2017-2018学年高中数学人教B版选修4-5:第一章 1.5 1.5.2 综合法和分析法
- 格式:pdf
- 大小:548.20 KB
- 文档页数:33
[对应学生用书P10][读教材·填要点]1.含绝对值的不等式|x|≤a与|x|≥a的解集2.|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法(1)|ax+b|≤c⇔-c≤ax+b≤c;(2)|ax+b|≥c⇔ax+b≥c或ax+b≤-c.3.|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法(1)分区间讨论法:以绝对值的零点为分界点,将数轴分为几个区间,利用“零点分段法”求解,体现分类讨论的思想.确定各个绝对值符号内多项式的正、负进而去掉绝对值符号是解题关键.(2)图象法:构造函数,结合函数的图象求解.(3)几何法:利用绝对值不等式的几何意义求解.[小问题·大思维]1.|x|以及|x-a|±|x-b|表示的几何意义是什么?提示:|x|的几何意义是数轴上表示数x的点到原点O的距离;|x-a|±|x-b|的几何意义是数轴上表示数x的点与表示数a,b的点的距离之和(差).2.如何解|x-a|<|x-b|、|x-a|>|x-b|(a≠b)型的不等式的解集?提示:可通过两边平方去绝对值符号的方法求解.[对应学生用书P10][例1] 解下列不等式: (1)1<|x -2|≤3; (2)|2x +5|>7+x ; (3)1x 2-2≤1|x |. [思路点拨] 本题考查较简单的绝对值不等式的解法.解答本题(1)可利用公式转化为|ax +b |>c (c >0)或|ax +b |<c (c >0)型不等式后逐一求解,也可利用绝对值的定义分两种情况去掉绝对值符号,还可用平方法转化为不含绝对值的不等式.(2)可利用公式法转化为不含绝对值的不等式. (3)可分类讨论去掉分母和绝对值.[精解详析] (1)法一:原不等式等价于不等式组⎩⎪⎨⎪⎧ |x -2|>1,|x -2|≤3,即⎩⎪⎨⎪⎧x <1或x >3,-1≤x ≤5,解得-1≤x <1或3<x ≤5,所以原不等式的解集为{x |-1≤x <1或3<x ≤5}. 法二:原不等式可转化为:①⎩⎪⎨⎪⎧ x -2≥0,1<x -2≤3,或②⎩⎪⎨⎪⎧x -2<0,1<-(x -2)≤3,由①得3<x ≤5,由②得-1≤x <1,所以原不等式的解集是{x |-1≤x <1或3<x ≤5}. (2)由不等式|2x +5|>7+x ,可得2x +5>7+x 或2x +5<-(7+x ), 整理得x >2或x <-4.∴原不等式的解集是{x |x <-4或x >2}. (3)①当x 2-2<0且x ≠0,即当-2<x <2, 且x ≠0时,原不等式显然成立. ②当x 2-2>0时,原不等式与不等式组⎩⎨⎧|x |>2,x 2-2≥|x |等价,x 2-2≥|x |即|x |2-|x |-2≥0, ∴|x |≥2,∴不等式组的解为|x |≥2, 即x ≤-2或x ≥2. ∴原不等式的解集为(-∞,-2]∪(-2,0)∪(0,2)∪[2,+∞).含一个绝对值不等式的常见类型及其解法: (1)形如|f (x )|<a ,|f (x )|>a (a ∈R )型不等式 此类不等式的简单解法是等价命题法,即 ①当a >0时,|f (x )|<a ⇒-a <f (x )<a . |f (x )|>a ⇔f (x )>a 或f (x )<-a . ②当a =0时,|f (x )|<a 无解. |f (x )|>a ⇔f (x )≠0.③当a <0时,|f (x )|<a 无解. |f (x )|>a ⇔f (x )有意义.(2)形如|f (x )|<g (x ),|f (x )|>g (x )型不等式 此类不等式的简单解法是等价命题法,即 ①|f (x )|<g (x )⇔-g (x )<f (x )<g (x ),②|f (x )|>g (x )⇔f (x )>g (x )或f (x )<-g (x )(其中g (x )可正也可负). 若此类问题用分类讨论法来解决,就显得较复杂. (3)形如a <|f (x )|<b (b >a >0)型不等式 此类问题的简单解法是利用等价命题法,即 a <|f (x )|<b (0<a <b )⇔a <f (x )<b 或-b <f (x )<-a . (4)形如|f (x )|<f (x ),|f (x )|>f (x )型不等式 此类题的简单解法是利用绝对值的定义,即 |f (x )|>f (x )⇔f (x )<0, |f (x )|<f (x )⇔x ∈∅.1.设函数f (x )=|2x -a |+5x ,其中a >0. (1)当a =3时,求不等式f (x )≥5x +1的解集; (2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值. 解:(1)当a =3时,不等式f (x )≥5x +1可化为|2x -3|≥1, 由此可得x ≥2或x ≤1.故不等式f (x )≥5x +1的解集为{x |x ≤1或x ≥2}.(2)由f (x )≤0得|2x -a |+5x ≤0,此不等式可化为不等式组⎩⎪⎨⎪⎧x ≥a 2,2x -a +5x ≤0或⎩⎪⎨⎪⎧x <a 2,-(2x -a )+5x ≤0,即⎩⎨⎧x ≥a 2,x ≤a7或⎩⎨⎧x <a 2,x ≤-a3,因为a >0,所以不等式组的解集为⎩⎨⎧⎭⎬⎫x | x ≤-a 3.由题设可得-a3=-1,故a =3.[例2] 解不等式|x +7|-|3x -4|+3-22>0. [思路点拨] 先求出零点即x =-7,43,再分段讨论.[精解详析] 原不等式化为 |x +7|-|3x -4|+2-1>0,当x >43时,原不等式为x +7-(3x -4)+2-1>0,得x <5+22,即43<x <5+22;当-7≤x ≤43时,原不等式为x +7+(3x -4)+2-1>0, 得x >-12-24,即-12-24<x ≤43;当x <-7时,原不等式为 -(x +7)+(3x -4)+2-1>0, 得x >6-22,与x <-7矛盾; 综上,不等式的解为-12-24<x <5+22.(1)|x -a |+|x -b |≥c 、|x -a |+|x -b |≤c (c >0)型不等式的三种解法:分区间(分类)讨论法、图象法和几何法.分区间讨论的方法具有普遍性,但较麻烦;几何法和图象法直观,但只适用于数据较简单的情况.(2)|x -a |+|x -b |≥c 、|x -a |+|x -b |≤c (c >0)型不等式的图象解法和画出函数f (x )=|x -a |+|x -b |-c 的图象是密切相关的,其图象是折线,正确地画出其图象的关键是写出f (x )的分段表达式.不妨设a <b ,于是f (x )=⎩⎪⎨⎪⎧-2x +a +b -c , (x ≤a ),b -a -c , (a <x <b ),2x -a -b -c , (x ≥b ).这种图象法的关键是合理构造函数,正确画出函数的图象,求出函数的零点,体现了函数与方程结合、数形结合的思想.(3)形如|f (x )|<|g (x )|型不等式此类问题的简单解法是利用平方法,即 |f (x )|<|g (x )|⇔[f (x )]2<[g (x )]2 ⇔[f (x )+g (x )][f (x )-g (x )]<0.2.设函数f (x )=|2x +1|-|x -3|. (1)解不等式f (x )≥4; (2)求函数y =f (x )的最小值.解:(1)由题意得,f (x )=|2x +1|-|x -3|=⎩⎨⎧-x -4, x <-12,3x -2, -12≤x ≤3,x +4,x >3,所以不等式f (x )≥4,等价于⎩⎪⎨⎪⎧ x <-12,-x -4≥4或⎩⎪⎨⎪⎧-12≤x ≤3,3x -2≥4或⎩⎪⎨⎪⎧x >3,x +4≥4,解得x ≤-8或x ≥2.所以原不等式的解集为{x |x ≤-8或x ≥2}. (2)由(1)知,当x <-12时,f (x )=-x -4,所以f (x )在⎝⎛⎭⎫-∞,-12上单调递减; 当-12≤x ≤3时,f (x )=3x -2,所以f (x )在⎣⎡⎦⎤-12,3上单调递增; 当x >3时,f (x )=x +4,所以f (x )在(3,+∞)上单调递增. 故当x =-12时,y =f (x )取得最小值,此时f (x )min =-72.[例3] 设函数f (x )=|x -1|+|x -a |. 如果∀x ∈R ,f (x )≥2,求a 的取值范围.[思路点拨] 本题考查绝对值不等式的解法.解答本题应先对a 进行分类讨论,求出函数f (x )的最小值,然后求a 的取值范围.[精解详析] 若a =1,f (x )=2|x -1|,不满足题设条件.若a <1,f (x )=⎩⎪⎨⎪⎧-2x +a +1, x ≤a ,1-a , a <x <1,2x -(a +1), x ≥1,f (x )的最小值为1-a .若a >1,f (x )=⎩⎪⎨⎪⎧-2x +a +1, x ≤1,a -1, 1<x <a ,2x -(a +1), x ≥a ,f (x )的最小值为a -1.所以∀x ∈R ,f (x )≥2的充要条件是|a -1|≥2,从而a 的取值范围为(-∞,-1]∪[3,+∞).含有参数的不等式的求解问题分两类,一类不需要对参数进行讨论,另一类如本例,对参数a 进行讨论,得到关于参数a 的不等式(组),进而求出参数的取值范围.3.(辽宁高考)已知函数f (x )=|x -a |,其中a >1. (1)当a =2时,求不等式f (x )≥4-|x -4|的解集;(2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值. 解:(1)当a =2时,f (x )+|x -4|=⎩⎪⎨⎪⎧-2x +6, x ≤2,2, 2<x <4,2x -6, x ≥4.当x ≤2时,由f (x )≥4-|x -4|,得-2x +6≥4, 解得x ≤1;当2<x <4时,f (x )≥4-|x -4|无解;当x ≥4时,由f (x )≥4-|x -4|,得2x -6≥4, 解得x ≥5.所以f (x )≥4-|x -4|的解集为{x |x ≤1或x ≥5}.(2)记h (x )=f (2x +a )-2f (x ), 则h (x )=⎩⎪⎨⎪⎧-2a , x ≤0,4x -2a , 0<x <a ,2a , x ≥a .由|h (x )|≤2,解得a -12≤x ≤a +12.又已知|h (x )|≤2的解集为{x |1≤x ≤2}, 所以⎩⎪⎨⎪⎧a -12=1,a +12=2,于是a =3.[对应学生用书P12]一、选择题1.若不等式|ax +2|<6的解集为(-1,2),则实数a 的取值为( ) A .8 B .2 C .-4D .-8解析:原不等式化为-6<ax +2<6, 即-8<ax <4. 又∵-1<x <2,∴验证选项易知a =-4适合. 答案:C2.如果1x <2和|x |>13同时成立,那么x 的取值范围是( )A.⎩⎨⎧⎭⎬⎫x | -13<x <12 B.⎩⎨⎧⎭⎬⎫x | x >12或x <-13C.⎩⎨⎧⎭⎬⎫x | x >12 D.⎩⎨⎧⎭⎬⎫x | x <-13或x >13解析:解不等式1x <2得x <0或x >12;解不等式|x |>13得x >13或x <-13.如图所示:∴x 的取值范围为⎩⎨⎧⎭⎬⎫x | x >12或x <-13.答案:B3.如果关于x 的不等式|x -a |+|x +4|≥1的解集是全体实数,则实数a 的取值范围是( )A .(-∞,3]∪[5,+∞)B .[-5,-3]C .[3,5]D .(-∞,-5]∪[-3,+∞)解析:在数轴上,结合绝对值的几何意义可知a ≤-5或a ≥-3. 答案:D4.若关于x 的不等式|x +1|≥kx 恒成立,则实数k 的取值范围是( ) A .(-∞,0] B .[-1,0] C .[0,1]D .[0,+∞)解析:作出y =|x +1|与l1;y =kx 的图象如图,当k <0时,直线一定经过第二、四象限,从图看出明显不恒成立;当k =0时,直线为x 轴,符合题意;当k >0时,要使|x +1|≥kx 恒成立,只需k ≤1.综上可知k ∈[0,1]. 答案:C 二、填空题5.不等式|2x +1|-2|x -1|>0的解集为________.解析:原不等式即|2x +1|>2|x -1|,两端平方后解得12x >3,即x >14.答案:⎩⎨⎧⎭⎬⎫x | x >146.不等式|x +1||x +2|≥1的实数解集为________.解析:|x +1||x +2|≥1⇔|x +1|≥|x +2|,x +2≠0⇔(x +1)2≥(x +2)2,x ≠-2⇔x ≤-32,x ≠-2.答案:(-∞,-2)∪⎝⎛⎦⎤-2,-32 7.若不等式| x +1x | >|a -2|+1对于一切非零实数x 均成立,则实数a 的取值范围是________.解析:∵|x +1x |≥2,∴|a -2|+1<2,即|a -2|<1,解得1<a <3.答案:1<a <38.若关于x 的不等式|x -1|+|x -a |≥a 的解集为R (其中R 是实数集),则实数a 的取值范围是________.解析:不等式|x -1|+|x -a |≥a 恒成立, a 不大于|x -1|+|x -a |的最小值, ∵|x -1|+|x -a |≥|1-a |,∴|1-a |≥a,1-a ≥a 或1-a ≤-a ,解得a ≤12.答案:⎝⎛⎦⎤-∞,12 三、解答题9.解不等式|2x -4|-|3x +9|<1. 解:(1)当x >2时,原不等式可化为⎩⎪⎨⎪⎧x >2,(2x -4)-(3x +9)<1, 解得x >2.(2)当-3≤x ≤2时,原不等式可化为⎩⎪⎨⎪⎧-3≤x ≤2,-(2x -4)-(3x +9)<1, 解得-65<x ≤2. (3)当x <-3时,原不等式可化为 ⎩⎪⎨⎪⎧ x <-3,-(2x -4)+(3x +9)<1,解得x <-12.综上所述,原不等式的解集为⎩⎨⎧⎭⎬⎫x | x <-12或x >-65. 10.已知函数f (x )=|2x -1|+|x -2a |.(1)当a =1时,求f (x )≤3的解集;(2)当x ∈[1,2]时,f (x )≤3恒成立,求实数a 的取值范围.解:(1)当a =1时,原不等式可化为|2x -1|+|x -2|≤3,当x >2时,得3x -3≤3,则x ≤2,无解;当12≤x ≤2时,得x +1≤3,则x ≤2,所以12≤x ≤2; 当x <12时,得3-3x ≤3,则x ≥0,所以0≤x <12. 综上所述,原不等式的解集为[0,2].(2)原不等式可化为|x -2a |≤3-|2x -1|,因为x ∈[1,2],所以|x -2a |≤4-2x ,即2x -4≤2a -x ≤4-2x ,故3x -4≤2a ≤4-x 对x ∈[1,2]恒成立.当1≤x ≤2时,3x -4的最大值为2,4-x 的最小值为2,所以a 的取值范围为1.11.已知函数f (x )=|x +3|+|x -a |(a >0).(1)当a =4时,已知f (x )=7,求x 的取值范围;(2)若f (x )≥6的解集为{x |x ≤-4或x ≥2},求a 的值.解:(1)因为|x +3|+|x -4|≥|x +3-x +4|=7,当且仅当(x +3)(x -4)≤0时等号成立. 所以f (x )=7时,-3≤x ≤4,故x ∈[-3,4].(2)由题知f (x )=⎩⎪⎨⎪⎧ a -3-2x , x ≤-3,a +3,-3<x <a ,2x +3-a , x ≥a ,当a +3≥6时,不等式f (x )≥6的解集为R ,不合题意;当a +3<6时,不等式f (x )≥6的解为⎩⎪⎨⎪⎧ x ≤-3,a -3-2x ≥6或⎩⎪⎨⎪⎧x ≥a ,2x +3-a ≥6, 即⎩⎨⎧ x ≤-3,x ≤a -92或⎩⎨⎧ x ≥a ,x ≥a +32. 又因为f (x )≥6的解集为{x |x ≤-4或x ≥2},所以a =1.。
学业分层测评 (建议用时:45分钟)一、选择题1.对x 1>x 2>0,0<a <1,记y 1=x 11+a +ax 21+a ,y 2=ax 11+a +x 21+a ,则x 1x 2与y 1y 2的关系为( )A.x 1x 2>y 1y 2B.x 1x 2=y 1y 2C.x 1x 2<y 1y 2D.不能确定,与a 有关【解析】 ∵x 1>x 2>0,0<a <1, ∴y 1y 2-x 1x 2=x 1+ax 2ax 1+x 2+a2-x 1x 2=a x 1-x 22+a2>0,∴y 1y 2>x 1x 2, ∴选项C 正确. 【答案】 C2.设a =sin 15°+cos 15°,b =sin 16°+cos 16°,则下列各式正确的是( ) A.a <a 2+b 22<b B.a <b <a 2+b 22C.b <a <a 2+b 22D.b <a 2+b 22<a【解析】 a =sin 15°+cos 15°=2sin 60°,b =sin 16°+cos 16°=2sin 61°,∴a <b ,排除C ,D.又a ≠b , ∴a 2+b 22>ab =2sin 60°·2sin 61°=3sin 61°>2sin 61°=b ,故a <b <a 2+b 22成立.【答案】 B3.已知数列{a n }的通项公式a n =anbn +1,其中a ,b 均为正数,那么a n 与a n +1的大小关系是( )A.a n >a n +1B.a n <a n +1C.a n =a n +1D.与n 的取值有关【解析】 a n +1-a n =a n +b n ++1-anbn +1=abn +b+bn+.∵a>0,b>0,n>0,n∈N+,∴a n+1-a n>0,a n+1>a n.【答案】 B4.若a,b为不等的正数,则(ab k+a k b)-(a k+1+b k+1)(k∈N+)的符号( )A.恒正B.恒负C.与k的奇偶性有关D.与a,b大小无关【解析】(ab k+a k b)-a k+1-b k+1=b k(a-b)+a k(b-a)=(a-b)(b k-a k).∵a>0,b>0,若a>b,则a k>b k,∴(a-b)(b k-a k)<0;若a<b,则a k<b k,∴(a-b)(b k-a k)<0.【答案】 B5.已知a>b>0,c>d>0,m=ac-bd,n=a-b c-d,则m与n的大小关系是( )A.m<nB.m>nC.m≥nD.m≤n【解析】∵a>b>0,c>d>0,∴ac>bd>0,ac>bd,∴m>0,n>0.又∵m2=ac+bd-2abcd,n2=ac+bd-(ad+bc),又由ad+bc>2abcd,∴-2abcd>-ad-bc,∴m2>n2,∴m>n.【答案】 B二、填空题6.若x<y<0,M=(x2+y2)(x-y),N=(x2-y2)(x+y),则M,N的大小关系为________.【解析】M-N=(x2+y2)(x-y)-(x2-y2)(x+y)=(x-y)=-2xy(x-y).∵x<y<0,∴xy>0,x-y<0,∴-2xy(x-y)>0,∴M-N>0,即M>N.【答案】M>N7.设A =12a +12b ,B =2a +b(a >0,b >0且a ≠b ),则A ,B 的大小关系是________.【导学号:38000019】【解析】 法一(比较法):A -B =a -b 22ab a +b>0(a >0,b >0且a ≠b ),则A >B .法二:A >1ab,B <1ab,故A >B .【答案】 A >B 8.若f (x )=3x2x -,且记A =4log a (x -1),B =4+2,若a >1,则A B________1.【解析】 因为f (x )=3x2x -的定义域是x >3,又a >1,所以A >0,B >0.又因为B -A =2≥0, 所以B ≥A ,即A B≤1. 【答案】 ≤ 三、解答题9.若实数x ,y ,m 满足|x -m |<|y -m |,则称x 比y 接近m .对任意两个不相等的正数a ,b ,证明:a 2b +ab 2比a 3+b 3接近2ab ab .【证明】 ∵a >0,b >0,且a ≠b ,∴a 2b +ab 2>2ab ab ,a 3+b 3>2ab ab .∴a 2b +ab 2-2ab ab >0,a 3+b 3-2ab ab >0.∴|a 2b +ab 2-2ab ab |-|a 3+b 3-2ab ab | =a 2b +ab 2-2ab ab -a 3-b 3+2ab ab =a 2b +ab 2-a 3-b 3=a 2(b -a )+b 2(a -b ) =(a -b )(b 2-a 2)=-(a -b )2(a +b )<0, ∴|a 2b +ab 2-2ab ab |<|a 3+b 3-2ab ab |, ∴a 2b +ab 2比a 3+b 3接近2ab ab .10.已知a ,b 都是正数,x ,y ∈R ,且a +b =1. 求证:ax 2+by 2≥(ax +by )2. 【证明】 ax 2+by 2-(ax +by )2=ax 2+by 2-a 2x 2-2abxy -b 2y 2=(ax 2-a 2x 2)+(by 2-b 2y 2)-2abxy =ax 2(1-a )+by 2(1-b )-2abxy=abx 2+aby 2-2abxy =ab (x -y )2. ∵a >0,b >0,x ,y ∈R , ∴ab >0,(x -y )2≥0, ∴ax 2+by 2≥(ax +by )2成立.1.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是( ) A.a 1b 1+a 2b 2 B.a 1a 2+b 1b 2 C.a 1b 2+a 2b 1D.12【解析】 A 项减B 项有:a 1b 1+a 2b 2-(a 1a 2+b 1b 2)=(b 1-a 2)(a 1-b 2).由题意得0<a 1<12,12<a 2<1,0<b 1<12,12<b 2<1,∴(b 1-a 2)(a 1-b 2)>0, ∴a 1b 1+a 2b 2>a 1a 2+b 1b 2. A 项减D 项有:(a 1b 1+a 2b 2)-12=2a 1b 1+12-a 1-b 1=b 1(2a 1-1)-12(2a 1-1)=(2a 1-1)⎝ ⎛⎭⎪⎫b 1-12=2⎝ ⎛⎭⎪⎫a 1-12⎝ ⎛⎭⎪⎫b 1-12>0. ∴a 1b 1+a 2b 2>12.又知C 项:a 1b 2+a 2b 1=a 1(1-b 1)+a 2(1-b 2) =a 1+a 2-(a 1b 1+a 2b 2)=1-(a 1b 1+a 2b 2)<12.∴A 项最大,故选A. 【答案】 A2.设x =2,y =7-3,z =6-2,则x ,y ,z 的大小关系是( ) A.x >y >z B.z >x >y C.y >z >xD.x >z >y【解析】 y =7-3=47+3,z =6-2=46+2.∵7+3>6+2>0,∴z >y . 又x -z =2-46+2=23+2-46+2=23-26+2>0,∴x >z ,∴x >z >y . 【答案】 D3.设n ∈N ,n >1,则log n (n +1)与log n +1(n +2)的大小关系是________.【导学号:38000020】【解析】log n +1n +log n n +=log n +1(n +2)·log n +1n≤⎝⎛⎭⎪⎫log n +1n +2+log n +1n 22=⎣⎢⎡⎦⎥⎤log n +1n 2+2n 22<⎣⎢⎡⎦⎥⎤log n +1n +1222=1.【答案】 log n (n +1)>log n +1(n +2)4.若a ,b ,c ∈(0,+∞),证明:a a b b c c≥(abc )a +b +c3.【证明】a ab b ccabca +b +c 3=a 2a -b -c 3·b 2b -c -a 3·c 2c -a -b3=⎝ ⎛⎭⎪⎫a b a -b3·⎝ ⎛⎭⎪⎫b c b -cc ·⎝ ⎛⎭⎪⎫a c a -c 3. 由于a ,b ,c 在题中的地位相当(全对称性), 不妨设a ≥b ≥c >0,∴ab≥1,a -b3≥0,从而⎝ ⎛⎭⎪⎫a b a -b3≥1,同理⎝ ⎛⎭⎪⎫a c a -c3≥1,⎝ ⎛⎭⎪⎫b c b -cc ≥1, 相乘即可得证.∴⎝ ⎛⎭⎪⎫a b a -b3·⎝ ⎛⎭⎪⎫b c b -c c ·⎝ ⎛⎭⎪⎫a c a -c 3≥1,即a ab bc cabca +b +c 3≥1,∴a a b b c c≥(abc )a +b +c3.。
1.2 基本不等式1.理解两个正数的基本不等式.2.了解三个正数和一般形式的基本不等式.3.会用基本不等式求一些函数的最值及实际应用题.教材整理 基本定理(重要不等式及基本不等式) 1.定理1设a ,b ∈R ,则a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.定理2如果a ,b 为正数,则a =b 时,等号成立.这个不等式我们称之为基本不等式或平均值不等式.同时,我们称a +b2为正数a ,b 的算术平均值,称ab 为正数a ,b 的几何平均值,该定理又可叙述为:两个正数的算术平均值大于或等于它们的几何平均值.3.定理3如果a ,b ,c 为正数,则a +b +c3≥3abc ,当且仅当a =b =c 时,等号成立.4.定理4如果a 1,a 2,…,a n 为n 个正数,则a 1=a 2=…=a n 时,等号成立.设0<a <b ,则下列不等式中正确的是( ) A.a <b <ab <a +b2B.a <ab <a +b2<bC.a <ab <b <a +b2D.ab <a <a +b2<b【解析】 ∵0<a <b ,∴a <a +b2<b ,A ,C 错误;ab -a =a (b -a )>0,即ab >a ,故选B.【答案】 B预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:已知a ,b ,c 都是正数,求证:b +c +a≥a +b +c .【导学号:38000004】【精彩点拨】 观察不等号两边差异,利用基本不等式来构造关系. 【自主解答】 ∵a >0,b >0,c >0,∴a 2b +b ≥2a 2b·b =2a , 同理:b 2c +c ≥2b ,c 2a+a ≥2c .三式相加得:a 2b +b 2c +c 2a+(b +c +a )≥2(a +b +c ), ∴a 2b +b 2c +c 2a≥a +b +c .1.首先根据不等式两端的结构特点进行恒等变形,或配凑使之具备基本不等式的结构和条件,然后合理地选择基本不等式或其变形进行证明.2.当且仅当a =b =c 时,上述不等式中“等号”成立,若三个式子中有一个“=”号取不到,则三式相加所得的式子中“=”号取不到.1.设a >0,b >0,m >0,n >0.证明:(m 2+n 4)(m 4+n 2)≥4m 3n 3. 【证明】 因为m >0,n >0,则m 2+n 4≥2mn 2,m 4+n 2≥2m 2n , 所以(m 2+n 4)(m 4+n 2)≥4m 3n 3, 当且仅当m =n =1时,取等号.(1)已知x ,y ∈R +,且x +2y =1,求x +y的最小值;(2)已知x >0,y >0,且5x +7y =20,求xy 的最大值.【精彩点拨】 根据题设条件,合理变形,创造能用基本不等式的条件. 【自主解答】 (1)因为x +2y =1, 所以1x +1y =x +2y x +x +2y y =3+2y x +x y≥3+22yx ·xy=3+22,当且仅当2y x=xy,x +2y =1,即x =2-1,y =1-22时,等号成立. 所以当x =2-1,y =1-22时,1x +1y取最小值3+2 2. (2)xy =135(5x ·7y )≤135⎝ ⎛⎭⎪⎫5x +7y 22=135⎝ ⎛⎭⎪⎫2022=207, 当且仅当5x =7y =10,即x =2,y =107时,等号成立,此时xy 取最大值207.在求最值时,除了注意“一正、二定、三相等”之外,还要掌握配项、凑系数等变形技巧,有时为了便于应用公式,还用换元法,多用于分母中有根式的情况.2.若将本例(1)的条件改为“已知x >0,y >0,且1x +9y=1”,试求x +y 的最小值.【解】 ∵x >0,y >0,且1x +9y=1,∴x +y =(x +y )⎝ ⎛⎭⎪⎫1x +9y=y x+9xy+10≥2y x ·9xy+10=16. 当且仅当y x =9xy, 即y =3x 时等号成立.又1x +9y=1,∴当x =4,y =12时,(x +y )min =16.)x万件与年促销费用m 万元(m ≥0)满足x =3-km +1(k 为常数),如果不搞促销活动,该产品的年销售量只能是1万件.已知生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为年平均每件产品成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).(1)将该产品的年利润y 万元表示为年促销费用m 万元的函数;(2)该厂家的年促销费用投入为多少万元时,厂家的年利润最大?最大年利润是多少万元?【精彩点拨】 (1)可先通过m =0时,x =1求出常数k ,再根据条件列出y 关于m 的函数;(2)在(1)的函数关系式下,利用基本不等式求最值.【自主解答】 (1)依题意得m =0时,x =1,代入x =3-km +1,得k =2,即x =3-2m +1. 年成本为8+16x =8+16⎝⎛⎭⎪⎫3-2m +1(万元), 所以y =(1.5-1)⎣⎢⎡⎦⎥⎤8+16⎝⎛⎭⎪⎫3-2m +1-m =28-m -16m +1(m ≥0).(2)由(1)得y =29-⎣⎢⎡⎦⎥⎤m ++16m +1≤29-2m +16m +1=21. 当且仅当m +1=16m +1,即m =3时,厂家的年利润最大,为21万元.设出变量――→建立数学模型――→定义域利用均值不等式求最值――→“=”成立的条件结论3.某工厂建一底面为矩形(如图121),面积为162 m 2,且深为1 m 的无盖长方体的三级污水池,由于受地形限制,底面的长和宽都不能超过16 m ,如果池外围四壁建造单价为400 元/m 2,中间两条隔墙建造单价为248 元/m 2,池底建造单价为80 元/m 2,试设计污水池的长和宽,使总造价最低.图121【解】 设污水池的宽为x m ,则长为162xm ,则总造价f (x )=400×⎝⎛⎭⎪⎫2x +2×162x+248×2x +80×162=1 296x +1 296×100x+12 960=1 296⎝⎛⎭⎪⎫x +100x +12 960.由限制条件,知⎩⎪⎨⎪⎧0<x ≤16,0<162x ≤16,得818≤x ≤16. 设g (x )=x +100x ⎝ ⎛⎭⎪⎫818≤x ≤16, 因为g (x )在⎣⎢⎡⎦⎥⎤818,16上是增函数, 所以当x =818时⎝ ⎛⎭⎪⎫此时162x =16,g (x )有最小值,即f (x )有最小值,f (x )min =1 296×⎝ ⎛⎭⎪⎫818+80081+ 12 960=38 882(元).所以当长为16 m ,宽为818 m 时,总造价最低,为38 882元.探究1 在基本不等式2≥ab 中,为什么要求a >0,b >0?【提示】 对于不等式a +b2≥ab ,如果a ,b 中有两个或一个为0,虽然不等式仍成立,但是研究的意义不大,当a ,b 都为负数时,不等式不成立;当a ,b 中有一个为负数,另一个为正数,不等式无意义.探究2 你能给出基本不等式的几何解释吗?【提示】 如图,以a +b 为直径的圆中,DC =ab ,且DC ⊥AB . 因为CD 为圆的半弦,OD 为圆的半径,长为a +b2,根据半弦长不大于半径,得不等式ab ≤a +b2.显然,上述不等式当且仅当点C 与圆心重合,即当a =b 时,等号成立.因此,基本不等式的几何意义是:圆的半弦长不大于半径;或直角三角形斜边的中线不小于斜边上的高.探究3 利用基本不等式,怎样求函数的最大值或最小值?【提示】 利用算术平均数与几何平均数定理(即基本不等式)可以求函数的最大值、最小值.(1)已知x ,y ∈(0,+∞),如果积xy 是定值P ,那么当x =y 时,和x +y 有最小值2P . (2)已知x ,y ∈(0,+∞),如果和x +y 是定值S ,那么当x =y 时,积xy 有最大值14S 2.以上两条可简记作:和一定,相等时,积最大;积一定,相等时,和最小.条件满足:“一正、二定、三相等”.求下列函数的值域.(1)y =x 2+12x ;(2)y =2x x 2+1.【精彩点拨】 把函数转化为y =ax +bx或y =1ax +b x的形式,再利用基本不等式求解.【自主解答】 (1)y =x 2+12x =12⎝ ⎛⎭⎪⎫x +1x ,当x >0时,x +1x ≥2,∴y ≥1;当x <0时,-x >0,-x +1-x ≥2,x +1x ≤-2,∴y ≤-1,综上函数y =x 2+12x的值域为{y |y ≤-1或y ≥1}.(2)当x >0时,y =2x x 2+1=2x +1x. 因为x +1x ≥2,所以0<1x +1x≤12,所以0<y ≤1,当且仅当x =1时,等号成立; 当x <0时,x +1x≤-2,所以0>1x +1x≥-12, 所以-1≤y <0,当且仅当x =-1时,等号成立; 当x =0时,y =0. 综上,函数y =2xx 2+1的值域为{y |-1≤y ≤1}.形如y =cx 2+ex +f ax +b 型的函数,一般可先通过配凑或变量替换等变形为y =t +Pt +C (P ,C 为常数)型函数,再利用基本不等式求最值,但要注意变量t 的取值范围.4.求函数y =x 2+8x -1(x >1)的最小值.【导学号:38000005】【解】 因为x >1,所以x -1>0.所以y =x 2+8x -1=x -2+2x +7x -1=x -2+x -+9x -1=(x -1)+9x -1+2≥2x -9x -1+2=8, 当且仅当x -1=9x -1,即x =4时,等号成立. 所以当x =4时,y min =8.1.函数y =1x -3+x (x >3)的最小值是( ) A.5 B.4 C.3 D.2 【解析】 原式变形为y =1x -3+x -3+3. ∵x >3,∴x -3>0,∴1x -3>0, ∴y ≥2x -1x -3+3=5, 当且仅当x -3=1x -3,即x =4时等号成立. 【答案】 A2.下列函数中最小值为4的是( ) A.y =x +4xB.y =sin x +4sin x (0<x <π)C.y =3x+4×3-xD.y =lg x +4log x 10【解析】 A 项,当x <0时,y =x +4x<0,故A 项错误;B 项,当0<x <π时,sin x>0,∴y =sin x +4sin x ≥2sin x ·4sin x =4,当且仅当sin x =4sin x,即sin x =2时取等号,但sin x ≤1,B 项错误;C 项,由指数函数的性质可得3x>0,所以y =3x+4·3-x≥24=4,当且仅当3x=2,即x =log 32时取得最小值4,故C 项正确;D 项,当0<x <1时,lg x <0,log x 10<0,所以y =lg x +4log x 10<0,故D 项错误.【答案】 C3.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( )【导学号:38000006】A.a 2+b 2>2ab B.a +b ≥2ab C.1a +1b>2abD.b a +ab≥2【解析】 A 选项中,当a =b 时,a 2+b 2=2ab ,则排除A ;当a <0,b <0时,a +b <0<2ab ,1a +1b<0<2ab,则排除B ,C 选项;D 选项中,由b a >0,a b >0,得b a +a b≥2b a ·ab=2,当且仅当a =b 时取“=”,所以选D.【答案】 D4.不等式b a +a b>2成立的充要条件是________. 【解析】 由b a +a b >2,知b a>0,即ab >0, 又b a ≠a b,∴a ≠b .因此b a +a b>2的充要条件是ab >0且a ≠b . 【答案】 ab >0且a ≠b 5.若对任意x >0,xx 2+3x +1≤a 恒成立,求实数a 的取值范围.【解】 由x >0,知原不等式等价于 0<1a ≤x 2+3x +1x =x +1x+3恒成立.又x >0时,x +1x≥2x ·1x=2, ∴x +1x+3≥5,当且仅当x =1时,取等号.因此⎝⎛⎭⎪⎫x +1x+3min =5,从而0<1a ≤5,解得a ≥15.故实数a 的取值范围为⎣⎢⎡⎭⎪⎫15,+∞.我还有这些不足:(1) (2) 我的课下提升方案:(1) (2)。
高中数学第一章不等式的基本性质和证明不等式的基本方法1-5-1比较法学案新人教B版选修4_5[读教材·填要点]1.定义要证a>b,只需要证a-b>0;要证a<b,只需证a-b<0,这种证明不等式的方法,称为比较法.2.用比较法证明不等式的步骤(1)求差.(2)变形:可用因式分解、配方、乘法公式等,把差变形为乘积式平方和的形式.(3)作出判断.[小问题·大思维]作差比较法的主要适用类型是什么?实质是什么?提示:作差比较法尤其适用于具有多项式结构特征的不等式的证明.实质是把两个数或式子的大小判断问题转化为一个数(或式子)与0的大小关系.[例1] ;(2)当a[思路点拨] (1)利用作差比较法,注意变形分解;(2)利用作商比较法,注意判断底数大小决定商的大小.[精解详析] (1)法一:(1+2x4)-(2x3+x2) =2x3(x -1)-(x +1)(x -1) =(x -1)(2x3-x -1) =(x -1)(2x3-2x +x -1) =(x -1)[2x(x2-1)+(x -1)] =(x -1)2(2x2+2x +1) =(x -1)2≥0, ∴1+2x4≥2x3+x2.法二:(1+2x4)-(2x3+x2) =x4-2x3+x2+x4-2x2+1 =(x -1)2·x2+(x2-1)2≥0, ∴1+2x4≥2x3+x2. (2)=ab当a =b时,=1当a>b>0时,>1,>0,则>1当b>a>0时,0<<1,<0, 则综上可知,当a (1)比较法证明不等式的过程中,变形具有承上启下的作用,变形的目的在于判断差的符号,而不用考虑差能否化简或值是多少.(2)变形所用的方法要具体情况具体分析,可以配方,可以因式分解,可以运用一切有效的恒等变形的方法.。
1. 5 不等式证明的基本方法1 . 5.1 比较法扭氢问龙索弟葯幻比卅匚诸[对应学生用书P16][读教材填要点]1. 定义要证a>b,只需要证 a —b>0;要证a<b,只需证a —b<0,这种证明不等式的方法,称为比较法.2. 用比较法证明不等式的步骤⑴求差.(2) 变形:可用因式分解、配方、乘法公式等,把差变形为乘积式平方和的形式.(3) 作出判断.[小问题大思维]作差比较法的主要适用类型是什么?实质是什么?提示:作差比较法尤其适用于具有多项式结构特征的不等式的证明. 实质是把两个数或式子的大小判断问题转化为一个数(或式子)与0的大小关系•:爲爲疋企壮至它-字,hi:…点軌迪[对应学生用书P16]比较法证明不等式4 3 2[例1]求证:⑴当x€ R时,1 + 2x >2x + x ;a ba b ----(2)当a, b € (0,+s )时,a b > (ab) 2 .[思路点拨](1)利用作差比较法,注意变形分解 :(2)利用作商比较法,注意判断底数大小决定商的大小.[精解详析]⑴法一:(1 + 2x4) —(2x3+ x2)3=2x (x—1)—(x+ 1)(x—1)=(x—1)(2x3—x—1)=(x—1)(2x3—2x+ x—1)1. 5 不等式证明的基本方法=(x—1)[2x(/ —1) + (x—1)]11(x 1)2(2X 22x 1)(x 1)2 2 x 122 1101 2x 4 2x 3x 2.(1 2x 4 )(2 x 3 x 2) x 4 2x 3 x 2 x 4 2x 2 1 (x 1)2x 2 (x 2 1)2 01 2x 4 2x 3 x 2.⑵一a ab ba-baa bb _aPa 竽 babPa b a 竽 b1a>b>0 a >Ia b |1■ x a ba jb>a>00<a <1a b 2 <0b>1.a “ba b(0 )a ab b (ab)—规』l 沁 姑(i 2)x> 11 x>0 ■\/iX >0.x2.=-2【(x+ 1) - 2 x+ 1 + 1]-2( .x+ 1- 1)2w 0,•••寸1+x w 1+ 2.[例2]甲、乙二人同时同地沿同一路线走到同一地点,甲有一半时间以速度m行走,另一半以速度n行走;乙有一半路程以速度m行走,另一半路程以速度n行走.如果m^ n, 问甲、乙二人谁先到达指定地点?[思路点拨]本题考查比较法在实际问题中的应用,解答本题需要设出从出发点到指定地点的路程s,甲、乙二人走完这段路程各自需要的时间如t2,然后利用作差法比较t1, t2的大小即可.[精解详析]设从出发地点至指定地点的路程为s,甲、乙二人走完这段路程所用的时间分别为如t2,依题意有:t1 t1^m+ 尹=s,2m+影t2mn m+ n '其中s, m, n都是正数,且m^ n,• •屯—t2< 0,即t r V t2.从而知甲比乙先到达指定地点.应用不等式解决问题时,关键是如何把等量关系不等量关系转化为不等式的问题来解决,也就是建立数学模型是解应用题的关键,最后利用不等式的知识来解.解答不等式问题,一般可分为如下步骤:①阅读理解材料;②建立数学模型;③讨论不等式关系;④作出问题结论.2 .某人乘出租车从A地到B地,有两种方案.第一种方案:乘起步价为10元,超过规定里程后每千米 1.2元的出租车;第二种方案:乘起步价为8元,超过规定里程后每千米1.4元的出租车.按出租车管理条例, 在起步价内,不同型号的出租车行驶的路程是相等的,则此人从A 地到B 地选择哪一种方案比较合适?解:设A 地到B 地的距离为m 千米.起步价内行驶的路程为 a 千米.显然当m w a 时,选起步价为 8元的出租车比较合适.当m>a 时,设m = a + x(x>0),乘坐起步价为10元的出租车费用为 P(x)元.乘坐起步价 为8元的出租车费用为 Q(x)元,贝U P(x)= 10+ 1.2x , Q(x) = 8+ 1.4x. •/ P(x) — Q(x) = 2 — 0.2x = 0.2(10 — x)•••当x>10时,P(x)<Q(x),此时选择起步价为 10元的出租车较为合适. 当x<10时,P(x)>Q(x),此时选择起步价为 8元的出租车较为合适. 当x = 10时,P(x)= Q(x),两种出租车任选,费用相同.、选择题 1.下列关系中对任意 a v b v 0的实数都成立的是(2 .2A . a v b b C . a>1解析:■/ a v b v 0, •— a> — b>0.2 2 (—a) >( — b) >0. 即 a 2>b 2>0. b 2 • a2v 1.b 2又 lg b 2— Ig a 2= Ig^v Ig 1 = 0. a• lg b 2v Ig a 2答案:B1 o2.已知P =?++!,Q= a 2— a +1,那么P 、Q的大小关系是()A . P>Q C . P >Q解析:2 21 — (a — a + 1 f a + a + 1 } P — Q = 24 i 2—++T ,YING YONG课下训练经撫化.贵在鮭类旁通P18][对应学生用书)2 2B . lgb <ig aB . P<QD .>3 (A C A D4 A C56a 2 a 1 0a 4 a 2 0P Q 0. QP.m主彩石⑴w p wm n>p B m>n p n> m>pD n m>pB C.n.D.(ab k a k b) (a k 1 b k 1)(k N )(ab k a "b) b k (a b) a k (b a) b k 1a>0 b>0 a>b (a b)(b k a k ) a k >b k(a b)(b k a k )<0 a<ba k <b k(a b)(b k a k )<o.2 2(x y )(x y) N (x y )(x y) MN 2, 、 z 2 . 2X z 、 x y 0 M M N (x y 2)(x y) (x 2y 2)(x y)(x y)[(x 2y 2) (x y)2]2xy(x y)x<y<0 xy 0 x y<0.2xy(x y)>0 M N>0. M>N. M>N0<x<1a换b 1 X c 匕得c>b,知c最大.答案:c17.如果a>0, b>0,则下列两式的大小关系为lg(1 + Vab) _______ 艮lg(1 + a) + lg(1 +b)].(填不等关系符号)解析:T (1 + a)(b+ 1) = 1 + a+ b+ ab,1•- 2[lg(1 + a) + lg(1 + b)]=lg 1 + a+ b+ ab.T (1 + :.;ab)2 —(-;”;1 + a+ b + ab)?= 2 ■'ab —(a + b),又 a + b》2、.;ab,.°. 2・..;ab —(a + b)w 0.1•- lg(1 + ■.ab)w 2【lg(1 + a) + lg(1 + b)].答案:w&一个个体户有一种商品,其成本低于^■器元.如果月初售出可获利100元,再将本利存入银行,已知银行月息为2.5%,如果月末售出可获利120元,但要付成本的2%的保管费,这种商品应_______________________ 出售(填“月初”或“月末”).解析:设这种商品的成本费为a元.月初售出的利润为L1= 100+ (a+ 100) X 2.5% ,月末售出的利润为L2= 120-2%a,则L1-L2= 100 + 0.025a+ 2.5- 120 + 0.02a=0.045 a-...av3器,•. L1<L2,月末出售好.答案:月末三、解答题9.已知a> 1,求证.a+ 1 - '.a< ,a- .a —1,证明:•/ ( a + 1 - .a) —( a —a- 1)= 1 -1.a+ 1 + \ a .a + a- 1m 0/什昇1 ) 0 f(a) f(b)a 3b 3 剧(a 2 b 2)a p a &a 並)b 乐(伍翻(帝佝[(佝5(W )5]a by/a y/b(回5(W )5(击承)[(W )5 (W )5] 0 a <b 羽<训 (诉)5<(托)5b a<0.a 1b 1m b a (a1 • 1<0f (a)<f(b )m•— >0 f(a)>f(b) a 1 b 12 2 2 2a 22x b 2 1 x 2 2x>a 2 a>0 b>0a 3b 3 何a 211m R a>b>1 mxf(x)'丿x 1f(a)f(a) f(b) ma 1a 1mb m b ab 1(a1 b1.a>b>1b a<0 a 1>0 b 1>0(⑴ 佝(何(何]>0.f(b)m>0m<0b>a.c b — x) 5^)产>01 x 1 x 1 xI -a + 1 + \a+ \; a—1 i,a+ 1 - .a<, a —, a- 1.10.设a, b是非负实数,求证:a3+ b3> ab(a I 2+ b2).什昇1) 0 f(a) f(b)m 0 /。
P24][ P24]() ()[1] |x 1| |x|<2.[] 3x 1x 1 x<2 一<x 1 2 1<x<0 x 1x<21<x<0x 1 x<2x<2.不等式的基木性质解不等式p 1元一次不等式含绝对值的不等式一元二次不等式因此,原不等式的解集为# —2<x<1匚法二:利用方程和函数的思想方法.令f(x) = |x+ 1|+ 凶一22x—1 x> 0 ,1=—1 —K x<0 ,—2x — 3 x<—1 .作函数f(x)的图象(如图),3 1知当f(x)<0 时,一2<x<?.3 1故原不等式的解集为X1 — 3<x<1 .法三:利用数形结合的思想方法.由绝对值的几何意义知,x+ 11表示数轴上点P(x)到点A(—1)的距离,|x|表示数轴上点P(x)到点0(0)的距离.由条件知,这两个距离之和小于 2.3 1 |--------------- 1作数轴(如图),知原不等式的解集为吠一3 v x</ .2 2丿3-1 0 1L.~2T 法四:利用等价转化的思想方法.原不等式? 0W|x+ 1|<2 —|x|,•••(x+ 1)2<(2 —|x|)2,且|X|<2,即0<4|x|<3—2x,且xi<2.• 16x <(3 —2x),且—2<x<2.3 1 3 1、解得—2<x<2・故原不等式的解集为<x|—2v x<2 r.[例2]已知f(x) =|ax+ 1|(a € R),不等式f(x) < 3 的解集为{x|—2< x< 1}.(1) 求a的值;⑵若f(x 一2f $ j w k恒成立,求k的取值范围.[解](1)由|ax+ 1|w 3 得—4w ax w 2.又f(x) w 3的解集为{x|—2w x w 1},所以当a w 0时,不合题意.当a>0 时,一4w x w2,得 a = 2.a a(2) 法一:记h(x) = f(x)—2fQ ,kk 1.B 2 .3 D 4 . 31.5(1x 1 」 4x 31<x< h(x) <【11 x212k 1.2|x 1||[3]0<x<21 cos 2x 8sin 2x22cos x8sin 2x 1 .. f(x)- 2sin xcos x 丄4ta n x. tan xI r 、 1x! P n 丿 tan x>0 tan x>0.f(x)1 4ta n x2 1 4ta nxtan x、:tan x[]C[4]xm11164.2014k (m 0) x 3(k )m 120148|h(x)| 1 k1| 1f(x) 2fg) k⑴将2014年该产品的利润y 万元(利润=销售金额—生产成本—技术改革费用 )表示为技术改革费用 m 万元的函数;⑵该企业2014年的技术改革费用投入多少万元时,厂家的利润最大? [解] ⑴由题意可知,当 m = 0时,x = 1(万件), 1 = 3— k.「. k = 2.「. x = 3 — _2—m + 1 每件产品的销售价格为 1.5 X 8±^6X (元),X ••• 2014年的利润16⑵「m >0,• mV (m +1)》216=8,• y w 29 — 8= 21.16当 =m + 1,即 m = 3, y max = 21. m +1•该企业2014年的技术改革费用投入 3万元时,厂家的利润最大证明不等式是近几年新课标高考的一个热点考向,常以解答题的形式出现,常与函数、 数列等知识交汇命题,常用到的证明方法有:1. 比较法证明不等式比较法证明不等式的依据是: 不等式的意义及实数比较大小的充要条件.作差比较法证明的一般步骤是:①作差;②恒等变形;③判断结果的符号;④下结论•其中,变形是证明 推理中一个承上启下的关键,变形的目的在于判断差的符号,而不是考虑差能否化简或值是多少,变形所用的方法要具体情况具体分析, 可以配方,可以因式分解,可以运用一切有效的恒等变形的方法.[例 5]已知 a > b>0,求证:2a 3 — b 3 >2ab 2— a 2b. [证明]2a 3— b 3— (2ab 2— a 2b) =2a(a 2— b 2) + b(a 2— b 2)22=(a — b )(2 a + b) =(a — b)(a + b)(2a + b).因为 a > b>0 ,所以 a — b >0, a + b>0,2a + b>0,从而(a — b)(a + b)(2a + b) > 0, 即 2a ‘— b ‘》2ab ?— a ^b.y = x • 1.5X8 + 16xx —(8 + 16x)— m -16m + 1卜 m + 1 + 29(m > 0).2. 综合法证明不等式综合法证明不等式的思维方向是“顺推” 件(由因导果),最后推导出所要证明的不等式成立.综合法证明不等式的依据是:已知的不等式以及逻辑推证的基本理论: 证明时要注意的是:作为依据和出发点的几个重要不等式(已知或已证)成立的条件往往不同,应用时要先考虑是否具备应有的条件,避免错误、如一些带等号的不等式,应用时要清楚取等号的条件, 即对重要不等式中“当且仅当…时,取等号”的理由要理解掌握.[例 6] 设 x>0 , y>0 , z>0,求证: ,x 2+ xy + y 2 + y 2 + yz + z 2>x + y + 乙 >x +y ,① 7y 2+ zy + z[z+ 2/+ 4y 2 >z + 2,②•••由①②得:x 2 + xy + y 2 + y 2 + zy + z>x + y + 乙 3. 分析法证明不等式分析法证明不等式的依据也是不等式的基本性质、 已知的重要不等式和逻辑推理的基本理论•分析法证明不等式的思维方向是“逆推”,即由待证的不等式出发,逐步寻找使它成立的充分条件(执果索因),最后得到的充分条件是已知 (或已证)的不等式.当要证的不等式不知从何入手时, 可考虑用分析法去证明,特别是对于条件简单而结论 复杂的题目往往更为有效.由教材内容可知,分析法是“执果索因”,步步寻求上一步成立的充分条件,而综合法是“由因导果”,逐步推导出不等式成立的必要条件,两者是对立统一的两种方法•一般来 说,对于较复杂的不等式, 直接用综合法往往不易入手, 因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法可结合使用.[例 7]已知 a>0, b>0,且 a + b = 1,求证:[证明]即证 a + b + 1 + 2,即由已知的不等式出发,逐步推出其必要条[证明]8]2 .2 a2 1a孑<21 1 1112 12 31 1 1[ ] 1 23 <k 1 2 •2小11)2n<3.a>0 b>0 a b 1.(1)(ab1 1ab 2(a b) 4 114.] 22.212a12aaa2 4[9]22 )<1 +1 +1+ 步+ {+ …+ 十=1=3 — 2°-1V 3.爪匚'■■叭[对应学生用书P26] 一、选择题A . [ — 1,4) D . (— 1,4)解析:A = {x|x — 1|>2} = {x|x>3 或 x< — 1},2B = {x|x — 6x + 8<0} = {x|2<x<4}, •••(?u A) n B = {x|2<x w 3}. 答案:C12. a>1 ”是“才<1 ”成立的( )A .充分不必要条件B •必要不充分条件 C. 充要条件D. 既不充分也不必要条件1 1 一 a解析:当一<1时,有 <0,即a<0或a>1, a a 1所以a>1 ”是“丄<1”成立的充分不必要条件.a 答案:A 3.已知a ,b ,c 满足c<b<a 且a>0, ac<0,则下列选项中不一疋能成立的是()c b A . -<aa ab — a B . >0c .2 2b a c.—> —c ca — c D . <0 ac解析:由b>c , a>0,即丄>0,可得->c ,故A 恒成立.a a a-b<a ,…b — a<0.b _ a又c<0,•—厂>0,故B 恒成立.c -c<a ,・• a — c>0.1.已知全集 U = R ,且 A = {x|X — 1|>2}, B = {x|x 2— 6x + 8<0},则(?u A) n B 等于( B . (2,3) C . (2,3]ac<0 ----------- <0 Dac b 2 a 1b 2>a 2 c<0.2 2b a <—c cC4 |x 2| |x 3|>a x RA ( 5)B [0,5)C (1) D [0,1]A B A B |x 2| X 3|5Aa b不肩也何2占曙|x 1| |x 3|M >N6()x|ax 2|<3!x —I 33l32 a5一3 7a 71- 336 a引X132|x 2| |x 3|5 AB5a<5. A( 3)B(2)5.[-2x — 2,(X W — 3 , *;4, (— 3<x<1 ,(2x + 2, (X 》1 .当 x < — 3 时,一2x — 2>6? x < — 4; 当 x > 1 时,2x + 2>6? x >2; 当一3<x<1时,4W 6,舍去. 故不等式的解集为{x|x > 2或x < — 4}. 答案:{x|x > 2 或 x <— 4}1 , ,8.已知 a>0,贝U ---- , ~: ----- , ---------- 从大至U 小的顺序为2如 2pa + 1 >/a+p a + 1 解析:T a>0, — 2、a<• J a +、a + 1<2 .j a + 1 1 ______ 1 _______ 12 H a a + a + 1 2 ;:a + 1 1 1 _______ 12 ja a + \:a + 1 2\: a + 1 三、解答题(1)证明:对n 》2总有x n 》,a ; ⑵证明:对n 》2总有X n 》X n + 1.证明:(1)由x 1 = a>0,及X n + 1 = 1X n +旦可以归纳证明21 X n 丿X n • = a(n € N +),所以当n 》2时,x *》a 成立. X n (2)当 n 》2 时,因为 X n 》a>0 , X n + 1= 2 X n + X , 所以 x n +1 — x n =# 、 21 , a 1 a — x n= 1X n +X n —冷=2 - X n 仝故当n 》2时,Xn 》Xn + 1成立.10.已知关于x 的不等式 |ax — 1|+ |ax — a|》1(a>0).(1)当a = 1时,求此不等式的解集;(2)若此不等式的解集为 R ,求实数a 的取值范围. 解: (1)当 a = 1 时,得 2|x — 1|》1, 13 1••• ix -1》2 x 》3或 x < 2,•••不等式的解集为 *| x < 1或X 》2 .答案:9.某数列由下列条件确定:1 X 1 = a>0, xn + 1=-刈+x n , Xn >0,从而有 X n +1= £1-0(2) |ax 1| |ax a| |a 1|b a 小 C・a a 2b 2 ab ab a 2 A B|a| |b| 0 |a b| 0.Ra 2 a 0. |a 1| 1a[2 ) 11 (1) x(x 1)(x 21)(x 31) 8x(2) x R(x 1)(x 2 1)(x 3 1) 8x 3xx 12五 12 x 2xx 31 2品(x 1)(x 21)(x 3 1)2乐 2x 2欢8x 3(⑵ x R(x 21)(x1)(x 3 31) 8x 3(1)x>0x 0 8x 3 0.(x 1)(x 2 1)(x 3 1)(x 1)2(x 21)(x 2 x 1)(x 1)2(x 2 1)[(x 2)刃P49]1090120 ) 50 )A a 2 b 2B ab b 2 D |a||b| |a b|ABCD b a 0? ai |b|.a>0 a 2. (1) x答案:D2.设 a , b , c € R J 则"abc = 1” 是"芈 + -1 +-1 < a + b + c ” 的( p aQ b A /CA .充分条件但不是必要条件B •必要条件但不是充分条件C .充分必要条件D .既不充分也不必要的条件 解析:当a = b = c = 2时,有辛+¥ a + b + c ,但abc 丰1,所以必要性不成立; a . b . c当 abc = 1 时,"a * I * 1广J " * ac * ab , a* b 土 *2* c a * c > ab * bc * ac ,所以充分性成立, a * b * c ”的充分不必要条件. 答案:A x > 0,3.不等式3 -x 2 — x 的解集是()> | |3* x 2*X A . (0,2) B . (0,2.5) C . (0, .6) D . (0,3)5解析:用筛选法,容易验证 x = 2是不等式的解,否定A ; x = 5不是不等式的解,否定D ; X=V 6使汙% 瓷!取 “ = ”,7 V 2,故否定 B.3十x 2十X | 2 答案:C4•若a>b>0,则下列不等式中一定成立的是 () 1 1 A . a * b>b *a b b * 1B.a 诂 112a * b aC .a -b>b -aD .O *十航解析:a>b>0?右〉1〉。
数学①必修第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算第二章函数2.1函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.1.5用计算机作函数的图像(选学)2.2一次函数和二次函数2.2.1一次函数的性质和图像2.2.2二次函数的性质和图像2.2.3待定系数法2.3函数的应用(I)2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种近似方法——二分法第三章基本初等函数(I)3.1指数与指数函数3.1.1有理指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数3.2.3指数函数与对数函数的关系3.3幂函数3.2函数的应用(II)数学②必修第一章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥和棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.1.4投影与直观图1.1.5三视图1.1.6棱柱、棱锥、棱台和球的表面积1.1.7柱、锥、台和球的体积1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系1.2.3空间中的垂直关系第二章平面解析几何初步2.1平面直角坐标系中的基本公式2.1.1数轴上的基本公式2.1.2平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的集中形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系2.4.1空间直角坐标系2.4.2空间两点的距离公式数学③必修第一章算法初步1.1算法与程序框图1.1.1算法的概念1.1.2程序框图1.1.3算法的三种基本逻辑结构和框图表示1.2基本算法语句1.2.1赋值、输入和输出语句1.2.2条件语句1.2.3循环语句1.3中国古代数学中的算法案例第二章统计2.1随机抽样2.1.1简单随机抽样2.1.2系统抽样2.1.3分层抽样2.1.4数据的收集2.2用样本估计总体2.2.1用样本的频率分布估计总体分布2.2.2用样本的数字特征估计总体的数字特征2.3变量的相关性2.3.1变量间的相关关系2.3.2两个变量的线性相关第三章概率3.1事件与概率3.1.1随机现象3.1.2事件与基本事件空间3.1.3频率与概率3.1.4概率的加法公式3.2古典概型3.2.1古典概型3.2.2概率的一般加法公式(选学)3.3随机数的含义与应用3.3.1几何概型3.3.2随机数的含义与应用3.4概率的应用数学④必修第一章基本初等函数(II)1.1任意角的概念与弧度制1.1.1角的概念的推广1.1.2弧度制和弧度制与角度制的换算1.2任意角的三角函数1.2.1三角函数的定义1.2.2单位圆与三角函数线1.2.3同角三角函数的基本关系式1.2.4诱导公式1.3三角函数的图像与性质1.3.1正弦函数的图像与性质1.3.2余弦函数、正切函数的图像与性质1.3.3已知三角函数值求角第二章平面向量2.1向量的线性运算2.1.1向量的概念2.1.2向量的加法2.1.3向量的减法2.1.4向量的数乘2.1.5向量共线的条件与轴上向量坐标运算2.2向量的分解与向量的坐标运算2.2.1平面向量基本定理2.2.2向量的正交分解与向量的直角坐标运算2.2.3用平面向量坐标表示向量共线条件2.3平面向量的数量积2.3.1向量数量积的物理背景与定义2.3.2向量数量积的运算律2.3.2向量数量积的坐标运算与度量公式2.4向量的应用2.4.1向量在几何中的应用2.4.2向量在物理中的应用第三章三角恒等变换3.1和角公式3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切3.2倍角公式和半角公式3.2.1倍角公式3.2.2半角的正弦、余弦和正切3.3三角函数的积化和差与和差化积数学⑤必修第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理1.1.2余弦定理1.2应用举例第二章数列2.1数列2.1.1数列2.1.2数列的递推公式(选学)2.2等差数列2.2.1等差数列2.2.2等差数列的前n项和2.3等比数列2.3.1等比数列2.3.2等比数列的前n项和第三章不等式3.1不等关系与不等式3.1.1不等关系与不等式3.1.2不等式的性质3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式(组)与简单的线性规划问题3.5.1二元一次不等式(组)所表示的平面区域3.5.2简单线性规划数学选修1-1第一章常用逻辑用语1.1命题与量词1.1.1命题1.1.2量词1.2基本逻辑关联词1.2.1“且”与“或”1.2.2“非”(否定)1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第二章圆锥曲线与方程2.1椭圆2.1.1椭圆及其标准方程2.1.2椭圆的几何性质2.2双曲线2.2.1双曲线及其标准方程2.2.2双曲线的几何性质2.3抛物线2.3.1抛物线及其标准方程2.3.2抛物线的几何性质第三章导数及其应用3.1导数3.1.1函数的平均变化率3.1.2瞬时速度与导数3.1.3导数的几何意义3.2导数的运算3.2.1常数与幂函数的导数3.2.2导数公式表3.2.3导数的四则运算法则3.3导数的应用3.3.1利用导数判断函数的单调性3.3.2利用导数研究函数的极值3.3.3导数的实际应用数学选修1-2第一章统计案例1.1独立性检验1.2回归分析第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法第三章数系的扩充与复数的引入3.1数系的扩充与复数的引入3.1.1实数系3.1.2复数的引入3.2复数的运算3.2.1复数的加法和减法3.2.2复数的乘法和除法第四章框图4.1流程图4.2结构图数学选修2-1第一章常用逻辑用语1.1命题与量词1.1.1命题1.1.2量词1.2基本逻辑关联词1.2.1“且”与“或”1.2.2“非”(否定)1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第二章圆锥曲线与方程2.1曲线与方程2.1.1曲线与方程的概念2.1.2由曲线求它的方程、由方程研究曲线的性质2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线第三章空间向量与立体几何3.1空间向量及其运算3.1.1空间向量的线性运算3.1.2空间向量的基本定理3.1.3空间向量的数量积3.1.4空间向量的直角坐标运算3.2空间向量在立体几何中的应用3.2.1直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离(选学)数学选修2-2第一章导数及其应用1.1导数1.1.1函数的平均变化率1.1.2瞬时速度与导数1.1.3导数的几何意义1.2导数的运算1.2.1常数函数与幂函数的导数1.2.2导数公式表及数学软件的应用1.2.3导数的四则运算法则1.3导数的应用1.3.1利用导数判断函数的单调性1.3.2利用导数研究函数的极值1.3.3导数的实际应用1.4定积分与微积分基本定理1.4.1曲边梯形面积与定积分1.4.2微积分基本定理第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法2.3数学归纳法2.3.1数学归纳法2.3.2数学归纳法应用举例第三章数系的扩充与复数3.1数系的扩充与复数的概念3.1.1实数系3.1.2复数的概念3.1.3复数的几何意义3.2复数的运算3.2.1复数的加法与减法3.2.2复数的乘法3.2.3复数的除法数学选修2-3第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验分布 2.3随机变量的数字特征 2.3.1离散型随机变量的数学期望 2.3.2离散型随机变量的方差 2.4正态分布 第三章例 3.1独验3.2回归分析 数4-5不等式选讲 第一章不等式的基本性质和证明的基本方法 1.1不等式的基本性质和一元二次不等式的解法1.1.1不等式的基本性质1.1.2一元一次不等式和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.3.1|ax+b|≤c 、|ax+b|≥c 型不等式的解法1.3.2|x-a|+|x-b|≥c 、|x-a|+|x-b|≤c 型不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法1.5.1比较法1.5.2综合法和分析法1.5.3反证法法 第二章柯西不等式与排序不等式及其应用2.1柯西不等式 2.1.1平面上的柯西不等式的代数和向量形式2.1.2柯西不等式的一般形式及其参数配置方法的证明 2.2排序不等式 2.3平均值不等式(选学)2.4最大值与最小值问题,优化的型第三章数学归纳法与贝努利不等式 3.1数学归理 3.1.1数学归理 3.1.2数学归纳法例 3.2用数学归纳法证明不等式,贝努利不等式 3.2.1用数学归纳法证明不等式 3.2.2用数学归纳法证明贝努利不等式。
人民教育出版社B版高中数学目录(全)高中数学(B版)必修一第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算整合提升第二章函数2.1 函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.2二次函数的性质与图象2.2.3待定系数法2.3函数的应用(I)2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法——二分法整合提升第三章基本初等函数(I)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数-3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(Ⅱ)整合提升高中数学(B版)必修二第1章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥和棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.1.4投影与直观图1.1.5三视图1.1.6棱柱、棱锥、棱台和球的表面积1.1.7柱、锥、台和球的体积1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系(第1课时)空间中的平行关系(第2课时)1.2.3空间中的垂直关系(第1课时)空间中的垂直关系(第2课时)综合测试阶段性综合评估检测(一)第2章平面解析几何初步2.1平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3 圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系综合测试高中数学(B版)必修三第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例单元回眸第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体的分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关单元回眸第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用单元回眸高中数学(B版)必修四第一章基本初等函数(2)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图象与性质1.3.1 正弦函数的图象与性质1.3.2 余弦函数、正切函数的图象与性质1.3.3 已知三角函数值求角单元回眸第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4数乘向量2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.3 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用单元回眸第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积单元回眸高中数学(B版)必修五第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例复习与小结第一章综合测试第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和复习与小结第二章综合测试第三章不等式. 3.1 不等关系与不等式3.1.1 不等关系3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)与简单的线性规划问题3.5.2 简单的线性规划复习与小结第三章综合测试高中数学(人教B)选修2-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第1章综合测试题第2章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性2.2 椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3 双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4 抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质.2.5直线与圆锥曲线第2章综合测试题阶段性综合评估检测(一)第3章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离第3章综合测试题阶段性综合评估检测(二)高中数学人教B选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理本章整合提升第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法本章整合提升第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法本章整合提升高中数学人教B选修2-3第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角单元回眸第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数字特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布单元回眸第三章统计案例3.1独立性检验3.2回归分析单元回眸高中数学(B版)选修4-4第一章坐标系1.1直角坐标系,平面上的伸缩变换1.2极坐标系本章小结第二章参数方程2.1曲线的参数方程2.2直线和圆的参数方程2.3圆锥曲线的参数方程2.4一些常见曲线的参数方程本章小结附录部分中英文词汇对照表后记高中数学(B版)选修4-5第一章不等式的基本性质和证明的基本方法1.1不等式的基本性质和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法本章小结第二章柯西不等式与排序不等式及其应用2.1柯西不等式2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型本章小结阅读与欣赏著名数学家柯西第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.2用数学归纳法证明不等式、贝努利不等式本章小结。
人教B版高中数学目录(必修+选修)高中数学(B版)必修一第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算整合提升第二章函数2.1 函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.2二次函数的性质与图象2.2.3待定系数法2.3函数的应用(I)2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法——二分法整合提升第三章基本初等函数(I)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数-3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(Ⅱ)整合提升高中数学(B版)必修二第1章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥和棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.1.4投影与直观图1.1.5三视图1.1.6棱柱、棱锥、棱台和球的表面积1.1.7柱、锥、台和球的体积1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系(第1课时)空间中的平行关系(第2课时)1.2.3空间中的垂直关系(第1课时)空间中的垂直关系(第2课时)综合测试阶段性综合评估检测(一)第2章平面解析几何初步2.1平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3 圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系综合测试高中数学(B版)必修三一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例单元回眸第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样显示全部信息第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例单元回眸第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体的分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关单元回眸第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用单元回眸高中数学(B版)必修四第一章基本初等函数(2)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图象与性质1.3.1 正弦函数的图象与性质1.3.2 余弦函数、正切函数的图象与性质1.3.3 已知三角函数值求角单元回眸第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4数乘向量2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.3 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用单元回眸第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积单元回眸高中数学(B版)必修五第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例复习与小结第一章综合测试第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和复习与小结第二章综合测试第三章不等式. 3.1 不等关系与不等式3.1.1 不等关系3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)与简单的线性规划问题3.5.2 简单的线性规划复习与小结第三章综合测试高中数学(B版)选修1-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第1章综合测试题第2章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性2.2 椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3 双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4 抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线第2章综合测试题阶段性综合评估检测(一)第3章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离高中数学(B版)选修1-2目录:第一章统计案例1.1独立性检验1.2回归分析单元回眸第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明单元回眸第三章数系的扩充与复数的引入3.1数系的扩充与复数的引入3.2复数的运算单元回眸第四章框图4.1流程图4.2结构图单元回眸高中数学(人教B)选修2-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第1章综合测试题第2章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性2.2 椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3 双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4 抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质.2.5直线与圆锥曲线第2章综合测试题阶段性综合评估检测(一)第3章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离第3章综合测试题阶段性综合评估检测(二)高中数学人教B选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理本章整合提升第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法本章整合提升第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法本章整合提升高中数学人教B选修2-3第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角单元回眸第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数字特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布单元回眸第三章统计案例3.1独立性检验3.2回归分析单元回眸高中数学(B版)选修4-1第一章相似三角形定理与圆幂定理1.1相似三角形1.1.1相似三角形判定定理1.1.2相似三角形的性质1.1.3平行截割定理1.1.4锐角三角函数与射影定理1.2圆周角与弦切角1.2.1圆的切线1.2.2圆周角定理1.2.3弦切角定理1.3圆幂定理与圆内接四边形1.3.1圆幂定理1.3.2圆内接四边形的性质与判定本章小结阅读与欣赏欧几里得附录不可公度线段的发现与逼近法第二章圆柱、圆锥与圆锥曲线2.1平行投影与圆柱面的平面截线2.1.1平行投影的性质2.1.2圆柱面的平面截线2.2用内切球探索圆锥曲线的性质2.2.1球的切线与切平面2.2.2圆柱面的内切球与圆柱面的平面截线2.2.3圆锥面及其内切球2.2.4圆锥曲线的统一定义本章小结阅读与欣赏吉米拉•丹迪林附录部分中英文词汇对照表后记高中数学(B版)选修4-4第一章坐标系1.1直角坐标系,平面上的伸缩变换1.2极坐标系本章小结第二章参数方程2.1曲线的参数方程2.2直线和圆的参数方程2.3圆锥曲线的参数方程2.4一些常见曲线的参数方程本章小结附录部分中英文词汇对照表后记高中数学(B版)选修4-5第一章不等式的基本性质和证明的基本方法1.1不等式的基本性质和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法本章小结第二章柯西不等式与排序不等式及其应用2.1柯西不等式2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型本章小结阅读与欣赏著名数学家柯西第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.2用数学归纳法证明不等式、贝努利不等式本章小结阅读与欣赏完全归纳法和不完全归纳法数学归纳法数学归纳法简史附录部分中英文词汇对照表。
高中数学(B 版)必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(Ⅱ)高中数学(B 版)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式2.2 直线方程2.3 圆的方程2.4 空间直角坐标系高中数学(B 版)必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用高中数学(B 版)必修四第一章基本初等函(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积高中数学(B 版)必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题高中数学(B 版)选修 1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用高中数学(B 版)选修 1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图高中数学(B 版)选修 2-1第一章常用逻辑用语1.1命题与量词 1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1曲线与方程 2.2 椭圆 2.3 双曲线2.4抛物线 2.5 直线与圆锥曲线第三章空间向量与立体几何3.1空间向量及其运算 3.2 空间向量在立体几何中的应用高中数学(B 版)选修 2-2第一章导数及其应用1.1导数 1.2 导数的运算1.4导数的应用 1.4 定积分与微积分基本定理第二章推理与证明2.2合情推理与演绎推理 2.2 直接证明与间接证明2.5数学归纳法第三章数系的扩充与复数3.2数系的扩充与复数的概念 3.2 复数的运算高中数学(B 版)选修 2-3第一章计数原理1.1基本计数原理 1.2 排列与组合1.3二项式定理第二章概率2.1离散型随机变量及其分布列 2.2 条件概率与事件的独立性2.3随机变量的数字特征 2.4 正态分布第三章统计案例3.1独立性检验 3.2 回归分析高中数学(B 版)选修 4-4第一章坐标系1.1直角坐标系平面上的压缩变换 2 极坐标系1.5曲线的极坐标方程 1.4 圆的极坐标方程2.3柱坐标系和球坐标系第二章参数方程2.6曲线的参数方程 2.2 直线和圆的参数方程3.3圆锥曲线的参数方程高中数学(B 版)选修 4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3 平均值不等式 (选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式1.2数学归纳法原理 3.2 用数学归纳法证明不等式,贝努利不等式。
1.5.1 柱 坐 标 系[对应学生用书P13][读教材·填要点]1.柱坐标系的概念设空间中一点M 的直角坐标为(x ,y ,z ),M 点在xOy 坐标面上的投影点为M 0,M 0点在xOy 平面上的极坐标为(ρ,θ),则三个有序数ρ,θ,z 构成的数组(ρ,θ,z )称为空间中点M 的柱坐标.在柱坐标中,限定ρ≥0,0≤θ<2π,z 为任意实数.2.直角坐标与柱坐标的转化空间点M 的直角坐标(x ,y ,z )与柱坐标(ρ,θ,z )之间的变换公式为⎩⎨⎧x =ρcos θ,y =ρsin θ,z =z .[小问题·大思维]1.柱坐标与平面上的极坐标之间有什么关系?提示:柱坐标就是平面上的极坐标加上与平面垂直的一个直角坐标. 2.在极坐标中,方程ρ=ρ0(ρ0为正常数)表示圆心在极点,半径为ρ0的圆,方程θ=θ0(θ0为常数)表示与极轴成θ0角的射线.那么,在柱坐标系中,上述方程又分别表示什么图形?提示:在空间的柱坐标系中,方程ρ=ρ0表示中心轴为z 轴,底半径为ρ0的圆柱面,它是上述圆周沿z 轴方向平行移动而成的.方程θ=θ0表示与zOx 坐标面成θ0角的半平面.[对应学生用书P14][例1] 已知空间点M 的直角坐标为(43,4,3),求它的柱坐标. [思路点拨] 本题主要考查将直角坐标化为柱坐标的方法.解答此题需要明确各坐标的意义,然后将其代入相应公式即可解决.[精解详析]由公式⎩⎨⎧x =ρcos θ,y =ρsin θ,z =z ,得ρ2=x 2+y 2,z =3.∴ρ2=(43)2+(4)2=48+16=64. ∴ρ=8.tan θ=y x =434=3,又x >0,y >0,点在第一象限, ∴θ=π3.∴点M 的柱坐标为⎝ ⎛⎭⎪⎫8,π3,3.已知点的直角坐标,确定它的柱坐标的关键是确定ρ和θ,尤其是θ.要注意求出tan θ,还要根据点M 所在的象限确定θ的值(θ的范围是[0,2π)).1.点M 的直角坐标为(3,1,-2),则它的柱坐标为( ) A.⎝ ⎛⎭⎪⎫2,π6,2 B.⎝ ⎛⎭⎪⎫2,π3,2 C.⎝ ⎛⎭⎪⎫2,π6,-2 D.⎝ ⎛⎭⎪⎫2,-π6,-2 解析:选C ∵ρ=(3)2+12=2,tan θ=13=33, ∴点M 的柱坐标为⎝ ⎛⎭⎪⎫2,π6,-2.[例2] 已知点M 的柱坐标为⎝ ⎛⎭⎪⎫8,π6,4,求它的直角坐标.[思路点拨] 本题考查柱坐标与直角坐标的转化.解答本题只要将已知点的柱坐标代入相应的公式即可.[精解详析] ∵M 点的柱坐标为⎝ ⎛⎭⎪⎫8,π6,4, ∴ρ=8,θ=π6.由公式⎩⎨⎧x =ρcos θ,y =ρsin θ,z =z ,得⎩⎪⎨⎪⎧x =8cos π6,y =8sin π6,z =4,即⎩⎨⎧x =43,y =4,z =4.∴M 点的直角坐标为(43,4,4).已知柱坐标,求直角坐标直接利用变换公式⎩⎨⎧x =ρcos θ,y =ρsin θ,z =z即可.2.已知点M 的柱坐标为(2,π4,1),求M 关于原点O 对称的点的柱坐标.解:M ⎝⎛⎭⎪⎫2,π4,1的直角坐标为⎩⎪⎨⎪⎧x =2cos π4=1,y =2sin π4=1,z =1,∴M 关于原点O 的对称点的直角坐标为(-1,-1,-1). ρ2=(-1)2+(-1)2=2,∴ρ= 2. tan θ=-1-1=1,又x <0,y <0,∴θ=5π4.∴其柱坐标为⎝ ⎛⎭⎪⎫2,5π4,-1.∴M 关于原点O 对称的点的柱坐标为⎝ ⎛⎭⎪⎫2,5π4,-1.[例3]给定一个底面半径为2,高为2的圆柱,建立柱坐标系,利用柱坐标系描述圆柱侧面以及底面上点的坐标.[思路点拨]本题考查柱坐标系的建法以及柱坐标的确定方法.解答本题需要建立恰当的柱坐标系,然后根据柱坐标的定义解决相关问题.[精解详析]以圆柱底面圆的圆心为原点,取两条互相垂直的直线为x轴,y 轴,以向上的中轴线为z轴正方向建立柱坐标系.下底面上的点的柱坐标满足(ρ1,θ1,0),其中0≤ρ1≤2,0≤θ1<2π.上底面上的点的柱坐标满足(ρ2,θ2,2),其中0≤ρ2≤2,0≤θ2<2π.侧面上的点的柱坐标满足(2,θ3,z),其中0≤θ3<2π,0≤z≤2.(1)柱坐标系是由平面极坐标系及空间直角坐标系中的一部分建立起来的.(2)解决此类问题的关键是找出这些点所具有的共性和变化的特征.3.一个圆形体育馆,自正东方向起,按逆时针方向等分为十六个扇形区域,顺次记为一区,二区,…,十六区,我们设圆形体育场第一排与体育馆中心的距离为200 m,每相邻两排的间距为1 m,每层看台的高度为0.7 m,现在需要确定第九区第四排正中的位置A,请建立适当的坐标系.求点A的柱坐标.解:以圆形体育场中心O为极点,选取以O为端点且过正东入口的射线Ox 为极轴,在地面上建立极坐标系,则点A与体育场中轴线Oz的距离为203 m,极轴Ox按逆时针方向旋转17π16,就是OA在地平面上的射影,A距地面的高度为2.8 m,因此我们可以用柱坐标来表示点A的准确位置.∴点A 的柱坐标为⎝ ⎛⎭⎪⎫203,17π16,2.8.[对应学生用书P15]一、选择题1.点M 的柱坐标为⎝ ⎛⎭⎪⎫16,π3,5,转换为直角坐标为( )A .(5,8,83)B .(8,83,5)C .(83,8,5)D .(4,83,5)解析:选B由公式⎩⎨⎧x =ρcos θ,y =ρsin θ,z =z ,得⎩⎪⎨⎪⎧x =16cos π3=8,y =16sin π3=83,z =5.即M 点的直角坐标为(8,83,5).2.已知点M 的直角坐标为(3,3,3),则它的柱坐标为( ) A.⎝ ⎛⎭⎪⎫32,π4,3 B.⎝ ⎛⎭⎪⎫32,3π4,1 C.⎝ ⎛⎭⎪⎫32,5π4,3 D.⎝ ⎛⎭⎪⎫32,7π4,1 解析:选A由公式⎩⎨⎧x =ρcos θ,y =ρsin θ,z =z ,得⎩⎨⎧3=ρcos θ,3=ρsin θ,3=z .∴ρ2=32+32=18.∴ρ=3 2. ∴cos θ=22,sin θ=22. 又∵θ∈[0,2π), ∴θ=π4.∴M 点的柱坐标为⎝ ⎛⎭⎪⎫32,π4,3. 3.在柱坐标系中,方程ρ=2表示空间中的( ) A .以x 轴为中心轴,底半径为2的圆柱面B .以y 轴为中心轴,底半径为2的圆柱面C .以z 轴为中心轴,底半径为2的圆柱面D .以原点为球心,半径为2的球面解析:选C 由柱坐标的几何意义可知,方程ρ=2表示以z 轴为中心,底面半径为2的圆柱面.4.空间点M 的柱坐标为(ρ,θ,z ),它关于点O (0,0,0)的对称点的坐标为(0<θ≤π)( )A .(-ρ,-θ,-z )B .(ρ,θ,-z )C .(ρ,π+θ,-z )D .(ρ,π-θ,-z )解析:选C 点M (ρ,θ,z )关于点O (0,0,0)的对称点为M ′(ρ,π+θ,-z ). 二、填空题5.已知点M 的直角坐标为(1,0,5),则它的柱坐标为________. 解析: ∵x >0,y =0,∴tan θ=0,θ=0, ρ=12+02=1. ∴柱坐标为(1,0,5). 答案:(1,0,5)6.点M 的柱坐标为⎝ ⎛⎭⎪⎫8,π4,2,则点M 与原点的距离为________. 解析:点M 的直角坐标为(42,42,2), ∴它与原点的距离为(42-0)2+(42-0)2+(2-0)2=217. 答案:2177.设点M 的直角坐标为(1,-3,4),则点M 的柱坐标为________. 解析:ρ=x 2+y 2=12+(-3)2=2. tan θ=-31=- 3.又x >0,y <0, ∴θ=5π3.∴柱坐标为⎝ ⎛⎭⎪⎫2,5π3,4. 答案:⎝ ⎛⎭⎪⎫2,5π3,48.在直角坐标系中,(1,1,1)关于z 轴对称的点的柱坐标为________.解析:(1,1,1)关于z 轴的对称点为(-1,-1,1),它的柱坐标为⎝ ⎛⎭⎪⎫2,5π4,1.答案:⎝ ⎛⎭⎪⎫2,5π4,1三、解答题9.求点M (1,1,3)关于xOz 平面对称的点的柱坐标. 解:点M (1,1,3)关于xOz 平面的对称点为(1,-1,3).由变换公式⎩⎨⎧x =ρcos θ,y =ρsin θ,z =z得ρ2=12+(-1)2=2,∴ρ= 2. tan θ=-11=-1.又x >0,y <0,∴θ=7π4.∴其关于xOz 平面对称的点的柱坐标为⎝ ⎛⎭⎪⎫2,7π4,3.10.在柱坐标系中,方程ρ=1表示空间中什么曲面?方程z =-1表示什么曲面?解:方程ρ=1表示以z 轴为中心轴,以1为底面半径的圆柱面;方程z =-1表示与xOy 坐标面平行的平面,且此平面与xOy 面的距离为1,并且在xOy 面的下方.11.如图所示,一个底面半径为r ,高为h 的圆柱OO ′,四边形ABCD 是其轴截面,EF 是圆柱的一条母线,且∠BOE =π4,G 为EF 的中点.试建立适当的柱坐标系,求A ,C ,G 的坐标.解:如图所示,建立柱坐标系.则A 点的柱坐标为⎝ ⎛⎭⎪⎫r ,3π2,0,C 点的柱坐标为⎝ ⎛⎭⎪⎫r ,π2,h ,G 点的柱坐标为⎝ ⎛⎭⎪⎫r ,π4,h 2.。
人教B版高中数学目录(必修+选修)高中数学〔B版〕必修一第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算整合提升第二章函数2.1 函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.2二次函数的性质与图象2.2.3待定系数法2.3函数的应用〔I〕2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法——二分法整合提升第三章基本初等函数〔I〕3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数-3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用〔Ⅱ〕整合提升高中数学〔B版〕必修二第1章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥和棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.1.4投影与直观图1.1.5三视图1.1.6棱柱、棱锥、棱台和球的外表积1.1.7柱、锥、台和球的体积1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系(第1课时)空间中的平行关系(第2课时)1.2.3空间中的垂直关系(第1课时)空间中的垂直关系(第2课时)综合测试阶段性综合评估检测(一)第2章平面解析几何初步2.1平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3 圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系综合测试高中数学〔B版〕必修三一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例单元回眸第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样显示全部信息第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例单元回眸第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体的分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关单元回眸第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本领件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用单元回眸高中数学〔B版〕必修四第一章基本初等函数(2)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图象与性质1.3.1 正弦函数的图象与性质1.3.2 余弦函数、正切函数的图象与性质1.3.3 已知三角函数值求角单元回眸第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4数乘向量2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.3 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用单元回眸第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积单元回眸高中数学〔B版〕必修五第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例复习与小结第一章综合测试第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式〔选学〕2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和复习与小结第二章综合测试第三章不等式. 3.1 不等关系与不等式3.1.1 不等关系3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式〔组〕与简单的线性规划问题3.5.1 二元一次不等式〔组〕与简单的线性规划问题3.5.2 简单的线性规划复习与小结第三章综合测试高中数学〔B版〕选修1-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第1章综合测试题第2章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性2.2 椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3 双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4 抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线第2章综合测试题阶段性综合评估检测〔一〕第3章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离高中数学〔B版〕选修1-2目录:第一章统计案例1.1独立性检验1.2回归分析单元回眸第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明单元回眸第三章数系的扩充与复数的引入3.1数系的扩充与复数的引入3.2复数的运算单元回眸第四章框图4.1流程图4.2结构图单元回眸高中数学〔人教B〕选修2-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第1章综合测试题第2章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性2.2 椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3 双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4 抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质.2.5直线与圆锥曲线第2章综合测试题阶段性综合评估检测〔一〕第3章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离第3章综合测试题阶段性综合评估检测〔二〕高中数学人教B选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理本章整合提升第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法本章整合提升第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法本章整合提升高中数学人教B选修2-3第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角单元回眸第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数字特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布单元回眸第三章统计案例3.1独立性检验3.2回归分析单元回眸高中数学〔B版〕选修4-1第一章相似三角形定理与圆幂定理1.1相似三角形1.1.1相似三角形判定定理1.1.2相似三角形的性质1.1.3平行截割定理1.1.4锐角三角函数与射影定理1.2圆周角与弦切角1.2.1圆的切线1.2.2圆周角定理1.2.3弦切角定理1.3圆幂定理与圆内接四边形1.3.1圆幂定理1.3.2圆内接四边形的性质与判定本章小结阅读与欣赏欧几里得附录不可公度线段的发现与逼近法第二章圆柱、圆锥与圆锥曲线2.1平行投影与圆柱面的平面截线2.1.1平行投影的性质2.1.2圆柱面的平面截线2.2用内切球探索圆锥曲线的性质2.2.1球的切线与切平面2.2.2圆柱面的内切球与圆柱面的平面截线2.2.3圆锥面及其内切球2.2.4圆锥曲线的统一定义本章小结阅读与欣赏吉米拉•丹迪林附录部分中英文词汇对照表后记高中数学〔B版〕选修4-4第一章坐标系1.1直角坐标系,平面上的伸缩变换1.2极坐标系本章小结第二章参数方程2.1曲线的参数方程2.2直线和圆的参数方程2.3圆锥曲线的参数方程2.4一些常见曲线的参数方程本章小结附录部分中英文词汇对照表后记高中数学〔B版〕选修4-5第一章不等式的基本性质和证明的基本方法1.1不等式的基本性质和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法本章小结第二章柯西不等式与排序不等式及其应用2.1柯西不等式2.2排序不等式2.3平均值不等式〔选学〕2.4最大值与最小值问题,优化的数学模型本章小结阅读与欣赏著名数学家柯西第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.2用数学归纳法证明不等式、贝努利不等式本章小结阅读与欣赏完全归纳法和不完全归纳法数学归纳法数学归纳法简史附录部分中英文词汇对照表。