概率论与数理统计教程
- 格式:doc
- 大小:93.06 KB
- 文档页数:26
2004年7月第1版2008年4月第10次印刷第一章随机事件与概率1.1 随机事件及其运算1.1.1 随机现象在一定的条件下,并不总是出现相同结果的现象称为随机现象.在相同条件下可以重复的随机现象又称为随机试验.1.1.2 样本空间随机现象的一切可能基本结果组成的集合称为样本空间,记为,其中表示基本结果,又称为样本点.样本点是今后抽样的最基本单元.1.1.3 随机事件随机现象的某些样本点组成的集合称为随机事件,简称事件.1.1.4 随机变量用来表示随机现象结果的变量称为随机变量.1.1.7 事件域定义1.1.1 设为一样本空间,为的某些子集所组成的集合类.如果满足:(1);(2)若,则对立事件;(3)若,则可列并.则称为一个事件域,又称为代数.在概率论中,又称为可测空间.1.2 概率的定义及其确定方法1.2.1 概率的公理化定义定义1.2.1设为一样本空间,为的某些子集所组成的一个事件域.若对任一事件,定义在上的一个实值函数满足:(1)非负性公理若,则;(2)正则性公理;(3)可列可加性公理若互不相容,有则称为事件的概率,称三元素为概率空间.第二章随机变量及其分布2.1 随机变量及其分布2.1.1 随机变量的概念定义2.1.1 定义在样本空间上的实值函数称为随机变量.2.1.2 随机变量的分布函数定义2.1.2 设是一个随机变量,对任意实数,称为随机变量的分布函数.且称服从,记为.2.1.4 连续随机变量的概率密度函数定义2.1.4 设随机变量的分布函数为,如果存在实数轴上的一个非负可积函数,使得对任意实数有则称为连续随机变量,称为的概率密度函数,简称为密度函数.密度函数的基本性质(1)非负性;(2)正则性.第三章多维随机变量及其分布3.1 多维随机变量及其联合分布3.1.1 多维随机变量定义3.1.1 如果定义在同一个样本空间上的个随机变量,则称为维(或元)随机变量或随机向量.3.1.2 联合分布函数定义3.1.2 对任意的个实数,则个事件同时发生的概率称为维随机变量的联合分布函数.3.4 多维随机变量的特征数3.4.5 随机向量的数学期望与协方差阵定义3.4.3 记维随机向量为,若其每个分量的数学期望都存在,则称为维随机向量的数学期望向量,简称为的数学期望,而称为该随机向量的方差—协方差阵,简称协方差阵,记为.例3.4.12(元正态分布) 设维随机变量的协方差阵为,数学期望向量为.又记,则由密度函数定义的分布称为元正态分布,记为.第四章大数定律与中心极限定理4.1 特征函数4.1.1 特征函数的定义定义4.1.1 设是一个随机变量,称为的特征函数.设是随机变量的密度函数,则4.2 大数定律4.2.1伯努利大数定律定理 4.2.1(伯努利大数定律) 设为重伯努利试验中事件发生的次数,为每次试验中出现的概率,则对任意的,有4.2.2 常用的几个大数定律4.3 随机变量序列的两种收敛性4.3.1 依概率收敛定义4.3.1(依概率收敛) 设为一随机变量序列,为一随机变量,如果对任意的,有则称依概率收敛于,记作.4.4 中心极限定理4.4.2 独立同分布下的中心极限定理定理 4.4.1(林德贝格—勒维中心极限定理) 设是独立同分布的随机变量序列,且.记则对任意实数有第五章统计量及其分布第六章参数估计第七章假设检验第八章方差分析与回归分析。
概率论与数理统计教程华东师大课件目录一、课程概述 (2)1. 课程简介 (3)2. 教学目标 (4)3. 课程设置 (4)二、概率论基础 (5)1. 随机事件与概率 (7)1.1 随机事件 (8)1.2 概率概念 (9)2. 随机变量与分布 (10)2.1 随机变量 (11)2.2 概率分布 (12)3. 数字特征与期望 (13)3.1 数学期望 (14)3.2 方差与标准差 (15)三、数理统计基础 (16)1. 统计量与抽样分布 (17)1.1 统计量概念 (18)1.2 抽样分布概述 (20)2. 参数估计与假设检验 (21)2.1 参数估计方法 (21)2.2 假设检验原理与应用 (23)3. 方差分析与回归分析 (24)3.1 单因素方差分析 (25)3.2 回归分析概述与应用实例 (26)四、概率论与数理统计应用实例解析 (27)1. 实际问题中概率模型构建方法论述 (28)2. 典型案例分析与解题思路分享 (30)一、课程概述概率论与数理统计是一门研究随机现象规律的数学基础课程,它对于培养我们的科学素养、提高分析和解决问题的能力具有重要意义。
本教程主要面向华东师范大学的本科生,旨在帮助学生掌握概率论与数理统计的基本概念、基本原理和方法,培养学生运用概率论与数理统计解决实际问题的能力。
本教程共分为五部分:概率论基础、随机变量及其分布、多维随机变量及其分布、大数定律及中心极限定理、统计推断。
在教学过程中,我们将结合典型的例子和实际问题,引导学生理解和掌握概率论与数理统计的基本知识。
第一部分概率论基础主要包括概率的基本概念、条件概率、独立性、贝叶斯公式等内容;第二部分随机变量及其分布主要介绍离散型随机变量及其分布律、连续性随机变量及其概率密度函数、期望与方差等内容;第三部分多维随机变量及其分布主要讲解多元正态分布、多元伯努利分布等内容;第四部分大数定律及中心极限定理主要讲述大数定律的基本思想、中心极限定理的应用等内容;第五部分统计推断主要涉及假设检验、置信区间、回归分析等内容。
《概率论与数理统计教程》教案第一章随机事件与概率教材:《概率论与数理统计教程》总安排学时:90本章学时:14第一讲:随机事件及其运算教学内容:引言、概率论的基本概念、事件之间的关系及运算、事件之间的运算规律。
教学目的:(1)了解概率论这门学科的研究对象,主要任务和应用领域;(2)深刻理解随机试验、基本事件、样本空间、随机事件的概念;掌握一个随机试验的样本空间、基本事件和有关事件的表示方法。
(3)深刻理解事件的包含关系、和事件、积事件、互斥事件、互逆事件和差事件的意义;掌握事件之间的各种运算,熟练掌握用已知事件的运算表示随机事件;(4)掌握事件之间的运算规律,理解对偶律的意义。
教学的过程和要求:(1)概率论的研究对象及主要任务(10分钟)举例说明概率论的研究对象和任务,与高等数学和其它数学学科的不同之处,简单介绍概率论发展的历史和应用;(i)概率论的研究对象:确定性现象或必然现象:在相同的条件下,每次观察(试验)得到的结果是完全相同的现象。
例:向空中抛掷一物体,此物体上升到一定高度后必然下落;例:在一个标准大气压下把水加热到100℃必然会沸腾等现象。
随机现象或偶然现象:在相同的条件下,每次观察(试验)可能出现不同结果的现象。
例:在相同的条件下抛一枚均匀的硬币,其结果可能是正面(分值面)向上,也可能是反面向上,重复投掷,每次的结果在出现之前都不能确定;例:从同一生产线上生产的灯泡的寿命等现象。
(ii)概率论的研究任务:概率论与数理统计就是研究和揭示随机现象的统计规律性的一门数学学科。
(iii)概率论发展的历史:概率论起源于赌博问题。
大约在17世纪中叶,法国数学家帕斯卡(B•Pascal)、费马(fermat)及荷兰数学家惠更斯(C•Hugeness)用排列组合的方法,研究了赌博中一些较复杂的问题。
随着18、19世纪科学的迅速发展,起源于赌博的概率论逐渐被应用于生物、物理等研究领域,同时也推动了概率理论研究的发展. 概率论作为一门数学分支日趋完善,形成了严格的数学体系。
第六章 数理统计的基本概念第一节 基本概念1、概念网络图正态总体下的四大分布统计量样本函数样本个体总体数理统计的基本概念→⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧ 2、重要公式和结论例6.1:从正态总体)6,4.3(2N 中抽取容量为n 的样本,如果要求其样本均值位于区间(1.4, 5.4)内的概率不小于0.95,问样本容量n 至少应取多大?第二节 重点考核点统计量的分布第三节 常见题型1、统计量的性质例6.2:设),,,(721X X X 取自总体)5.0,0(~2N X ,则=⎪⎭⎫⎝⎛>∑=7124i i X P。
例6.3:设总体X 服从正态分布),(21σμN ,总体Y 服从正态分布),(22σμN ,1,,21n X X X 和 2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+-+-∑∑==2)()(21212121n n Y Y X X E n j j n i i .2、统计量的分布例6.4:设),,,(21n X X X 是来自正态总体),(2σμN 的简单随机样本,X 是样本均值,记,)(111221∑=--=ni i X X n S,)(11222∑=-=ni i X X n S,)(111223∑=--=ni i X n S μ,)(11224∑=-=ni i X n S μ则服从自由度为n-1的t 分布的随机变量是 (A ).1/1--=n S X t μ(B ).1/2--=n S X t μ(C )./3nS X t μ-=(D )./4nS X t μ-=[ ]例6.5:设总体X ~N (0,12),从总体中取一个容量为6的样本),,,(621X X X ,设26542321)()(X X X X X X Y +++++=,试确定常数C ,使随机变量CY 服从2χ分布。
第四节 历年真题数学一:1(98,4分) 从正态总体)6,4.3(2N 中抽取容量为n 的样本,如果要求其样本均值位于区间(1.4, 5.4)内的概率不小于0.95,问样本容量n 至少应取多大? [附表]:dt eZ t Z2221)(-∞-⎰=Φπ990.0975.0950.0900.0)(33.296.1645.128.1Z Z Φ2(01,7分) 设总体)0)(,(~2>σσμN X ,从该总体中抽取简单随机样本)2(,,,221≥n X X X n ,其样本的均值∑==ni i X n X 21,21求统计量∑=+-+=ni i n i X X X Y 12)2(的数学期望E (Y )。
第一章 事件与概率1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。
(1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。
(2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。
(3) 甲、乙两人从装有a 个白球与b 个黑球的口袋中轮流摸取一球,甲先取,乙后取,每次取后都有不放回,直到两人中有一人取到白球时停止,甲先取到白球。
解 (1)记9个合格品分别为 921,正正正,, ,记不合格为次,则,,,,,,,,,)()()(){(1913121次正正正正正正正 =Ω,,,,,,,,,)()()()(2924232次正正正正正正正 ,,,,,,,)()()(39343次正正正正正 )}()()(9898次正次正正正,,,,,,=A ){(1次正,,,,)(2次正)}(9次正,,(2)记2个白球分别为1ω,2ω,3个黑球分别为1b ,2b ,3b ,4个红球分别为1r ,2r ,3r ,4r 。
则=Ω{1ω,2ω,1b ,2b ,3b ,1r ,2r ,3r ,4r }(ⅰ) =A {1ω,2ω} (ⅱ) =B {1r ,2r ,3r ,4r }(3)1ω表示白,2ω表示黑白,3ω表示黑黑白,…白黑黑表示个b b 1+ω,则样本空间=Ω{1ω,2ω,…,1+b ω}, 当b 被奇数时:1135{,,,,}b A ωωωω= 当b 为偶数时:21351{,,,,}b A ωωωω+=1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。
(1) 叙述C AB 的意义。
(2)在什么条件下C ABC =成立? (3)什么时候关系式B C ⊂是正确的?(4) 什么时候B A =成立? 解 (1)事件C AB 表示该是三年级男生,但不是运动员。
(2) C ABC = 等价于AB C ⊂,表示全系运动员都有是三年级的男生。
概率论与数理统计教程
篇一:概率论与数理统计教程答案(徐建豪版)
习题1.1
1、写出下列随机试验的样本空间.
(1)生产产品直到有4件正品为正,记录生产产品的总件数.
(2)在单位园中任取一点记录其坐标.
(3)同时掷三颗骰子,记录出现的点数之和.
解:(1)??{4,5,6,7,8?}
(2)??{(x.y)x2?y2?1}
(3)??{3,4,5,6,7,8,9,10,?,18}
2、同时掷两颗骰子,x、y分别表示第一、二两颗骰子出现的点数,设事件A表示“两颗骰子出现点数之和为奇数”,B表示“点数之差为零”,C表示“点数之积不超过20”,用样本的集合表示事件B?A,BC,B?C.
解:B?A?{(1.1),(2.2),(3.3),(4.4),(5.5),(6.6)}
BC?{(1.1),(2.2),(3.3),(4.4)}
B?C?{(1.1),(2.2),(3.3),(4.4),(5.5),(6.6),(4.6),(6.4),(5.6),(6.5)}
3、设某人向靶子射击3次,用Ai表示“第i次射击击中靶子”(i?1,2,3),试用语言描述下列事件.
(1)A1?A2 (2)(A1?A2)A3 (3)A1A2?A2A2
解:(1)第1,2次都没有中靶
(2)第三次中靶且第1,2中至少有一次中靶
(3)第二次中靶
4.设某人向一把子射击三次,用Ai表示“第i次射击击中靶子”(i=1,2,
3),使用符号及其运算的形式表示以下事件:
(1)“至少有一次击中靶子”可表示为;
(2)“恰有一次击中靶子”可表示为;
(3)“至少有两次击中靶子”可表示为;
(4)“三次全部击中靶子”可表示为;
(5)“三次均未击中靶子”可表示为;
(6)“只在最后一次击中靶子”可表示为. 解:(1)A1?A2?A3;
(2) A123?1A23?12A3;
(3)A1A2?A1A3?A2A3; (4) A1A2A3; (5) 123(6) 12A3
5.证明下列各题
(1)A?B?A (2)A?B?(A?B)?(AB)?(B?A)
证明:(1)右边=A(??B)?A?AB=???A且??B??A?B=左边
(2)右边=(AB)?(AB)?(BA)=????A或??B??A?B
习题1.2
1.设A、B、C三事件,P(A)?P(B)?P(C)?1
4
P(AC)?P(BC)?1
8,P(AB)?0,求A、B、C至少有一个发生的概率.。