观测仪从启用的第一天起连续使用,第n 天的维修保养费为4.910n+元(*)n N ∈,使用它直至“报废最合算”(所谓“报废最合算”是指使用的这台仪器的平均每天耗资最少)为止,一共使用了( ) A.600天 B.800天 C.1000天 D.1200天 9、某商场2014年中秋节前30天月饼的销售总量(单位:盒) ()f t 与时间(单位: 天)(030)t t <≤的关系大致满足2()1016f t t t =++,则该商场前t 天平均售出(如前10天平均售出的月饼(10)10f )的月饼至少为( ) A.16盒 B.18盒 C.20盒 D.27盒 10、一服装厂生产某种风衣,月生产量(单位:件)为x 时,售价为p 元/件,成本为R 元,且1602p x =-,50030R x =+,要使获得的月利润不少于1300元,则该厂的月产量x 的取值范围为( )A.(0,45)B.(0,45]C.(0,20]D.[20,45]11、某商家一月份至五月份累计销售额达3860万元,预测六月份销售额为500万元,七月份销售额比六月份增加%x ,八月份销售额比七月份增加%x ,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7000万元,则x 的最小值是__________.12、光线透过一块玻璃,其强度要减弱110.要使光线的强度减弱到原来的13以下,至少需这样的玻璃板__________块.(参考数据: 20.3010,30.4771lg lg ==)13、现有含盐7%的盐水200克,生产含盐5%以上6%以下的盐水,设需要加入含盐4%的盐水 x 克,则 x 的取值范围是__________.14、国家为了加强对烟酒生产的宏观管理,对烟酒销售征收了附加税.已知4种酒每瓶售价为70元, 不收附加税时,每年大约销售100万瓶,若每销售100元要征收附加税r 元(即税率为%r ),每年的销售量将减少10r 万瓶.如果要使每年在此项经营中所收取的附加税额不少于112万元,那么r 的取值范围是__________.15、一批救灾物资随26辆汽车从某市以x 千米/小时速度匀速直达灾区,已知两地公路长400千米,为安全起见,两汽车间距不得小于220x ⎛⎫ ⎪⎝⎭千米,则物资全部到灾区,最少需要__________h.17、某小区内有一个矩形花坛ABCD ,现将这一矩形花坛扩建成一个更大的矩形花坛AMPN ,要求点B 在AM 上,点D 在AN 上,且对角线MN 过点C ,如图所示.已知3AB =米, 2AD =米.1.要使矩形AMPN 的面积大于32平方米,则DN 的长应在什么范围内?2.当DN 的长是多少时,矩形花坛AMPN 的面积最小?并求出最小值.18、某建筑工地决定建造一批简易房(房型为长方体,房高为2.5米),前后墙用2.5米高的彩色钢板,两侧用2.5米高的复合钢板,两种钢板的价格都用长度来计算(钢板的高均为2.5米,用钢板的长度乘以单价就是这块钢板的价格),每米售价:彩色钢板为450元,复合钢板为200元.房顶用其他材料建造,每平方米的材料费为200元.每套房的材料费控制在32000元以内.1.设房前后墙的长均为 x 米,两侧墙的长均为y 米,每套房所用材料费为P 元,试用 ,x y 表示P .2.当前面墙的长度为多少时,简易房的面积最大? 并求出最大面积. 16现有含盐的食盐水200克,生产需要含盐大于且小于的食盐水,设需要加入含盐的食盐水克,则的范围是 。
知识回顾2023年中考数学《方程与不等式的实际应用》专题知识回顾及练习题(含答案解析)1. 列方程(不等式组)解实际应用题的基本步骤:①审题——仔细审题,找出题目中的等量关系。
②设未知数——根据问题与等量关系直接或间接设未知数。
③列方程(不等式):根据等量(不等量)关系与未知数列出相应的方程(不等式)。
④解方程(不等式)——按照解相应方程(不等式)的步骤解方程。
⑤检验作答——检验方程的解是否满足实际情况,然后作答。
2. 常见的建立方程的方法:①基本等量关系建立方程。
②同一个量的两种不同表达式相等。
3. 常见的基本等量关系:①行程问题基本等量关系:路程=时间×速度;时间=路程÷速度;速度=路程÷时间。
顺行:顺行速度=自身速度+风速(水速);逆行速度=自身速度-风速(水速) ②工程问题:工作总量=工作时间×工作效率。
③配套问题: 实际生产比=配套比。
④商品销售问题:利润=售价-成本;售价=标价×0.1折扣;利润率=利润÷进价×100% 总利润=单利润×数量现单利润=原单利润+涨价部分(-降价部分) 现数量=原数量-变化基数涨价基础涨价部分⨯(原数量+变化基数降价基础降价部分⨯)⑤图形的周长,面积,体积问题。
利用勾股定理建立一元二次方程。
利用面积公式建立二元一次方程。
⑥传播问题:计算公式:原病例数×(1+传播数)传播轮数=总病例数。
⑦握手(比赛)问题:计算公式:单循环:()21+n n =总数;双循环:()1+n n =总数。
(n 表示参与数量)⑧数字问题:一个十位数可表示为:10×十位上的数字+个位上的数字;一个百位数可表示为:100×百位上的数字+10×十位上的数字+个位上的数字。
以此类推。
⑨平均增长率(下降率)问题:计算公式:原数×(1+增长率)增长轮数=总数, 原数×(1-下降率)下降轮数=总数。
基 础 巩 固一、选择题1.将进货单价为80元的商品按90元一个售出时,能卖出400个,每涨价1元,其销售量就减少20个,为获得最大利润,售价应定在( )A .每个95元B .每个100元C .每个105元D .每个110元[答案] A[解析] 设每个涨价x 元,则利润y =(x +10)(400-20x )=-20x 2+200x +4 000,∴当x =20040=5时,y 取得最大值. 故每个售价为95元时利润最大.2.在面积为S (S 为定值)的扇形中,当扇形中心角为θ,半径为r 时,扇形周长最小,这时θ、r 的值分别是( )A .θ=1,r =SB .θ=2,r =4S C .θ=2,r =3S D .θ=2,r =S [答案] D[解析] S =12θr 2⇒θ=2Sr 2,又扇形周长P =2r +θr =2⎝ ⎛⎭⎪⎫r +S r ≥4S , 当P 最小时,r =Sr ⇒r =S ,此时θ=2.3.设计用32m 2的材料制造某种长方体车厢(无盖),按交通规定车厢宽为2m ,则车厢的最大容积是( )A .(38-373)m 3B .16m 3C .42m 3D .14m 3[答案] B[解析] 设长方体长为a m ,高为h m ,则有2a +2(2h )+2(ah )=32,即a +2h +ah =16,∴16≥22ah +ah ,即(ah )2+22·ah -16≤0, 解得0<ah ≤22,∴ah ≤8, ∴V =2ah ≤16.4.做一个面积为1 m 2,形状为直角三角形的铁架框,在下面四种长度的铁管中,最合理(够用,又浪费最少)的是( )A .4.6 mB .4.8 mC .5 mD .5.2 m [答案] C[解析] 设直角三角形两直角边长分别为x ,y ,则12xy =1,即xy =2.周长l =x +y +x 2+y 2≥2xy +2xy =(1+2)×2≈4.83, 当且仅当x =y 时取等号. 考虑到实际问题,故选C. 二、填空题5.光线透过一块玻璃,其强度要减弱110.要使光线的强度减弱到原来的13以下,至少需这样的玻璃板________块.(参考数据:lg2=0.3010,lg3=0.4771)[答案] 11[解析] 设至少需要经过这样的n 块玻璃板,则, (1-110)n <13,即n ·lg 910<lg 13∴n >lg 13lg 910=-lg32lg3-1=-0.47712×0.4771-1≈10.45.又∵n ∈N +,∴n =11.6.一个矩形的周长为l ,面积为S ,给出下列实数对:①(4,1);②(8,6);③(10,8);④(3,12).其中可作为(l ,S )的取值的实数对的序号是________.[答案] ①④[解析] 依题意,设矩形的长、宽分别为a 、b ,则有⎩⎨⎧a +b =12lab =S,即l =2(a +b )≥4ab =4S ,lS≥4. 对于①,41=4; 对于②,86<84=4;对于③,108=52<322=4;对于④,312=32>4.因此,其中可作为(l ,S )的取值的实数对的序号是①④.7.某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧用砖墙,每米长造价45元,顶部每平方米造价20元.计算:(1)仓库底面积S的最大允许值是多少?(2)为使S达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?[解析](1)设正面铁栅长x m,侧面长为y m,总造价为z元,则z =40x+2×45y+20xy=40x+90y+20xy,仓库面积S=yx.由条件知z≤3 200,即4x+9y+2xy≤320.∵x>0,y>0,∴4x+9y≥24x·9y=12xy.∴6S+S≤160,即(S)2+6S-160≤0.∴0<S≤10,∴0<S≤100.故S的最大允许值为100m2.(2)当S=100m2时,4x=9y,且xy=100.解之得x=15(m),y=203(m).答:仓库面积S的最大允许值是100m2,此时正面铁栅长15m.三、解答题7.某企业生产一种机器的固定成本(即固定投入)为0.5万元,但每生产1百台时又需可变成本(即需另增加投入)0.25万元,市场对此商品的需求量为5百台,销售的收入函数为R(x)=5x-12x2(万元),(0≤x≤5),其中x是产品生产并售出的数量.(单位:百台)(1)把利润表示为年产量的函数;(2)年产量为多少时,企业所得利润最大?(3)年产量多少时,企业才不亏本.(不赔钱)?[解析](1)设利润为y.则y =⎩⎪⎨⎪⎧R (x )-0.5-0.25x (0≤x ≤5)R (5)-0.5-0.25x (x >5),∴y =⎩⎨⎧-12x 2+4.75 x -0.5(0≤x ≤5)12-0.25x (x >5).(2)y =-12(x -4.75)2+10.78125∴x =4.75时,即年产量为475台时企业所得利润最大.(3)要使企业不亏本,须y >0即⎩⎨⎧0≤x <5-12x 2+4.75 x -0.5>0或⎩⎪⎨⎪⎧12-0.25x >0x ≥5. 2.65<x <5或5≤x <48,即2.65<x <48. ∴年产量在265台至4 800台时,企业才会不亏本.能 力 提 升一、选择题1.某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下:就业情况,则根据表中数据,就业形势一定是( )A .计算机行业好于化工行业B .建筑行业好于物流行业C .机械行业最紧张D .营销行业比贸易行业紧张 [答案] B[解析] 就业情况=应聘人数招聘人数,计算机就业形式=215 830124 620>1,化工业就业形式=应聘人数70 436<65 28070 436<1,则A 不合适.同理,建筑行业就业形式=应聘人数76 516<65 28076 516<1,物流业就业形式=74 570招聘人数>74 57070 436>1.2.某公司从2006年起每人的年工资主要由三个项目组成并按下表规定实施:基础工资的25%,到2008年年底这位职工的工龄至少是( )A .2年B .3年C .4年D .5年[答案] C[解析] 设这位职工工龄至少为x 年,400x +1 600>10 000·(1+10%)2×25%,即400x +1 600>3 025,即x >3.5625,所以至少为4年.二、填空题3.现有含盐7%的食盐水200克,生产上需要含盐5%以上、6%以下的食盐水,设需要加入含盐4%的食盐水为x 克,则x 的取值范围是__________.[答案] 100<x <400 [解析] 由题意可列式5%<7%×200+4%×x 200+x <6%,即5<1 400+4x200+x <6解得100<x <400.4.周长为2的直角三角形的面积的最大值为________. [答案] 3-2 2[解析] 设直角三角形的两直角边分别为a 、b ,斜边为c ,则直角三角形的面积S =12ab .由已知,得a +b +c =2,∴a +b +a 2+b 2=2, ∴2=a +b +a 2+b 2≥2ab +2ab =(2+2)ab , ∴ab ≤22+2=2-2,∴ab ≤(2-2)2=6-42,∴S =12ab ≤3-22,当且仅当a =b =2-2时,S 取最大值3-2 2.三、解答题5.假设国家收购某种农副产品的价格是120元/担,其中征税标准是每100元征税8元(叫做税率是8个百分点,即8%),计划收购m 万担,为了减轻农民负担,决定税率降低x 个百分点,预计收购量可增加2x 个百分点,要使此项税收在税率降低后不低于原计划的78%,试确定x 的取值范围.[解析] 税率降低后是(8-x )%,收购量为m (1+2x %)万担,税收为120m(1+2x %)(8-x )%万元,原来的税收为120m·8%万元.根据题意可得120m(1+2x %)(8-x )%≥120m·8%·78% 即x 2+42x -88≤0解之得-44≤x ≤2,又x >0,∴0<x ≤2 ∴x 的取值范围是(0,2].6.某单位用木料制作如图所示的框架,框架的下部是边长分别为x 、y (单位:m)的矩形.上部是等腰直角三角形.要求框架围成的总面积8m 2.问x 、y 分别为多少时用料最省?(精确到0.001m)[解析] 由题意得xy +14x 2=8, ∴y =8-x 24x =8x -x4(0<x <42).于是,框架用料长度为l =2x +2y +2(22x ) =(32+2)x +16x ≥46+4 2.当(32+2)x =16x ,即x =8-42时等号成立. 此时,x ≈2.343,y =22≈2.828.故当x 为2.343m ,y 为2.828m 时,用料最省.7.某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用为12万元,以后每年增加4万元,每年捕鱼收益50万元.(1)问第几年开始获利?(2)若干年后,有两种处理方案:①年平均获利最大时,以26万元出售该渔船;②总纯收入获利最大时,以8万元出售该渔船.问哪种方案最合算?[解析] 由题设知每年的费用是以12为首项,4为公差的等差数列.设纯收入与年数的关系为f (n ),则f (n )=50n -[12+16+…+(8+4n )]-98=40n -2n 2-98. (1)由f (n )>0得,n 2-20n +49<0, ∴10-51<n <10+51, 又∵n ∈N ,∴n =3,4,…,17. 即从第3年开始获利.(2)①年平均收入=f (n )n =40-2(n +49n )≤40-2×14=12, 当且仅当n =7时,渔船总收益为12×7+26=110(万元). ②f (n )=-2(n -10)2+102.因此当n =10时,f (n )max =102,总收益为102+8=110万元,但7<10,所以第一种方案更合算.。