1-5-14推理与证明
- 格式:doc
- 大小:73.00 KB
- 文档页数:7
常见推理方法及作用1. 演绎推理演绎推理是一种从已知事实和前提出发,通过逻辑推理来得出结论的推理方法。
它基于正确的前提和逻辑规则,通过推理和推断来得到确定性的结论。
演绎推理有助于分析问题、推导出新的结论,并确保逻辑的准确性。
2. 归纳推理归纳推理是一种从特殊事实或个别例子中推断出普遍原则或通用法则的推理方法。
它基于已有的观察结果和个别情况来推断出普遍的概念或规律。
归纳推理有助于从具体的实例中概括出一般性的结论,并扩展到更广泛的情况。
3. 反证法反证法是一种推理方法,通过假设一个命题的否定,然后推导出与已知事实或前提相矛盾的结论,从而证明原命题的正确性。
反证法有助于确认某个命题的真假,通过推理的反面来证明某个命题的无误。
4. 类比推理类比推理是一种从相似性和一致性中推断出两个或更多对象之间具有相似特征、行为或属性的推理方法。
它基于已有的相似情况,将一个对象或情况的特征应用到另一个对象或情况上,从而进行推理。
类比推理有助于从已知情况中找到新的解决办法或新的认识。
5. 消解推理消解推理是一种通过消除或减少矛盾、模糊或冲突的情况来得出结论的推理方法。
它基于逻辑规则和推理机制,通过对不一致性的情况进行解决,得出一致性的结论。
消解推理有助于解决复杂问题,找到问题的根本原因,并得出合理的结论。
这些常见的推理方法在解决问题、分析情况和做出决策时起着重要的作用。
无论是进行逻辑推理、归纳推理、证明命题的真伪,还是进行类比推理、解决矛盾的消解推理,都需要在实际应用中根据具体情况选择最合适的方法。
通过运用这些推理方法,我们可以更加准确地分析和解决问题,推进知识的发展和进步。
初中数学备课组 教师班级 学生日期 月 日 上课时间 教学内容—命题和证明 证明举例知识精要知识点1 演绎证明演绎证明,简称 证明 ,是指:从已知的 概念 、 条件 出发,依据已被确认的 事实 和公认的 逻辑规则 ,推导出某种结论为正确的过程.例1:如图,160∠=o ,260∠=o ,357∠=o ,则457∠=o .下面是A 、B 、C 、D 四个同学的推理过程,你认为推理正确的是( ).A .1602∠==∠o Q ,//a b ∴. 4357∴∠=∠=o .B .4573∠==∠o Q ,//a b ∴. 1260∴∠=∠=o .C .25∠=∠Q , 又160∠=o ,260∠=o ,1560∴∠=∠=o . //a b ∴. 4357∴∠=∠=o .D .160∠=o Q ,260∠=o ,357∠=o,132460573∴∠-∠=∠-∠=-=o o o .∴457∠=o .练习:1.推理的依据,可以是 已知条件 和 已证事项 (简称为 已知 和 已证 ),也可以是已有的 概念 、 性质 等.2.演绎推理是数学证明的一种 常用 的、 完全可靠 的方法,演绎证明也简称为 证明 .3.整个证明由一段一段的 因果关系 连接而成.4.要了解几种不同类型的因果关系:(请在以下的括号内填上推理依据)(1)一因一果例如:1∠Q 与2∠是对顶角, (已知)12∴∠=∠. ( )又如:1∠Q 与2∠互为余角, (已知)1290∴∠+∠=o . ( ) (4(2)图)(2)一因多果如图,两条平行线a 与b 被第三条直线c 所截.//a b Q ,24∴∠=∠,( )14∠=∠,( )34180∠+∠=o .( ) (4(3)图)(3)多因一果如图,AB EF ⊥Q 于G ,CD EF ⊥于H ,(已知)//AB CD ∴.( )通常证明是由若干个推理组成,既有多层因果关系,从整体上看,前一段中的 为后一段提供了 ,一连串这样连贯、有序的 组成了完整的证明.知识点2 命题、公理、定理1.能界定某个对象含义的句子叫做 .2.判断一件事情的句子叫做 .判断为正确的命题叫做 .判断为错误的命题叫做 .3.人们从长期的实践中总结出来的 ,并且可以作为判断其他命题真假的原始依据叫做 .4.从公理或其他真命题出发,用推理方法证明为正确的,并能进一步作为判断其他命题真假的依据的真命题叫做 .例1:“周长相等的两个三角形全等”是不是命题?如果是命题,把它改写成“如果……那么……”形式,则它是真命题还是假命题?例2:下列命题中,属于假命题的是( ).A.推理过程叫证明B.定理都是命题C.命题都是公理D.公理都是命题 练习:1.下列语句中,称为命题的是( ).A.把ABC V 沿AB 边翻折B.经过已知直线外一点画这条直线的平行线C.等角的补角相等D.经过两点画一条直线2.下列命题中,( )是真命题.①一个等腰三角形必定能划分成两个全等的直角三角形②两个全等的直角三角形必能拼成一个等腰三角形③一个直角三角形必能划分成两个等腰三角形④两个等腰三角形必能拼成一个直角三角形A.②④B. ①②③C.②③④D. ①③3.把下列命题写成“如果……那么……”的形式:(1)等腰三角形的两个底角相等.(2)在同一平面内,垂直于同一条直线的两条直线相互平行.知识点3 证明的步骤1.判断一个命题是真命题:要经过证明.证明是一个推理过程,是一个严密而有条理的合理的推理过程,证明过程一定要步步有 理有据.2.判断一个命题是假命题:只要举出一个反例.3.反证法证明命题的一般步骤是:(1)假设:先假设命题的结论不成立.(2)归谬.从这个假设出发,运用正确的推理方法,得出与定义、公理、已证定理或已知条件相矛盾的结果.(3)结论.由矛盾的结果判定假设不正确,从而肯定命题的结论正确.例2:如图,已知100ABF ∠=o ,145CDE ∠=o ,65DEF ∠=o.求证://AB CD .例3:用反证法证明:一个三角形中不能有两个角是直角.练习:1.如图,已知BH 平分DHG ∠,12GBH ∠=∠,求证://AB CD .2.如图,已知在ABC V 中,AD 平分BAC ∠,//BE AD ,交CA 延长线于点E ,F 是BE 的中点.求证:AF BE ⊥.3.如图,在ABC ∆中,AB AC =,108BAC ∠=o ,BD 平分ABC ∠.求证:BC AB CD =+.知识点4 逆命题和逆定理1.逆命题在两个命题中,如果第一个命题的题设是第二个命题的 ,而第一个命题的 又是第二个命题的题设,那么这两个命题叫做互逆命题.如果把其中一个命题叫做 ,那么另一个命题叫做它的逆命题.2.逆定理如果一个定理的逆命题经过证明也是 ,那么这两个定理叫做互逆定理.例1:写出下面命题的逆命题。
(1)定义:是根据一个或几个已知的判断来确定一个新的判断的思维过程.(2)分类:推理⎩⎪⎨⎪⎧合情推理演绎推理2.合情推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.(2)特点:演绎推理是由一般到特殊的推理. (3)模式:三段论⎩⎪⎨⎪⎧①大前提:已知的一般原理;②小前提:所研究的特殊情况;③结论:根据一般原理,对特殊情况做 出的判断.4.直接证明直接证明中最基本的两种证明方法是综合法和分析法.(1)综合法:一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法. 综合法又称为:由因导果法(顺推证法).(2)分析法:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.分析法又称为:执果索因法(逆推证法). 5.间接证明反证法:假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法. 6.复数的有关概念(1)复数的概念:形如a +b i(a ,b ∈R )的数叫复数,其中a ,b 分别是它的实部和虚部.若b =0,则a +b i 为实数;若b ≠0,则a +b i 为虚数;若a =0且b ≠0,则a +b i 为纯虚数. (2)复数相等:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ). (3)共轭复数:a +b i 与c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R ). (4)复数的模:向量OZ →的模r 叫做复数z =a +b i(a ,b ∈R )的模,记作|z |或|a +b i|,即|z |=|a +b i|=a 2+b 2.7.复数的几何意义(1)复数z =a +b i ―→一一对应复平面内的点Z (a ,b )(a ,b ∈R ).(2)复数z =a +b i(a ,b ∈R )―→一一对应 平面向量OZ →.8.复数的运算(1)复数的加、减 、乘、除运算法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则①加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ; ②减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; ③乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ; ④除法:z 1z 2=a +b ic +d i =(a +b i )(c -d i )(c +d i )(c -d i )=ac +bd c 2+d 2+bc -adc 2+d 2i(c +d i≠0).(2)复数加法的运算定律复数的加法满足交换律、结合律,即对任何z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3).行;归纳推理是依据特殊现象推断出一般现象,因此所得结论超出了前提所界定的范围,其前提和结论之间的联系不是必然的,而是或然的,所以“前提真而结论假”的情况是有可能发生的.2.归纳推理的一般过程:(1)通过观察个别情况发现相同的性质; (2)推出一个明确表述的一般性结论.3.在数学中,类比是发现概念、方法、定理、公式的重要手段,并且应用广泛,数与式、平面与空间、一元与多元、低次与高次、相等与不等、有限与无限等之间有不少结论都是先用类比的方法提出猜想,然后再加以证明的.4.类比推理的一般步骤:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想),但结论不一定正确,有待进一步证明.5.把握合情推理与演绎推理的三点(1)合情推理包括归纳推理和类比推理,所得到的结论都不一定正确,其结论的正确性是需要证明的.(2)在进行类比推理时,要尽量从本质上去类比,不要被表面现象所迷惑;否则只抓住一点表面现象甚至假象就去类比,就会犯机械类比的错误.(3)应用三段论解决问题时,应首先明确什么是大前提,什么是小前提,如果大前提与推理形式是正确的,结论必定是正确的.如果大前提错误,尽管推理形式是正确的,所得结论也是错误的.6.在进行类比推理时,不仅要注意形式的类比,还要注意方法的类比,且要注意以下两点:(1)找两类对象的对应元素,如:三角形对应三棱锥,圆对应球,面积对应体积等等;(2)找对应元素的对应关系,如:两条边(直线)垂直对应线面垂直或面面垂直,边相等对应面积相等.7.演绎推理的推证规则(1)演绎推理是从一般到特殊的推理,其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略,本题中,等比数列的定义在解题中是大前提,由于它是显然的,因此省略不写;(2)在推理论证过程中,一些稍复杂一点的证明题常常要由几个三段论才能完成.8.综合法又叫顺推证法或由因导果法,它是从“已知”看“可知”,逐步推向“未知”,其逐步推理是在寻求它的必要条件.综合法的解题步骤用符号表示是:P(已知)⇒Q1⇒Q2⇒Q3⇒…⇒Q n⇒Q(结论).9.分析法又叫逆推证法或执果索因法,它是从“结论”探求“需知”,逐步靠拢“已知”,其逐步推理的实质是寻求使结论成立的充分条件.分析法的解题步骤用符号表示是:B(结论)⇐B1⇐B2⇐…⇐B n⇐A(已知).10.分析法与综合法的综合应用分析法和综合法是两种思路相反的推理证明方法,二者各有优缺点.分析法思考起来比较自然,容易找到解题的思路和方法,缺点是思路逆行,叙述较繁,且表述易错;综合法条理清晰,宜于表述,缺点是探路艰难,易生枝节.在证明数学问题的过程中分析法和综合法往往是相互结合的,先用分析法探索证明途径,然后再用综合法表述.11.用反证法证明命题的一般步骤:(1)分清命题的条件和结论; (2)做出与命题结论相矛盾的假设;(3)由假设出发,应用正确的推理方法,推出与已知条件,或与假设矛盾,或与定义、公理、定理、事实等矛盾的结果;(4)断定产生矛盾的原因是假设不真,于是原结论成立,从而间接地证明命题为真. 12.可用反证法证明的数学命题类型 (1)结论是否定形式的命题;(2)结论是以至多、至少、唯一等语句给出的命题; (3)结论的反面是较明显或较易证明的命题;(4)用直接法较难证明或需要分成多种情形进行分类讨论的命题. 13.常见的“结论词”与“反设词”14.几个应注意的问题 (1)两个虚数不能比较大小.(2)利用复数相等a +b i =c +d i 列方程时,注意a ,b ,c ,d ∈R 的前提条件.(3)注意不能把实数集中的所有运算法则和运算性质照搬到复数集中来.例如,若z 1,z 2∈C ,z 21+z 22=0,就不能推出z 1=z 2=0;z 2<0在复数范围内有可能成立. 15.复数的运算技巧(1)设z =a +b i(a ,b ∈R ),利用复数相等和相关性质将复数问题实数化是解决复数问题的常用方法.(2)在复数代数形式的四则运算中,加、减、乘运算按多项式运算法则进行,除法则需分母实数化.16.复数代数运算中常用的几个结论在进行复数的代数运算时,记住以下结论,可提高计算速度. (1)(1±i)2=±2i;1+i 1-i =i ;1-i 1+i =-i ;(2)-b +a i =i(a +b i);(3)i 4n =1,i4n +1=i ,i4n +2=-1,i4n +3=-i ,i 4n +i4n +1+i4n +2+i4n +3=0,n ∈N *.17.解决复数概念问题的方法及注意事项(1)复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可. (2)解题时一定要先看复数是否为a +b i(a ,b ∈R )的形式,以确定实部和虚部 18.复数几何意义及应用(1)复数z 、复平面上的点Z 及向量OZ →相互联系,即z =a +b i(a ,b ∈R )⇔Z (a ,b )⇔OZ →. (2)由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观. 19.复数代数形式运算问题的解题策略(1)复数的乘法.复数的乘法类似于多项式的乘法运算,可将含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可.(2)复数的除法.除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把i 的幂写成最简形式.1. 原题(选修1-2第五十一页例)1(1)m m m i ++-实数取什么值时复数z=是(1)实数?(2)虚数?(3)纯虚数?改编1 若复数sin 2(1cos 2)z a i a =--是纯虚数,则a = .改编2 使复数为实数的充分而不必要条件是 ( )A .z z -= B .z z = C .2z 为实数 D .z z -+为实数 【解析】 ∴即要找出若“复数为实数”则不能推出的选项选B 改编3 若有,,R R X +-分别表示正实数集,负实数集,纯虚数集,则集合}{2mm X ∈=( ).A .R +B .R -C .RR +- D .{}0R +【解析】 222(0),)0m m bi b m bi b B =≠=-<∴若为纯虚数,设则(选=2. 原题(选修1-2第五十五页习题3.1 A 组第5题):实数m 取什么值时,复平面内表示复数22(815)(514)z m m m m i =-++--的点(1)位于第四象限? (2)位于第一、二象限?(3)位于直线上?改编1 复数z=(a2-2a)+(a2-a-2)i对应的点在虚轴上,则( ) A.a≠2或a≠1 B.a≠2且a≠1 C.a=2或a=0 D.a=0【解析】 200 2.a a a -=∴==2要求虚部为即可或0.即a改编2 已知复数12z i =+,21z i =-,则在12z z z =⋅复平面上对应的点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限【解析】123z z z i z ==-∴复数表示的点在第四象限.选D.改编 3 如果35a <<,复数22(815)(514)z a a a a i =-++--在复平面上的对应点z 在 象限.改编4 已知z0=2+2i,|z-z0|,(1)求复数z在复平面内对应的点的轨迹;(2)求z为何值时,|z|有最小值,并求出|z|的最小值.【解析】(1)设z =x +y i(x ,y ∈R ),由|z-z0|,即 |x +y i-(2+2i)|=|(x -2)+(y -2)i|,解得(x -2)2+(y -2)2=2∴复数z点的轨迹是以Z 0(2,2的圆. (2)当Z 点在OZ 0的连线上时,|z|有最大值或最小值,∵| OZ 0|=,∴当z=1+i时,|z|min.3. 原题(选修1-2第五十五页习题 3.1B 组第二题)改编 设,C z ∈满足条件.12141log 21->--+-z z 的复数z 所对应的点z 的集合表示什么图形?【解析】12,14|1|4log 12|1|81012|1|28z Z Z Z z Z -+-+>-<->----由,得化简得:,所以表示以为圆心,以为半径的圆0<(,)的外部.4. 原题(选修1-2第六十三页复习参考题A 组1(4))1(2i i -3复数+的值为( ) A. B. C.-1 D.1改编12008200711()122i i i +⎛⎫+-+ ⎪-⎝⎭=( )A. 2iB.-1+iC.1+iD.2 【解析】22320082007210043669111)1,()1,)()[()][()]2222i i i ii i i ==--+=∴+-+=+-+=1+1+1+((1-1-1- .D ∴选改编2 复数z=1+z+z2的值;5. 原题(选修1-2第六十三页复习参考题B 组第二题)改编1 2012432i i i i i +++++ 的值为________.【解析】 0432=+++i i i i 则2012432i i i i i +++++ =0. 改编2若1z i=-,那么100501z z ++的值是 . 【解析】22441005042522525252))(1),1,11(1)(1)221()()1(1)1i i i z z i z i i i i z z z z i i+++===∴==∴=-=--+∴++=++=-++=又。
十八逻辑推理(A)年级班姓名得分一、填空题1. 甲、乙、丙三人进行跑步比赛.A、B、C三人对比赛结果进行预测.A说:“甲肯定是第一名.”B 说:“甲不是最后一名.”C说:“甲肯定不是第一名.”其中只有一人对比赛结果的预测是对的.预测对的是 .2. A、B、C、D、E和F六人一圆桌坐下.B是坐在A右边的第二人.C是坐在F右边的第二人.D坐在E的正对面,还有F和E不相邻.那么,坐在A和B之间的是 .3. 甲、乙、丙、丁与小明五位同学进入象棋决赛.每两人都要比赛一盘,每胜一盘得2分,和一盘得1分,输一盘得0分.到现在为止,甲赛了4盘,共得了2分;乙赛了3盘,得了4分;丙赛了2盘,得了1分;丁赛了1盘,得了2分.那么小明现在已赛了盘,得了分.4. 曹、钱、刘、洪四个人出差,住在同一个招待所.一天下午,他们分别要找一个单位去办事.甲单位星期一不接待,乙单位星期二不接待,丙单位星期四不接待,丁单位只在星期一、三、五接待,星期日四个单位都不接待.曹:“两天前,我去误了一次,今天再去一次,还可以与老洪同走一条路.”钱:“今天我一定得去,要不明天人家就不接待了.”刘:“这星期的前几天和今天我去都能办事.”洪:“我今天和明天去,对方都接待.”那么,这一天是星期 ,刘要去单位,钱要去单位,曹要去单位,洪要去单位.5. 四位外国朋友住在十八层高的饭店里,他们分别来自埃及、法国、朝鲜和墨西哥.(1)A住的层数比C住的层数高,但比D住的层数低;(2)B住的层数比朝鲜人住的层数低;(3)D住的层数恰好是法国人住的层数的5倍;(4)如果埃及人住的层数增加2层,他与朝鲜人相隔的层数,恰好和他与墨西哥人相隔的层数一样;(5)埃及人住的层数是法国人和朝鲜人住的层数的和.根据上述情况,请你确定A是人,住在层;B是人,住在层;C是人,住在____层;D是人,住在层.6. 小赵的电话号码是一个五位数,它由五个不同的数字组成.小张说:“它是84261.”小王说:“它是26048.”小李说:“它是49280.”小赵说:“谁说的某一位上的数字与我的电话号码上的同一位数字相同,就算谁猜对了这个数字.现在你们每人都猜对了位置不相邻的两个数字.”这个电话号码是 .7. 小赵的电话号码是一个五位数,它由五个不同的数字组成.小王说:“它是93715.”小张说:“它是79538.”小李说:“它是15239.”小赵说:“谁说的某一位上的数字与我的电话号码上的同一位数字相同,就算谁猜对了这个数字.现在你们三人猜对的数字个数都一样,并且电话号码上的每一个数字都有人猜对.而每个人猜对的数字的数位都不相邻”.这个电话号码是 .8. A、B、C、D四人定期去图书馆,四人中A、B二人每隔8天(中间空7天,下同)、C每隔6天、D 每隔4天各去一次,在2月份的最后一天,四人刚好都去了图书馆,那么从3月1日到12月31日只有一个人来图书馆的日子有____ 天.9. 六年级六个班组织乒乓球单打比赛,每班派甲、乙两人参赛,根据规则每两人之间至多赛一场,且同班的两人之间不进行比赛.比赛若干场后发现,除一班队员甲以外,其他每人已比赛过的场数各不相同,那么一班队员乙已赛过____场.10. 人的血型通常为A型,B型,O型,AB型.子女的血型与其父母血型间的关系如下表所示:父母的血型子女可能的血型O,O OO,A A,OO,B B,OO,AB A,BA,A A,OA,B A,B,AB,OA,AB A,B,ABB,B B,OB,AB A,B,ABAB,AB A,B,AB现有三个分别身穿红,黄,蓝上衣的孩子,他们的血型依次为O,A,B.每个孩子的父母都戴着同颜色的帽子,颜色也分红,黄,蓝三种,依次表示所具有的血型为AB,A,O.那么穿红、黄、蓝上衣的孩子的父母戴帽子的颜色是、、 .二、解答题11. 刘毅、马宏明、张健三个男孩都有一个妹妹,六人在一起打乒乓球,进行男女混合双打,事先规定:兄妹不搭档.第一盘:刘毅和小萍对张健和小英;第二盘:张健和小红对刘毅和马宏明的妹妹.小萍、小红和小英各是谁的妹妹12. 四位运动员分别来自北京、上海、浙江和吉林,在游泳、田径、乒乓球和足球四项运动中,每人只参加了一项,且四人的运动项目各个不相同,除此以外,只知道一些零碎情况:(1)张明是球类运动员,不是南方人;(2)胡老纯是南方人,不是球类运动员;(3)李勇和北京运动员、乒乓球运动员三人同住一个房间;(4)郑永禄不是北京运动员,年龄比吉林运动员和游泳运动员两人的年龄小;(5)浙江运动员没有参加游泳比赛.根据这些条件,请你分析一下:这四名运动员各来自什么地方各参加什么运动13. 老吴、老周、老杨分别是工程师、会计师和农艺师,还分别是业余作家、画家和音乐家,但不知道每人的职业及业余爱好,只知道:(1)业余音乐家、作家常和老吴一起看电影;(2)画家常请会计师讲经济学的道理;(3)老周一点也不爱好文学;(4)工程师埋怨自己对绘画、音乐一窍不通.请你指出每个人的职业和爱好.14. 四个人聚会,每人各带了2件礼品,分赠给其余三个人中的二人,试证明:至少有两对人,每对人是互赠过礼品的.十八逻辑推理(B)年级班姓名得分一、填空题1. 从前一个国家里住着两种居民,一个叫宝宝族,他们永远说真话;另一个叫毛毛族,他们永远说假话.一个外地人来到这个国家,碰见三位居民,他问第一个人:“请问,你是哪个民族的人”“匹兹乌图”.那个人回答.外地人听不懂,就问其他两个人:“他说的是什么意思”第二个人回答:“他说他是宝宝族的.”第三个人回答:“他说他是毛毛族的.”那么,第一个人是族,第二个人是族,第三个人是族.2. 有四个人各说了一句话.第一个人说:“我是说实话的人.”第二个人说:“我们四个人都是说谎话的人.”第三个人说:“我们四个人只有一个人是说谎话的人.”第四个人说:“我们四个人只有两个人是说谎话的人.”请你确定第一个人说话,第二个人说话,第三个人说___ 话,第四个人说话.3. 某地质学院的三名学生对一种矿石进行分析.甲判断:不是铁,不是铜. 乙判断:不是铁,而是锡. 丙判断:不是锡,而是铁.经化验证明,有一个人判断完全正确,有一人只说对了一半,而另一人则完全说误了.那么,三人中是对的, 是错的, 只对了一半.4. 甲、乙、丙、丁四人参加一次数学竞赛.赛后,他们四个人预测名次的谈话如下:甲:“丙第一名,我第三名.”乙:“我第一名,丁第四名.”丙:“丁第二名,我第三名.”丁没说话.最后公布结果时,发现他们预测都只对了一半.请你说出这次竞赛的甲、乙、丙、丁四人的名次.甲是第名,乙是第名,丙是第名,丁是第名.5. 王春、陈则、殷华当中有一人做了件坏事,李老师在了解情况中,他们三人分别说了下面几句话:陈:“我没做这件事.殷华也没做这件事.”王:“我没做这件事.陈刚也没做这件事.”殷:“我没做这件事.也不知道谁做了这件事.”当老师追问时,得知他们都讲了一句真话,一句假话,则做坏事的人是 .6. 三个班的代表队进行N(N 2)次篮班比赛,每次第一名得a分,第二名得b分,第三名得c分(a、b、c为整数,且a>b>c>0).现已知这N次比赛中一班共得20分,二班共得10分,三班共得9分,且最后一次二班得了a分,那么第一次得了b分的是班.7. A、B、C、D四个队举行足球循环赛(即每两个队都要赛一场),胜一场得3分,平一场得1分,负一场得0分.已知:(1)比赛结束后四个队的得分都是奇数;(2)A队总分第一;(3)B队恰有两场平局,并且其中一场是与C队平局.那么,D队得分.8. 六个足球队进行单循环比赛,每两队都要赛一场.如果踢平,每队各得1分,否则胜队得3分,负队得0分.现在比赛已进行了四轮(每队都已与4个队比赛过),各队4场得分之和互不相同.已知总得分居第三位的队共得7分,并且有4场球赛踢成平局,那么总得分居第五位的队最多可得 分,最少可得 分.9. 甲、乙、丙、丁四个队参加足球循环赛,已知甲、乙、丙的情况列在下表中由此可推知,甲与丁的比分为 ,丙与丁的比分为 .10. 某俱乐部有11个成员,他们的名字分别是A ~K .这些人分为两派,一派人总说实话,另一派人总说谎话.某日,老师问:“11个人里面,总说谎话的有几个人”那天,J 和K 休息,余下的9个人这样回答:A 说:“有10个人.”B 说:“有7个人.”C 说:“有11个人.”D 说:“有3个人.”E 说:“有6个人.”F 说:“有10个人.”G 说:“有5个人.” H 说:“有6个人.” I 说:“有4个人.”那么,这个俱乐部的11个成员中,总说谎话的有 个人.二、解答题11. 甲、乙、丙三人,一个姓张,一个姓李和一个姓王,他们一个是银行职员,一个是计算机程序员,一个是秘书.又知甲既不是银行职员也不是秘书;丙不是秘书;张不是银行职员;王不是乙,也不是丙.问:甲、乙、丙三人分别姓什么12. 世界杯足球小组赛,每组四个队进行单循环比赛.每场比赛胜队得3分,败队记0分.平局时两队各记1分.小组全赛完以后,总积分最高的两个队出线进入下轮比赛.如果总积分相同,还要按小分排序.问:一个队至少要积几分才能保证本队必然出线简述理由.在上述世界杯足球小组赛中,若有一个队只积3分,问:这个队有可能出线吗为什么13.有一个如图那样的方块网,每1个小方块里有1个人,在这些人中间,有人戴着帽子,有人没戴.每一个人都只能看见自己前方,后方和斜方的人的头,如图1所示A 方块里的人能看见8个人的头,B 方块里的人能看见5个人的头,C 方块里的人能看见3个人的头,自己看不见自已的头.在图2的方格中,写着不同方块里的人能看见的帽子的数量,那么,请在图中找出有戴帽子的人的方块,并把它涂成黑色.14. 某校学生中,没有一个学生读过学校图书馆的所有图书,又知道图书馆内任何两本书至少被一个同学都读过,问:能不能找到两个学生甲、乙和三本书A 、B 、C ,甲读过A 、B ,没读过C ,乙读过B 、C ,没读过A说明判断过程.图1图2A BCD FE ———————————————答 案——————————————————————1. CA 、C 的预测截然相反,必一对一错.因为只有一人对,不论A 、C 谁对,B 必 错,所以甲是最后一名,C 对. 2. E如右图,E 坐在A 、B 之间.3. 2,3.由题意可画出比赛图,已赛过的两人之间用线段引连(见右图).由图看出小明赛了2盘.因 为一共赛了六盘,共得12分,所以小明得了12-(2+4+1+2)=3(分).4. 三,丙,丁,甲,乙.由刘的讲话,知这一天是星期三,刘要去丙单位.钱要去丁单位,曹去的是甲单位,洪去的是乙单位.5. 埃及,8;法国,3;朝鲜,5;墨西哥,15.容易知道,墨西哥人住得最高,埃及人次之,朝鲜人又次之,法国人最低,各层次分别15,8,5和3.由(2)知B 是法国人,由(3)和D 是墨西哥人,由(1)知A 是埃及人,而C 是朝鲜人.6. 86240.因为每人猜对两个数字,三人共猜对 张:842123=6(个)数字,而电话号码只有5位, 王:26048所以必有一位数字被两人同对猜对.如右 李:4980图所示,猜对的是左起第三位数字2.因为每人猜对的两个数字不相邻,所以张、李猜对的另一个数字分别在两端,推知王猜对的数字是6和4,进一步推知张猜对8,李猜对0.电话号码是86240. 7. 19735.因为每个数字都有人猜对,所以每人至少猜对两个数字.下页右上图中,同一位数中只有方框中的两个数相同,如果每人猜对的数字多于两位,相同的数字至少有33-5=4(组),所以每人恰好猜对两个数字. 王: 9 3 7 1 5三人共猜对23=6(个)数字,因为电话号码只有 张: 7 9 5 3 8 5位,所以相同的一组是正确的,即左起第四位是 李: 1 5 2 3 93.因为每人猜对的数字不相邻,所以张、李猜对的另一个数字都在前两位,王猜对的两个数字是7和5,进而推知张猜对9,李猜对1.电话号码是19735. 8. 51天.): 1 2 3 4 5 6 7 8 D C A 、B 、D 9 10 11 12 13 14 15 16 C 、D A 、B 、D 17 18 19 20 21 22 23 24甲乙 丙 丁小明C D A、B、C、D每24天有4天只有1人去图书馆.3月1日至12月31日有306天,30624=12…18,所以所求天数为412+3=51(天).9. 5根据题意,有11名队员比赛场数各不相同,并且每人最多比赛10场,所以除甲外的11名队员比赛的场数分别为0~10.已赛10场的队员与除已赛0场外的所有队员都赛过,所以已赛10场的队员与已赛0场的队员同班;已赛9场的队员与除已赛0、1场外的所有队员都赛过,所以已赛9场的队员与已赛1场的队员同班;同理,已赛8、7、6场的队员分别与已赛2、3、4场的队员同班;所以甲与已赛5场的队员同班,即乙赛过5场.注本题可以求出甲也赛了5场,分别与已赛10、9、8、7、6场的队员各赛1场.10. 蓝、黄、红.解法一题中表明,每个孩子的父母是同血型的.具有B型血的孩子,其父母同血型时,由表中可见,只能是B型或AB型,但题中没有同具B型血的父母,所以戴红帽子的父母的孩子穿蓝上衣.具有A型血的孩子的同血型的父母,只可能同为A型血或同为AB型血.今已知有一对父母为AB 型血者,所以穿黄上衣的孩子的父母戴黄帽子.由表中可见,其孩子为O型血时,父母血型只能同为A型或B型或O型.今已知不具有同为B型血的父母,而同为A型血的父母的孩子已知具有A型血.把代表孩子的点与他的可能双亲的代表点之间连一直线段,便可得下面的图;由于孩子与其父母之间是唯一搭配的,所以,保存下来的只有连着红、蓝;黄,黄及蓝,红的三条边.所以,穿红上衣(O型血)孩子的父母戴蓝帽子.孩子衣服颜色父母帽子颜色(O型血)红红(AB型血)(A型血)黄黄(A型血)(B型血)蓝蓝(O型血)所以,穿红上衣的孩子的父母戴蓝帽子;穿黄上衣的孩子的父母戴黄帽子;穿蓝上衣的孩子的父母戴红帽子.11..萍英红刘马张萍英红刘√马√张√12.13.表解如下:由(3)是乒乓球运动员, 故张是足球运动员郑是乒乓球运动员由(4)吉林运动员不是游泳运动员,故李是田径运动员,而胡是游泳运动员杨工 会 农作 画 音 吴 √ 周√杨 √工 会 农作 画 音√ 吴√ √周√√杨 √14. 设此四人为甲、乙、丙、丁并用画在平面上的四个点分别表示他们,称为它们的代表点,当某人(例如甲)赠了1件礼品给另一个(例如乙)时,就由甲向乙的代表点画一条有指向的线,无非有以下两个可能:(1)甲、乙、丙、丁每人各收到了2件礼品.(2)上面的情形不发生.这时只有以下一个可能,即有一个人接受了3件礼品(即多于2件礼品;因为一人之外总共还有三个人,所以至多收到3件礼品).(或许会有人说,还有两个可能:有人只收到1件礼品及有人什么礼品也没收到.其实,这都可归以“有一人接受了3件礼品”这个情形.因为,当有一人(例如甲)只接受了1件礼品的情形发生时,四人共带来的8件礼品中还剩下7件在甲以外的三个人中分配,如果他们每人至多只收到2件礼品,则收受礼品数将不超过6件,这不可能,所以至少有一人收到2件以上(即3件)礼品,同样,当甲未收到礼品时,8件礼品分给乙、丙、丁三人,也必定有人收到3件礼品).当(1)发生时,例如甲收到乙、丙的礼品,由于甲发出的礼品中至少有1件给了乙或丙,为确切计,设乙收到了甲的礼品,于是我们先有了一对人:(甲、乙),他们互赠了礼品,如果丙也收到甲的礼品,那么又有了第二对互赠了礼品的人(甲、丙);如果收到甲礼品的另一人是丁(如右图)丁的2件礼品必定分赠了乙及丙(甲已收足了本情形中限定的2件礼品)丙或乙的另一件礼品给了丁,则问题也解决(这时另一对互赠了礼品的人便是(乙、丁)或(丙、丁)但丙的另一件礼品只能给丁,因为这时乙已收足了2件礼品,所以,当本情形发生时,至少能找到两对互赠过1件礼品的人.当(2)发生时,不失一般性,设甲收到了来自乙、丙、丁的各1件礼品,但甲又应向他们之中的某两人(例如乙、丙)各赠送1件礼品,于是(甲、乙),(甲、丙)便是要找的两对人.总上可知,证明完毕.老吴是业余画家,老周是业余音乐家,老杨是业余作家.工程师是老杨,会计师是老周农艺师是老吴.—————————————答案——————————————————1. 宝宝,宝宝,毛毛.如果第一个人是宝宝族的,他说真话,那么他说的是“我是宝宝族的”.如果这个人是毛毛族的,他说假话,他说的还是“我是宝宝族的”.所以第二个人是宝宝族的,第三个人是毛毛族的.”2. 真,假,假,不确定.第二个人显然说的是假话.如果第三个人说的是真话,那么第四个人说的也是真话,产生矛盾.所以第三个人说假话.如果第四个人说真话,那么第一个人也说真话.如果第四个人说假话,那么只有第一个人说真话.所以可以确定第一个人主真话,第二、第三个人说假话,第四个人不能确定.3. 丙,乙,甲.如果甲的判断完全正确,那么乙说对了一半“不是铁,”所以这矿石也不是锡,这样丙也说对了一半,矛盾.如果乙的判断完全正确,那么甲对了一半,这矿石应是铜,丙也说对了一半,矛盾.所以丙的判断完全正确,而乙完全错了,甲只说对了一半.4. 三,一,四,二.假设甲说的“丙是第一名”正确,结果推出丙是第三名,矛盾,故甲说的第二句话是正确.由表中可知乙第一名,丁第二名,甲第三名,则第四名是丙.×5. 陈刚.如果王春做了坏事,则陈刚的两句话都是真话,不合题意;如果殷华做了坏事,则王春的两句话都是真话,不合题意;如果陈刚做了坏事,符合题意.所以陈刚做了坏事.6. 三.N次比赛共得20+10+9=39(分),39=313,所以共进行了3次比赛,每次比赛共得13分,即a+b+c=13.因为一班3次比赛共得20分,203=6…2,所以a 7,a,b,c可能组合为7、5、1;7、4、2;8、4、1;8、3、2;9、3、1,考虑到3次比赛得20分,只有a=8、b=4、c=1时才有可能,由此推知三个班3次比赛的得分如下表:得班一班二班三班分次场次第一次814第二次814第三次481总分201097. 3B队得分是奇数,并且恰有两场平局,所以B队是平2场胜1场,得5分.A队总分第1,并且没有胜B队,只能是胜2场平1场(与B队平),得7分.因为C队与B队平局,负于A队,得分是奇数,所以只能得1分.D队负于A、B队,胜C队,得3分.8. 3,1.共赛了462=12(场),其中平了4场,分出胜负的8场,共得38+24=32(分).因为前三位的队至少共得7+8+9=24(分),所以后三位的队至多共得32-24=8(分).又因为第四位的队比第五位的队得分多,所以第五位的队至多得3分.因为第六位的队可能得0分,所以第五位的队至少得1分(此时这两队之间必然没有赛过).9. 3:2,3:4.由乙队共进2球,胜2场平1场推知,乙队胜的两场都是1:0,平的一场是0:0.由甲队与乙队是0:0,甲队与丙队未赛,推知甲队所有的进球都来自与丁队的比赛,所以甲队与丁队是3:2.由丙队与乙队是0:1,丙队与甲队未赛,所以丙队与丁队是3:4.10 9.因为9个人回答出了7种不同的人数,所以说谎话的不少于7人.若说谎话的有7人,则除B外,其他回答问题的8人均说了谎话,与假设出现矛盾;若说谎话的有8人,则回答问题的9人均说了谎话,出现矛盾;若说谎话的有10人,则只能1人说实话,而A和F都说了实话,出现了矛盾;若说谎话的有11人,则没有说实话的,而E说了实话,出现矛盾;显然说谎话的有9人,回答问题的9人均说谎话,休息的两人说实话.11. 根据题意有关条件,用“√”表示是、“Х”表示不是,列表所示.这样,可知甲姓王、乙姓张和丙姓李.职务人姓字物职务姓字职员程序员秘书李王张甲Х√Х√乙√Х√丙√Х√ХХ12. 四个队单循环赛共6场比赛,每场均有胜负,6场最多共计18分.若该队积7分,剩下的11分被3个队去分,那么,不可能再有两个队都得7分,即至多再有一个队可得7分以上.这样该队可以出线.其次,如果该队积6分,则剩下12分,可能有另两队各得6分.如果这另两队小分都比该队高,该队就不能出线了.所以,一个队至少要积7分才能保证必然出线.有可能出线.当6场比赛都是平局时,4个队都得3分,这时两个小分最高的队可以出线.如果这个队恰属于两个小分最高的队,那么这个队就会出线.13.答案如右图所示1333136574153413757424331站在第一行第五列的人能看见1顶帽子,说明他周围的3人中有2人没戴帽子.站在第二行第四列的人能看见7顶帽子,说明他周围的8人中只有1人没戴帽子,综合结论可知他本人没有戴帽子.站在第二行第五列的人能看到4顶帽子,且他周围的五人中已有1人没戴帽子,说明其余4人均戴帽子,根据结论可知他本人没戴帽子.利用上下对称原理可以分析出:站在第四行、第五行后三列的6个人中,只有第四行第四列、第五列两人没戴帽子,其他人均戴帽子.站在第四行第二列的人能看到7顶帽子,说明他周围的8人中只有1人没戴帽子.站在第三行第1列的人能看见1顶帽子,说明他周围的5人中只有1人戴帽子.综合结论可知:这1人不可能是第二行第1、2列的人,也不可能是第四行第二列的人.所以只能是站在第三行第二列的人或第四行第1列的人.站在第五行第1列的人能看到2顶帽子,说明结论所说戴帽子的人站在第四行第一列.站在第二行第二列的人能看到6顶帽子,说明站在第一行第1、2列的2人都戴帽子.14. 解法一首先从读书数最多的学生中找一人叫他为甲,由题设,甲至少有一本书C未读过,设B是甲读过的书中的一本,根据题设,可找到学生乙,乙读过B、C.由于甲是读书数最多的学生之一,乙读书数不能超过甲的读书数,而乙读过C书,甲未读过C书,所以甲一定读过一本书A,乙没读过A书,否则乙就比甲至少多读过一本书,这样一来,甲读过A、B,未读过C;乙读过B、C,未读过A.因此可以找到满足要求的两个学生.解法二将全体同学分成两组.若某丙学生所读的所有的书,都被另一同学全部读过,而后一同学读过的书中,至少有一本书,丙未读过,则丙同学就分在第一组.另外,凡一本书也未读过的同学也分在第一组,其余的同学就分在第二组.按照以上分组方法,不可能将全体同学都分在第一组,因为读书数最多的同学一定在第二组.在第二组中,任找一位同学叫做甲,由题设有书C,甲未读过.再从甲读过的书中任找一本书叫做B,由题设,可找到同学乙,乙读过B、C书,由于甲属于第二组,所以甲一定读过一本书A,乙未读过A,否则甲只能分在第一组.这样,甲读过A、B,未读过C;乙读过B、C,未读过A.。
证明四点共圆的基本方法1、利用圆的定义根据圆的定义可以知道,平面上到一个定点等距离的几个点在同一个圆上,这个圆是以定点为圆心,以定点到这几个点中任一点的距离为半径。
2、利用三角形的关系 (1)同斜边的直角三角形的各顶点共圆; (2)同底同侧张等角的三角形的各顶点共圆。
已知C 、D 在线段AB 的同侧,且∠ACB=∠ADB 。
求证:A ,B ,C ,D 四点共圆。
证明:如图7-39,过A ,B ,C 三点作⊙O 。
(1)如果D 点在⊙O 内部,则延长BD 交⊙O 于D ',连A D '。
∵∠D '=∠C ,且∠ADB >∠D '。
∴∠ADB <∠C ,这与∠ADB=∠ACB 矛盾。
因此D 点不可能在⊙O 的内部。
(2)如图7-40,如果D 点在⊙O 的外部,连AD ,BD 。
则必有一条线段与⊙O 相交,设BD 与⊙O 交于D ',连A D '。
∵∠A D 'B=∠ACB ,且∠D <∠A D 'B 。
∴∠D <∠ACB ,这与∠ADB=∠ACB 矛盾。
因此,D 点不可能在⊙O 的外部。
综上所述,D 点必在⊙O 上。
3、利用四边形的关系 (1)如果四边形的一组对角互补,那么它的两个顶点共圆(图7-41);(2)如果四边形的一个外角等于它的内对角,那么它的四个顶点共圆(7-42) 4、利用线段的乘积式的关系(1)线段AB ,CD 相交于P ,且PA ·PB=PC ·PD ,则A ,B ,C ,D 四点共圆。
证明:如图7-43,连AD ,BC ,AC 。
在△APD 和△BPC 中,∵PA ·PB=PC ·PD ,∴PBPDPC PA =。
又∠APD=∠BPC ,∴△APD ∽△BPC 。
∴∠B=∠D ,又B ,D 在线段AC 同侧。
因此,A ,C ,B ,D 四点共圆。
(2)两线段AB ,CD 的延长线相交于P ,且PA ·PB=PC ·PD ,则A ,B ,C ,D 四点共圆(图7-44)。
2.3 数学归纳法1.数学归纳法的内容如下:一个错误!与正整数有关的命题,如果(1)错误!当n取第一个值n0(例如n0=1或n0=2等)时结论正确,(2)错误!假设当n=k(k∈N*,且k≥n0)时结论正确,能够证明当n=k+1时结论也正确,那么可以断定错误!这个命题对n∈N*且n≥n0的所有正整数都成立.2.数学归纳法的步骤中,第一步的作用是错误!递推的基础,第二步的作用是错误!递推的依据.3.数学归纳法实质上是错误!演绎推理法的一种,它是一种错误!严格的证明方法,它只能错误!证明结论,不能发现结论,并且只能证明错误!与正整数相关的命题.4.常把归纳法和数学归纳法结合起来,形成错误!归纳—猜想-证明的思想方法,既可以错误!发现结论,又能错误!给出严格的证明,组成一套完整的数学研究的思想方法.5.用数学归纳法证明命题时,两步错误!缺一不可,并且在第二步的推理证明中必须用错误!归纳假设,否则不是数学归纳法.对数学归纳法本质的理解数学归纳法可能与同学们以前所接触的证明方法差别很大,为了达到“知其然,知其所以然”的效果,可对比以下问题理解数学归纳法的实质.(1)有n个骨牌排成如图所示的一排,现推倒第一张骨牌,会有什么现象?(2)要使骨牌全部倒下,骨牌的摆放有什么要求?(骨牌的间距不大于骨牌的高度)(3)这样做的原因是什么?这样摆放可以达到什么样的效果?(前一张骨牌倒下,适当的间距导致后一张骨牌也倒下)(4)如果推倒的不是第一张骨牌,而是其他位置上的某一张骨牌,能使所有的骨牌倒下吗?(5)能够成功地推倒排成一排的骨牌的条件是什么?(通过观察和思考,可以得到的结论是:①第一张骨牌被推倒;②若某一张骨牌倒下,则其后面的一张骨牌必定倒下)错误!错误!错误!错误!错误!错误!…运用类比的方法,我们不难将推倒骨牌的原理进行迁移、升华,进而得到数学归纳法证明的步骤:(1)当n=1时,结论成立;(2)假设当n=k时结论成立,证明n=k+1时结论也必定成立.错误!错误!错误!错误!错误!错误!…1.判一判(正确的打“√”,错误的打“×")(1)与正整数n有关的数学命题的证明只能用数学归纳法.()(2)数学归纳法的第一步n0的初始值一定为1.()(3)数学归纳法的两个步骤缺一不可.( )答案(1)×(2)×(3)√2.做一做(1)已知f(n)=错误!+错误!+错误!+…+错误!,则f(n)共有________项,f(2)=________。
命题与证明是八年级数学上学期第十九章第一节内容,主要对演绎证明和命题、公理、定理的概念及举例证明进行讲解,重点是真假命题的判定,难点是改写出已知命题和举例证明.通过这节课的学习一方面为我们后面学习垂直平分线和角平分线等几何内容提供依据,另一方面也为后面学习直角三角形性质奠定基础.1、演绎证明的概念演绎证明:演绎推理的过程就是演绎证明.也就是说演绎证明是指:从已知的概念、条件出发,依据已被确认的事实和公认的逻辑规则,推导出某结论为正确的过程.演绎推理是数学证明的一种常用的、完全可靠的方法.演绎证明是一种严格的数学证明,是我们现在要学习的证明方式,简称为证明.几何证明知识结构模块一:演绎证明知识精讲内容分析【例1】 填空:(1) 已知,如图∠ABC =∠ADC ,∠AED =∠EDC ,BF 、DE 分别平分∠ABC 和∠ADC ,求证:DE ∥EF证明:因为BF 平分∠ABC ,(________________________),所以∠ABF =12∠ABC (______________________________).同理∠EDF =12∠ADC . 因为∠ABC =∠ADC (________),所以∠ABF =∠EDF (________), 又因为∠AED =∠EDC ,所以∠AED =∠ABF (________________), 所以DE ∥EF (______________________________).(2) 已知:如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,EB 交CD 于点F ,且AD =DF .求证:AC =BF .证明:因为CD ⊥AB ,BE ⊥AC (已知),所以∠AEB =∠BDC =∠ADC =90°(______________________________), 因为∠A +∠B +∠AEB =180°(______________________),同理∠BFD +∠B +∠BDC =180°.所以∠A +∠B +∠AEB =∠BFD +∠B +∠BDC (___________________________), 所以∠A =∠BFD .(____________) 在△ADC 与△FDB 中,__________A BFD ADC FDB ∠=∠⎧⎪⎨⎪∠=∠⎩,所以△ADC ≌△FDB (____________) 所以____________________(____________________)(图1)(图2)【答案】略【解析】(1)已知;角平分线的定义;已知;等量代换;等量代换;同位角相等,两直线平例题解析AB CDE FA BCD EFABCD行;(2)垂直的意义;三角形内角和180°;等量代换;等式性质;AD DF =;ASA ;AC BF =;全等三角形的对应边相等.【总结】考查证明题证明过程的依据和相关条件.【例2】 (1)如图,由AB = AC ,AD ⊥BC ,得____________,依据是__________;(2)如图,由A B = AC ,BD = DC ,得________________,依据是__________.【答案】略.【解析】(1)BD CD BAD CAD =∠=∠或,等腰三角形三线合一;(2)AD BC BAD CAD ⊥∠=∠或,等腰三角形三线合一.【总结】考查等腰三角形“三线合一”的性质应用.【例3】 求证:等腰三角形底边的中点到两腰的距离相等. 【答案】略【解析】已知:如图AB AC =,BD CD =,DE AB ⊥交AB 于点E , DF AC ⊥交AC 于点F .求证:DE DF =. 证明:AB AC =,BD CD =,BAD CAD ∴∠=∠DE AB ⊥,DF AC ⊥, 90DEA DFA ∴∠=∠=︒AD AD =, ADE ADF ∴∆≅∆DE DF ∴=【总结】考查等腰三角形性质定理的应用,作图,已知,求证,证明的完整过程.【例4】 求证:等腰三角形底边上的高上任意一点到两腰的距离相等. 【答案】略.E ABCDF AMEF【解析】已知:如图AB AC =,AD BC ⊥,M 为线段AD 上任意一点, ME AB ⊥交AB 于点E ,MF AC ⊥交AC 于点F .求证:ME MF =. 证明:AB AC =,AD BC ⊥,BAD CAD ∴∠=∠.ME AB ⊥,MF AC ⊥,90MEA MFA ∴∠=∠=︒. AM AM =, AME AMF ∴∆≅∆.ME MF ∴=.【总结】考查等腰三角形性质定理的应用,作图,已知,求证,证明的完整过程.【例5】 如图,已知四边形ABCD 是凹四边形,求证:∠D =∠A +∠B +∠C .【答案】略.【解析】证明:联结BC . 180A ABC ACB ∠+∠+∠=︒,ACB ABD BDC ∠=∠+∠,ACB ACD DCB ∠=∠+∠180A ABD ACD DBC DCB ∴∠+∠+∠=︒-∠-∠ 180D DBC DCB ∠+∠+∠=︒ 180D DBC DCB ∴∠=︒-∠-∠D A ABD ACD ∴∠=∠+∠+∠【总结】考查三角形中的等量代换,利用三角形内角和180°即可解题.【例6】 如图,已知△ABC 中,求证:∠A +∠B +∠C =180°证明:过BC 上一点D ,分别作________,交AB 于点E ,交AC 于点F , 因为___________________,所以∠A =______.ABCDAB CD E F同理∠B =______,∠C =______. 因为_________________, 所以_________________.因为∠EDB +∠EDF +∠FDC =180°(),所以_________________. 【答案】略【解析】//DE AC ,//DF AB ;//DF AB ,CFD ∠;FDC ∠,EDB ∠;//DE AC ,EDF CFD A ∠=∠=∠;平角的意义;180A B C ∠+∠+∠=︒.【总结】考查三角形内角和的证明,利用平行线得到相等角等量代换即可.1、 命题:能界定某个对象含义的句子叫作定义;对某一件事情做出判断的句子叫作命题;其判断为正确的命题叫作真命题;其判断为错误的命题叫作假命题.数学命题通常由假设、结论两部分组成,可以写成“如果……那么……”的形式,“如果”开始的部分是题设,“那么”开始的部分是结论.逆命题:在两个命题中,如果第一个名义的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题.如果把其中的一个命题叫做原命题,那么另一个叫做它的逆命题.2、公理:人们从长期的实践中总结出来的真命题.它们可以作为判断其他命题真假的原始依据.3、定理:从公理或其他真命题出发,用推理方法证明为正确的,并进一步作为判断其他命题定理真假的依据,这样的真命题叫做定理.逆定理:如果一个定理的逆命题经过证明也是定理,那么这两个定理叫做互逆定理,其中一个叫做另一个的逆定理.所有的命题都有逆命题,但不是所有的定理都有逆定理.【例7】 判断下列语句是不是命题?例题解析知识精讲模块二:命题、公理、定理(1) 直线AB 和直线CD 垂直; (2) 同旁内角不相等,两直线平行;(3) 天气预报播报,明天下雨的概率较大,大家出门带好雨具; (4) 两点之间,线段最短; (5) 对顶角相等; (6) 请把门关上!【答案】(2)、(4)、(5)是命题,(1)、(3)、(6)不是命题.【解析】根据命题的定义,对某一件事情做出判断的句子叫做命题,(2)(4)(5)是对一件事情做出判断的句子,是命题,(1)(3)(6)不是.【总结】考查对语句是否为命题的判断.【例8】 判断下列命题的真假.(1) 两个钝角的和还是钝角;(2) 两个等腰三角形必定可以拼成一个直角三角形; (3) 等边三角形既是轴对称图形,又是中心对称图形;(4) 在一个三角形中,若一边上的中线等于这边的一半,则这个三角形是直角三角形; (5) 若两个三角形全等,则这两个三角形关于某个点成中心对称; (6) 有两边及第三边上的高对应相等的两个三角形全等.【答案】(1)、(2)、(3)、(5)、(6)是假命题,(4)是真命题.【解析】(1)两个钝角的和大于180°,不是钝角,是假命题;(2)两个等腰三角形的三边 长都不相等,则不能组合在一起,也不能拼成直角三角形,是假命题;(3)等边三角形 不是中心对称图形,是假命题;(4)这条中线将三角形分成两个等腰三角形,根据等腰 三角形两底角相等,可得这条边的对角为180°÷2=90°,即为直角三角形,是真命题; (5)两全等三角形的对应点不一定交于一点,则不一定关于某点中心对称,是假命题; (6)保持一边不变,过一个顶点作一条射线,另一个顶点向这条射线作垂线,并以这 点为圆心,长于垂线长的长度为半径作圆与射线有两个交点,形成三角形一个是锐角三角形,一个是钝角三角形,满足题目条件,但两个三角形明显不全等,是假命题.【总结】考查判断一个命题的真假,判断命题为假命题举一个反例即可. 【例9】 下列定理中有逆定理的是().A .直角三角形中没有钝角;B .互为相反数的数的绝对值相等;C .同旁内角互补,两直线平行;D .若22a b a b ==,则.【答案】C【解析】没有钝角的三角形可能为锐角三角形,A 错误;绝对值相等的数可能是相等也可能是互为相反数,B 错误;22a b =,a b =±,D 错误;C 选项逆命题为平行线判定定理.【总结】考查定理和相关逆定理,平行线三条性质定理都有逆定理.【例10】以下命题的逆命题为真命题的是().A.三个角相等的三角形是等边三角形;B.同角的余角相等;C.在三角形中,钝角所对的边最长;D.对顶角相等.【答案】A【解析】等边三角形三个内角相等,A的逆命题是真命题;余角相等的角是等角,不一定是同角,B的逆命题是假命题;根据“大边对大角”,最长边所对的角是三角形中最大角即可,三角形中的最大角不一定是钝角,例如直角三角形,C的逆命题是假命题;相等的角不一定为对顶角,同位角、内错角等,D的逆命题是假命题;故选A.【总结】考查对命题的逆命题的真假的判断,举反例即可.【例11】把下列命题改写成“如果……,那么……”的形式:(1)等边对等角;如果____________________,那么______________________________;(2)同角的补角相等;如果____________________,那么______________________________;(3)平行于同一条直线的两条直线互相平行;如果____________________,那么______________________________;(4)全等三角形对应边相等;如果____________________,那么______________________________.【答案】略.【解析】(1)如果一个三角形中有两条边相等,那么这两条边所对的角相等;(2)如果两个角是同一个角的补角,那么这两个角相等;(3)如果两条直线平行于同一条直线,那么这两条直线平行;(4)一对全等三角形中,如果两条边是这对全等三角形的对应边,那么这两条边相等.【总结】考查命题“如果……那么……”形式的改写,注意加入适当的描述性的语句,使得语句更通顺好理解.【例12】写出以下命题的逆命题,并判断真假:(1)等边三角形的三个内角相等;(2)有两边及一角对应相等的两个三角形全等;(3)等腰三角形的底角相等;(4)全等三角形对应角相等;(5)全等三角形面积相等.【答案】略.【解析】(1)逆命题:三个内角相等的三角形是等边三角形,真命题;(2)逆命题:两个三角形是全等三角形,这两个三角形中两条对应边和其中一个对应角都相等,真命题;(3)逆命题:如果一个三角形中有两个角相等,那么这个三角形是等腰三角形,真命题;(4)逆命题:对应角相等的两个三角形是全等三角形,假命题;(5)逆命题:面积相等的两个三角形是全等三角形,假命题.【总结】考查对命题的逆命题的真假的判断.【例13】以下说法中正确的有()个.(1)逆定理一定是真命题;(2)一个定理一定有逆定理;(3)互逆命题一定是互逆定理;(4)互逆定理一定是互逆命题.A.1B.2C.3D.4【答案】B【解析】逆定理的前提是真命题,(1)正确;定理对应的逆命题不一定为真命题,则没有逆定理,(2)错误;定理一定是命题,但命题不一定是定理,可知互逆定理一定是互逆命题,但互逆命题不一定是互逆定理,(3)错误,(4)正确;综上,(1)(4)正确,故选B.【总结】考查定理和命题的区别和联系.【例14】下列命题是假命题有()个.(1)若000,则;>>>a b ab(2)两直线相交,只有一个交点;(3)等腰三角形是锐角三角形;(4)等边三角形是等腰三角形.A.1B.2C.3D.4【答案】A【解析】(1)正确,是真命题;(2)正确是真命题;等腰三角形顶角有可能为钝角,则为钝角三角形,(3)是假命题;等边三角形是特殊的等腰三角形,(4)是真命题;综上(3)是假命题故选A.【总结】考查命题的真假的判断.【例15】判断下列命题的真假,若是假命题,举出反例.(1)如果两个角的两边分别平行,那么这两个角相等;(2)有两边及第三边上的高对应相等的两个三角形全等.【答案】略【解析】(1)假命题,组成角的两条射线,一条方向相同,一条相反,则两角互补;(2)假命题,保持一边不变,过一个顶点作一条射线,另一个顶点向这条射线作垂线,并以这点为圆心,长于垂线长的长度为半径作圆与射线有两个交点,形成三角形一个是锐角三角形,一个是钝角三角形,满足题目条件,但两个三角形明显不全等.【总结】考查命题的真假的判断,假命题举反例即可.【例16】写出下列命题的逆命题,判断逆命题的真假,并说明其中哪些是逆定理.(1)等腰三角形两腰上的中线相等;(2)内错角相等,两直线平行;(3)等边对等角;(4)两条平行直线被第三条直线所截,截得的同旁内角的角平分线互相垂直.【答案】略.【解析】(1)逆命题:如果一个三角形中有两条边上的中线相等,那么这个三角形是等腰三角形,真命题,不是逆定理;(2)逆命题:两直线平行,内错角相等,真命题,是逆定理;(3)逆命题:等角对等边,真命题,是逆定理;(4)逆命题:如果两条直线被第三条直线所截,截得的一对同旁内角的角平分线互相垂直,那么这两条直线平行,真命题,不是逆定理.【总结】考查一个命题的逆命题的写法,以及对命题真假的判断.证明两直线平行的一般方法: (1) 平行线的判定和性质;(2) 利用全等得出结论证明两直线平行.【例17】 如图,若AB ∥CD ,直线EF 分别与AB 和CD 相交于点E 和F ,EP ⊥EF ,∠EFD 的平分线与EP 相交于点P ,且∠BEP =40°,则∠EPF =____________.【答案】65°.【解析】90PEF ∠=︒,40BEP ∠=︒, 130BEF PEF BEP ∴∠=∠+∠=︒ //AB CD , 180BEF EFD ∴∠+∠=︒ 50EFD ∴∠=︒PF 是EFD ∠的角平分线,1252EFP EFD ∴∠=∠=︒18065EPF PEF EFP ∴∠=︒-∠-∠=︒例题解析模块三:证明举例知识精讲ACEB DFP【总结】考查平行线的性质定理的应用,两直线平行,同旁内角互补.【例18】 已知AB ∥CD ,∠1=2∠GBH .求证:BH 平分∠DHG .【答案】略. 【解析】证明://AB CD1DHG GBH DHB ∴∠=∠∠=∠, 12GBH ∠=∠,1B GHB ∠=∠+∠ GHB GBH DHB ∴∠=∠=∠即证BH 平分∠DHG【总结】考查平行线的性质定理的应用,两直线平行,内错角相等.【例19】 已知:如图,AB ∥CD ,且FH 、EG 分别是∠BFE 、∠CEF 的平分线,求证:FH ∥EG . 【答案】略 【解析】证明://AB CD , CEF BFE ∴∠=∠,GE 是CEF ∠的角平分线,12GEF CEF ∴∠=∠,同理12EFH BFE ∠=∠GEF EFH ∴∠=∠, //FH EG ∴.【总结】考查平行线的判定定理,内错角相等,两直线平行.【例20】 如图,已知E 是△ABC 一边AC 的中点,F 是AB 上的一点,FE 的延长线与CD 交于点D ,且FE = DE .求证:DC ∥AB . 【答案】略. 【解析】证明:E 是AC 的中点,AE CE ∴=.ACED BFHGCABF DEG CAEFDB1HACFBED G A C EDFBOFE DE AEF DEC =∠=∠,, AEF CED ∴∆≅∆.A ECD ∴∠=∠, //DC AB ∴.【总结】考查平行线的判定定理,内错角相等,两直线平行.【例21】 如图,BE 、CE 分别为∠B 、∠C 的平分线,且∠BEC =90°,求证:AB ∥CD .【答案】略【解析】证明:90BEC ∠=︒, 90EBC ECB ∴∠+∠=︒BE 是ABC ∠的角平分线,2ABC EBC ∴∠=∠,同理2DCB ECB ∴∠=∠,()2180ABC DCB EBC ECB ∴∠+∠=∠+∠=︒//AB CD ∴【总结】考查平行线的判定定理,同旁内角互补,两直线平行.【例22】 如图,已知∠ADE =∠B ,FG ⊥AB ,∠EDC =∠GFB ,求证:CD ⊥AB . 【答案】略【解析】证明:ADE B ∠=∠, //DE BC ∴, EDC BCD ∴∠=∠ EDC GFB ∠=∠, DCB GFB ∴∠=∠, //GF DC ∴.FG AB ⊥, CD AB ∴⊥.【总结】考查平行线的性质和判定定理的相互转换应用.【例23】 如图,已知BO =OC ,AB =DC ,BF ∥CE ,且A 、B 、C 、D 、O 在同一直线上.求证:DE ∥AF .【答案】略【解析】证明://BF CE , BFO CEO ∴∠=∠ BO OC BOF COE =∠=∠, BOF COE ∴∆≅∆ OE OF ∴= BO OC AB CD ==,BO AB OC CD ∴+=+,即AO OD =AOF DOE ∠=∠ AOF DOE ∴∆≅∆AEDBCAB DFEACEDB 1 2A D ∴∠=∠ //DE AF ∴【总结】考查平行线的判定定理,内错角相等,两直线平行与全等三角形性质的应用.【例24】 已知:如图所示,AB = AC ,AD = CE ,BD = AE ,∠1=∠2.求证:AE ∥BC . 【答案】略 【解析】证明:AB AC =, 2ACB ∴∠=∠AB AC AD CE BD AE ===,, ABD CAE ∴∆≅∆,1CAE ∴∠=∠12∠=∠, 12CAE ACB ∴∠=∠=∠=∠//AE BC ∴【总结】考查平行线的判定定理,内错角相等,两直线平行结合全等三角形性质的应用.【例25】 如图:已知CD 、BE 是三角形ABC 的中线,AB =AC ,求证:DE ∥BC .【答案】略【解析】证明:CD 是ABC ∆的中线,12AD AB ∴=. 同理12AE AC =.AB AC =, AD AE ABC ACB ∴=∠=∠, ADE AED ∴∠=∠180180A ADE AED A ABC ACB ∠+∠+∠=︒∠+∠+∠=︒,()11802ADE A ABC ∴∠=︒-∠=∠, //DE BC ∴.【总结】考查平行线的判定定理和等腰三角形性质的综合应用.【例26】 如图,已知在三角形ABC 中,∠ABC 和∠ACB 的平分线相交于点D ,EF 过点D ,且EF ∥BC ,交AB 于点E ,交AC 于点F ,求证:EF = BE +CF . 【答案】略【解析】证明:BD 是ABC ∠的角平分线, EBD DBC ∴∠=∠ //EF BC , EDB DBC ∴∠=∠, EBD EDB ∴∠=∠BE DE ∴=,同理DF CF =,EF ED DF BE CF ∴=+=+【总结】考查角平分线与平行线结合产生等腰三角形的基本模型. AB CEDABE CDFABCDEF 【例27】 如图所示,在四边形ABCD 中,AE 平分∠BAD ,CF 平分∠BCD ,∠BAD 和∠BCD 互补,∠DFC 和∠DCF 互余. 求证:∠AEB =∠FCB . 【答案】略 【解析】证明:AE 平分BAD ∠,12DAE BAD ∴∠=∠.同理12DCF BCD ∠=∠.BAD ∠和BCD ∠互补, 180BAD BCD ∴∠+∠=︒, 90DAE DCF ∴∠+∠=︒. DFC ∠和DCF ∠互余, 90DFC DCF ∴∠+∠=︒, DFC DAE ∴∠=∠//AE CF ∴,AEB FCB ∴∠=∠.【总结】考查平行线性质定理和判定定理的综合应用.【例28】 如图,在四边形ABCD 中,∠A =∠C ,BE 平分∠ABC ,DF 平分∠ADC .求证:BE ∥DF . 【答案】略【解析】证明:BE 平分ABC ∠,12ABE ABC ∴∠=∠,同理12FDE ADC ∠=∠,360A ABC C ADC ∠+∠+∠+∠=︒,A C ∠=∠, 3602ABC ADC A ∴∠+∠=︒-∠BED A ABE ∠=∠+∠()1113602180222BED FDE A ABC ADC A A ∴∠+∠=∠+∠+∠=∠+︒-∠=︒//BE DF ∴【总结】考查平行线的判定定理,同旁内角互补,两直线平行.【例29】 如图,AB ∥CD ,分别探讨下面4个图形中∠BPD 、∠ABP 、∠CDP 的关系,(直接写出关系即可),并对第3个图得到的关系进行证明(至少用两种方法).C ABPDABCDP图1图2【答案】图1:+360BPD ABP CDP ∠∠+∠=; 图2:BPD CDP ABP ∠=∠-∠; 图3:BPD ABP CDP ∠=∠+∠; 图4:BPD ABP CDP ∠=∠-∠. 【解析】证明:方法1:延长BP 交CD 于点M , //AB CD , ABP PMD ∴∠=∠BPD PMD CDP ABP CDP ∴∠=∠+∠=∠+∠;方法2:过点作射线//PN AB ,则有ABP BPN ∠=∠,//AB CD , //CD PN ∴, CDP DPN ∴∠=∠BPD BPN DPN ABP CDP ∴∠=∠+∠=∠+∠.【总结】考查平行线的性质定理和三角形外角性质的结合应用,本题中4个小题都可通过作平行或延长简单证明.【例30】 如图,四边形ABCD 中,AD ∥BC ,∠ABC =∠DCB ,AB =CD ,AE =DF .(1) 求证:BF =CE ;(2) 当点E 、F 相向运动,形成图2时,BF 和CE 还相等吗?证明你的结论.【答案】(1)略;(2)相等. 【解析】(1)证明://AD BC ,180180BAD ABC ADC BCD ∴∠+∠=︒∠+∠=︒, ABC DCB ∠=∠ BAD ADC ∴∠=∠AE DF =AE AD DF AD ∴+=+,即DE AF = AB CD =EDC FAB ∴∆≅∆ABCDPABCDP图3图4A ABCDFED BC(E ) (F )图1图2BF CE∴=(2)相等,证明:同(1)可证BAD ADC∠=∠,,==ED AF AB CD∴∆≅∆EDC FABBF CE∴=【总结】考查等腰梯形的性质的证明,实际为后面等腰梯形性质的学习打下基础.随堂检测【习题1】下列命题中,属于公理的有().A.三角形的内角和为180°B.两条直线被第三条直线所截,内错角相等C.等腰三角形两个底角相等D.在所有联结两点的线中,线段最短【答案】D【解析】公理是人们从长期的实践中总结出来的真命题.它们可以作为判断其他命题真假的原始依据,D是公理,A、B、C都是定理.【总结】考查对公理的判断.【习题2】下列判断错误的是().A.底角对应相等的两个等腰三角形全等B.有一腰和顶角对应相等的两个等腰三角形全等C.腰相等的两个等腰直角三角形全等D.边长相等的两个等边三角形全等【答案】A【解析】由A只能确定两个等腰三角形的三个内角对应相等,缺少边相等的条件,不能判定全等,故选A.【总结】考查与等腰三角形结合的全等三角形的判定.【习题3】将下列命题改写成“如果……,那么……”的形式:(1)等角对等边;(2)同角的余角相等;ACED B 1 2 CBAFME(3)全等的三角形的对应边上的高相等. 【答案】略【解析】(1)如果一个三角形中有两个相等的角,那么这两个角所对的边也相等; (2)如果两个角是同一个角的余角,那么这两个角相等; (3)如果两个三角形全等,那么这两个三角形对应边上的高相等.【总结】考查命题“如果……那么……”形式的改写,注意加入适当的描述性的语句,使得语句更通顺好理解.【习题4】 如图,已知AC ∥DE ,∠1=∠2,求证:AB ∥CD . 【答案】略 【解析】证明://AC DE , 2ACD ∴∠=∠.12∠=∠, 1ACD ∴∠=∠,//AB CD ∴.【总结】考查平行线的性质定理和判定定理的综合应用,等角转化.【习题5】 如图,AM 是△ABC 底边BC 上的中线,点F 在AM 上,点E 在AM 的延长线上,且EM =MF . 求证://CE BF . 【答案】略 【解析】证明:AM 是ABC ∆的中线, BM CM ∴=EM MF CME BMF =∠=∠, CME BMF ∴∆≅∆E MFB ∴∠=∠ //CE BF ∴【总结】考查三角形的全等证明与平行线的判定定理的综合应用.【习题6】 如图,已知AF ∥BE ∥CD ,∠A =∠D .求证:AB ∥ED .【答案】略 【解析】证明:////AF BE CD ,180180A ABE D DEB ∴∠+∠=︒∠+∠=︒,.A D ∠=∠, ABE DEB ∴∠=∠,ADBECF//AB ED ∴.【总结】考查平行线的性质和判定定理的结合应用,先利用性质再进行判定.【习题7】 如图,已知B 、E 、C 、F 在同一条直线上,AB ∥DE ,且AB =DE ,BE =CF .求证:AC ∥DF . 【答案】略 【解析】证明://AB DE , B DEF ∴∠=∠.BE CF =,BE EC EC CF ∴+=+,即BC EF =.AB DE =,ABC DEF ∴∆≅∆. ACB F ∴∠=∠ //AC DF ∴【总结】考查全等三角形的判定和平行线的性质和判定定理的综合应用.【习题8】 如图,已知AB ∥CD ,∠1=∠2.求证:∠BEF =∠EFC .证明:__________________________. 因为_________________________(),所以∠ABC =∠BCD (). 又因为__________________( ), 得______________________( ), 所以_____________________(),所以∠BEF =∠EFC ().【答案】略【解析】联结BC ;//AB CD ,已知;两直线平行,内错角相等;12∠=∠;已知;EBC BCF ∠=∠;等式性质;//BE CF ,内错角相等,两直线平行;两直线平行,内错角相等. 【总结】考查平行线的性质和判定定理的综合运用.ABCDEF12ABCDEF【习题9】 如图,一条公路修到湖边时,需绕湖而过,如果第一次拐弯的角∠A 是120°,第二次拐弯的角∠B 是150°,第三次拐弯的角是∠C ,这时道路恰好和第一次拐弯之前的道路平行,求∠C 的度数.【答案】150°【解析】延长AB 交DC 延长线于点E ,由两道路平行,可得120E A ∠=∠=︒,150ABC ∠=︒ 18030CBE ABC ∴∠=︒-∠=︒12030150BCD E CBE ∴∠=∠+∠=︒+︒=︒【总结】考查平行线的性质和三角形外角性质的综合应用.【习题10】 已知:如图,∠ABC =∠ADC ,BF 和DE 分别平分∠ABC 和∠ADC ,且CF =CB .求证:∠1=∠2【答案】略【解析】证明:DE 平分ADC ∠,12CDE ADC ∴∠=∠,同理12CBF ABC ∴∠=∠,ABC ADC ∠=∠ CDE CBF ∴∠=∠ CF CB = CFB CBF ∴∠=∠ CDE CFB ∴∠=∠ //DE FB ∴12∴∠=∠【总结】考查平行线的性质定理和判定定理的综合应用.DCEABF21 ACBDE【习题11】 如图,四边形ABCD 中,AB ∥CD ,AD ∥BC .(1) 联结AC 、BD 相交于点O ,若OD = OB ,求证:OA = OC .(2) 若E 、F 分别是DA 、BC 延长线上的一点,且AE = CF .联结EF ,交AB 、CD于点G 、H ,交BD 于点O .求证:OG = OH 且O 是BD 的中点.【答案】略【解析】证明:(1)//AB CD ,AD ∥BC ,ADO CBO DAO BCO ∴∠=∠∠=∠, OD OB = ADO CBO ∴∆≅∆ OA OC ∴=(2)//AB CD ,∴ABD BDC ∠=∠,FHC FGB ∠=∠,//AD BC ,AGE FGB ∠=∠ E F AGE CHF ∴∠=∠∠=∠,ABD BDC ∠=∠AE CF = AGE CHF ∴∆≅∆ EG HF ∴=BD BD = ABD CDB ∴∆≅∆ AD BC ∴= AE CF =AE AD CF BC ∴+=+,即DE BF = EDO FBO ∴∆≅∆ DO BO EO FO ∴==, EO EG FO FH ∴-=-即证OG OH =且O 是BD 的中点【总结】考查根据平行线和三角形的全等证明平行四边形的相关性质,为后面学习平行四边形的性质打好基础.AB CGDEFHO 图2AB CDO图1课后作业【作业1】以下命题的逆命题是真命题的是().A.等边三角形的三个角相等;B.同角的补角相等;C.在三角形中,钝角所对的边长最长;D.同位角相等.【答案】A【解析】三个内角相等的三角形是等边三角形,A的逆命题是真命题;补角相等的角相等,但不一定为同角,B的逆命题是假命题;根据“大边对大角”,最长边所对的角是三角形中最大角即可,三角形中的最大角不一定是钝角,例如直角三角形,C的逆命题是假命题;相等的角不一定为同位角,D的逆命题为假命题;故选A.【总结】考查命题的逆命题真假的判定,判定为假命题举反例即可.【作业2】把下列命题改写成“如果……那么……”的形式,并指出这个命题的题设和结论判断出命题的真假.(1)轴对称图形都是等腰三角形;(2)等腰三角形顶角的角平分线就是底边上的高;(3)等角的余角相等.【答案】略【解析】(1)如果一个图形是轴对称图形,那么这个图形是等腰三角形;题设:如果一个图形是轴对称图形,结论:那么这个图形是等腰三角形,假命题;(2)如果过等腰三角形的顶角作顶角的角平分线,那么这条角平分线是等腰三角形底边上的高;题设:如果过等腰三角形的顶角作顶角的角平分线,结论:那么这条角平分线是等腰三角形底边上的高,真命题;(3)如果两个角是两个相等的角的余角,那么这两个角相等;题设:如果两个角是两个相等的角的余角,结论:那么这两个角相等,真命题.【总结】考查命题“如果……那么……”形式的改写,注意加入适当的描述性的语句,使得语句更通顺好理解,同时考查命题真假的判断.【作业3】 以下说法正确的有()个.①每个命题都有逆命题; ②假命题的逆命题是假命题; ③真命题的逆命题都是真命题; ④每个定理都有逆定理. A .1B .2C .3D .4【答案】A【解析】①显然正确,②③显然错误,定理的逆命题必须为真命题则为定理,④错误, 综上只有①正确,故选A .【总结】考查命题和逆命题、定理和逆定理的相关定义.【作业4】 如图,已知:∠AEC =∠A +∠C .求证:AB ∥CD . 【答案】略【解析】证明:延长AE 交CD 于点F ,AEC C EFC AEC A C ∠=∠+∠∠=∠+∠, EFC A ∴∠=∠ //AB CD ∴【总结】考查平行线的判定定理和三角形外角性质的综合应用.【作业5】 已知:如图,AB //CD ,∠B =110°,∠C =35°.求∠E 的度数.【答案】105°【解析】延长AB 交CE 延长线于点F ,//AB CD 35F C ∴∠=∠=︒ 110ABE ∠=︒18070FBE ABE ∴∠=︒-∠=︒7035105BEC FBE F ∴∠=∠+∠=︒+︒=︒【总结】考查平行线的判定定理和三角形外角性质的综合应用.【作业6】 已知:如图,A 、E 、F 、D 四点在一条直线上,AE =FD ,AB //CD ,且AB =CD .EABDCFABCDEFABCONM EDCBA求证:BF //CE . 【答案】略 【解析】证明://AB CD , A D ∴∠=∠AE FD =AE EF FD EF ∴+=+,即AF DE = AB CD = ABF DCE ∴∆≅∆CED BFA ∴∠=∠ //BF CE ∴【总结】考查平行四边形和全等三角形性质的综合应用.【作业7】 已知:如图,已知点O 在直线AB 上,OM 平分∠AOC,ON 平分∠BOC ,那么OM ⊥ON 吗?为什么? 解:因为OM 平分∠AOC (), 所以∠MOC=______________________(),同理____________=_________________. 又因为∠AOC+∠BOC=180°(), 所以0119022AOC BOC ∠+∠=(), 得____________+____________=090,( )所以OM _______________ON ().【答案】略【解析】已知;12AOC ∠,角平分线的意义;CON ∠,12BOC ∠;平角的意义;等式性质;MOC ∠,CON ∠,等量代换;⊥,垂直的意义. 【总结】考查证明题的判定应用和相应的定理的把握.【作业8】 如图,AC =CE ,DE =BD ,∠AEB =90°.求证:AC //BD .【答案】略ABCDEF90CEA DEB ∴∠+∠=︒ AC CE =A CEA ∴∠=∠,同理B DEB ∠=∠,180180A CEA C D DEB B ∠+∠+∠=︒∠+∠+∠=︒,18021802C CEA D DEB ∴∠=︒-∠∠=︒-∠,()3602180C D CEA DEB ∴∠+∠=︒-∠+∠=︒//AC BD ∴【总结】考查平行线的性质定理和等腰三角形性质的综合应用.【作业9】 已知CE 、BD 是△ABC 的高,AB =AC ,求证:DE ∥BC .【答案】略【解析】证明:CE 、BD 是ABC ∆的高,90ADB AEC ∴∠=∠=︒ A A AB AC ∠=∠=,ABD ACE ABC ACB ∴∆≅∆∠=∠,AE AD ∴= ADE AED ∴∠=∠180180A ADE AED A ABC ACB ∠+∠+∠=︒∠+∠+∠=︒,()11802AED A ABC ∴∠=︒-∠=∠//DE BC ∴【总结】考查平行线的判定定理和等腰三角形性质的综合应用.【作业10】 已知:如图,∠B =∠C , ∠BDE =∠CDF ,BD = CD ,求证:EF //BC .【答案】略ACBDEFEDCBACABDRQP180180BDE EDC BDF CDF ∠+∠=︒∠+∠=︒,180BDE EDF CDF ∠+∠+∠=︒()11802BDF CDE BDE EDF ∴∠=∠∠=︒-∠,BD CD B C =∠=∠,BDF CDE ∴∆≅∆ DE DF ∴=DEF DFE ∴∠=∠180DEF EDF DFE ∠+∠+∠=︒()11802DEF EDF BDE ∴∠=︒-∠=∠//EF BC ∴【总结】考查三角形的全等,等腰三角形性质,三角形内角和的综合应用.【作业11】 已知:如图在四边形ABCD 中,∠BAD =∠BCD ,∠ABC 的角平分线交直线AD 的延长线于点P ,经过点A 与BP 垂直的直线交直线BC 的延长线于点Q . 求证:PQ ∥CD .【答案】略【解析】证明:BP 是ABC ∠的角平分线, PBQ PBA ∴∠=∠. AQ BP ⊥, 90BRQ BRA ∴∠=∠=︒.BR BR =, BRQ BRA ∴∆≅∆, BQ BA ∴=.BP BP =, BPQ BPA ∴∆≅∆, BQP BAP ∴∠=∠. BAD BCD ∠=∠, BCD BQP ∴∠=∠//PQ CD ∴【总结】考查三角形的全等判定和平行线的判定的综合应用.。
高考数学试题汇编第二节合情推理与演绎推理理(含解析)合情推理考向聚焦由已知条件归纳出一个结论或运用类比的形式给出某个问题的结论,是高考对合情推理的常规考法,从题型上看,以选择题、填空题为主,所占分值4~5分,属中低档题备考指津合情推理(归纳推理和类比推理)是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想.归纳推理时要做到归纳到位、准确;类比推理时,要从本质上去类比,不要被表面现象所迷惑1.(2012年江西卷,理6,5分)观察下列各式:a+b=1,a2+b 2=3,a 3+b3=4,a 4+b4=7,a5+b5=11,…,则a10+b10=( )(A)28 (B)76 (C)123 (D)199解析:本题考查递推数列知识以及归纳推理的思想方法.记a n+b n=f(n),则f(3)=f(1)+f(2)=1+3=4;f(4)=f(2)+f(3)=3+4=7;f(5)=f(3)+f(4)=11;f(6)=f(4)+f(5)=18;f(7)=f(5)+f(6)=29;f(8)=f(6)+f(7)=47;f(9)=f(7)+f(8)=76;f(10)=f(8)+f(9)=123,即a10+b10=123.故选C.答案:C.涉及递推数列的某一项或通项的问题(尤其是小题)常常可借助归纳推理加以解决.2.(2011年江西卷,理7)观察下列各式:55=3125,56=15625,57=78125,…,则52011的末四位数字为( )(A)3125 (B)5625 (C)0625 (D)8125解析:∵55=3125,56=15625,57=78125,58末四位数字为0625,59末四位数字为3125,510末四位数字为5625,511末四位数字为8125,512末四位数字为0625,…,由上可得末四位数字周期为4,呈规律性交替出现,∴52011=54×501+7末四位数字为8125.答案:D.3.(2012年陕西卷,理11,5分)观察下列不等式1+<,1++<,1+++<,……照此规律,第五个不等式为.解析:不完全归纳:第一个:1+<,第二个:1++<,第三个:1+++<,…归纳猜想:第n个:1+++…+<,故n=5时,1+++…+<.答案:1+++++<4.(2012年湖北卷,理13,5分)回文数是指从左到右读与从右到左读都一样的正整数,如22,121,3443,94249等,显然2位回文数有9个:11,22,33,…,99,3位回文数有90个:101,111,121,…,191,202,…,999,则(1)4位回文数有个;(2)2n+1(n∈N+)位回文数有个.解析:已知1位回文数有9个,2位回文数有9个,3位回文数有90=9×10个,4位回文数有1001,1111,…,1991,2002,…,9999,共90个,以此类推,猜想2n+1位回文数与2(n+1)位回文数个数相等,均为9×10n个.答案:(1)90 (2)9×10n5.(2011年陕西卷,理13)观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49…照此规律,第n个等式为.解析:照等式规律,第n行的首位数字为n且有2n-1个相邻正整数相加∴n+(n+1)+…+(3n-2)=(2n-1)2答案:n+(n+1)+…+(3n-2)=(2n-1)26.(2011年山东卷,理15)设函数f(x)=(x>0),观察:f1(x)=f(x)=,f2(x)=f(f1(x))=,f3(x)=f(f2(x))=,f4(x)=f(f3(x))=,…根据以上事实,由归纳推理可得:当n∈N*且n≥2时,f n(x)=f(f n-1(x))= .解析:观察分母的x的系数数列:1,3,7,15,…,a n,…而分母的常数项数列:2,4,8,16,…,b n,…∴b n=2n,a n=2n-1,∴当n≥2时,f n(x)=f(f n-1(x))=答案:7.(2010年陕西卷,理12)观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为.解析:观察已知等式13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43=(1+2+3+4)2,归纳可得,13+23+33+43+53+63=(1+2+3+4+5+6)2=212,故应填13+23+33+43+53+63=212.答案:13+23+33+43+53+63=2128.(2010年浙江卷,理14)设n≥2,n∈N,(2x+)n-(3x+)n=a0+a1x+a2x2+…+a n x n,将|a k|(0≤k ≤n)的最小值记为T n,则T2=0,T3=-,T4=0,T5=-,…,T n,…其中T n= .解析:由归纳推理得T n=.答案:此类题目要对所给的已知等式进行观察,分析其结构特征,再进行比较和联想,发现规律,归纳得出结论.演绎推理考向聚焦演绎推理也是高考重点考查的内容,渗透于各种题型的各个问题中,主要以综合题的形式考查演绎推理的基本步骤与严谨性,有时也会出现高难度题,12~14分备考指津在数学研究中,合情推理获得的结论,仅仅是一种猜想,未必可靠,它只能帮助我们猜想和发现结论,由已知条件归纳或类比出的结论,需要再运用演绎推理进行证明.也就是说,合情推理的结论需要演绎推理的验证,而演绎推理的内容一般是通过合情推理获得的.在前提和推理形式都正确的情况下,利用演绎推理证明所得结论是正确的9.(2011年浙江卷,理20)如图,在三棱锥P ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2.(1)证明:AP⊥BC;(2)在线段AP上是否存在点M,使得二面角A MC B为直二面角?若存在,求出AM的长;若不存在,请说明理由.(1)证明:由AB=AC,D是BC的中点,得AD⊥BC.又PO⊥平面ABC,所以PO⊥BC.因为PO∩AD=O,所以BC⊥平面PAD,故BC⊥PA.(2)解:存在.如图,在平面PAB内作BM⊥PA于M,连接CM,PD.由(1)知AP⊥BC,得AP⊥平面BMC.又AP⊂平面APC,所以平面BMC⊥平面APC.在Rt△ADB中,AB2=AD2+BD2=(AO+OD)2+(BC)2=41,得AB=.在Rt△POD中,PD2=PO2+OD2,在Rt△PDB中,PB2=PD2+BD2,所以PB2=PO2+OD2+DB2=36,得PB=6.在Rt△POA中,PA2=AO2+OP2=25,得PA=5.又cos∠BPA==,从而PM=PB·cos∠BPA=2,所以AM=PA-PM=3.综上所述,存在点M符合题意,AM=3.演绎推理的主要形式,就是由大前提、小前提推出结论的三段论式推理,在应用三段论来求解问题时,首先应该明确什么是问题中的大前提和小前提.在演绎推理中,只有前提和推理形式是正确的,结论才是正确的.。
离散数学Discrete Mathematics数理逻辑 1.5 推理规则与证明方法张晓 西北工业大学计算机学院 zhangxiao@ 2011-1-10引言什么时候数学论证是正确的? 用什么方法来构造数学论证? 数理逻辑的主要任务是用数学的方法来研究推理过 程。
所谓推理是指从前提出发推出结论的思维过程 前提是已知命题公式集合,结论是从前提出发应用 推理规则推出的命题公式。
要研究推理就应该给出推理的形式结构,为此,首 先应该明确什么样的推理是有效的或正确的。
2011-1-10离散数学21.5.1推理规则前几节所讲的命题演算, 本质上和简单的开 关代数一样, 简单的开关代数是命题演算的 一种应用。
现在, 我们从另一角度研究命题演算, 即从 逻辑推理角度来理解命题演算。
2011-1-10离散数学34个推理的例子设x属于实数, P: x是偶数, Q: x2是偶数。
例1 如果x是偶数, 则x2是偶数。
前提 x是偶数。
x2是偶数。
例2 如果x是偶数, 则x2是偶数。
x2是偶数。
2011-1-10P→Q P结论∴Q在每一例子中, 横线上的是前提, 横线下的是结论。
右侧是例子的 逻辑符表示。
P→Q Qx是偶数。
离散数学∴P4例3 如果x是偶数, 则x2是偶数。
x不是偶数。
x2不是偶数。
例4 如果x是偶数, 则x2是偶数。
x2不是偶数。
x不是偶数。
2011-1-10 离散数学P→Q P ∴ QP→Q Q ∴ P5例 1 中, 若不管命题的具体涵义, 那么它所应用的推理规则 就是 左侧规则的另一P →Q P ∴ Q种写法所对应的永真蕴 含式。
P ,P → Q 推得 QP∧(P→Q) ⇒ Q从这个永真蕴含式可看出, 它正是代表“如果 P 并且 P→Q 是真, 则 Q是 真”的意义, 这里P和Q表示任意命题。
它恰好代表左侧的推理规则。
这条推理规则叫假言推理, 从形式上看 结论Q是从P→Q中分离出来的, 所以又叫分离规则。
高考专题训练十四 推理与证明班级_______ 姓名_______ 时间:45分钟 分值:75分 总得分________一、选择题:本大题共6小题,每小题5分,共30分.在每小题给出的四个选项中,选出符合题目要求的一项填在答题卡上.1.依次写出数列a 1=1,a 2,a 3,…,a n (n ∈N *)的法则如下:如果a n -2为自然数且未写过,则写a n +1=a n -2,否则就写a n +1=a n +3,则a 6=( )A .4B .5C .6D .7解析:根据题中法则,依次逐个代入,得a 2=4,a 3=2,a 4=0,a 5=3,a 6=6.答案:C2.(2011·郑州市高中毕业班第一次质量预测)已知a ,b ,c ∈R +,若c a +b <a b +c <b c +a,则( ) A .c <a <b B .b <c <a C .a <b <cD .c <b <a解析:由已知得c (b +c )<a (a +b ),a (c +a )<b (b +c ),即(c -a )(a +b +c )<0,(a -b )(a +b +c )<0.又a +b +c >0,因此有c -a <0,a -b <0,故c <a <b ,选A.答案:A3.(2011·四川省绵阳市高三第二次诊断性测试)记a =Sin (cos2010°),b =sin(sin2010°),c =cos(sin2010°),d =cos(cos2010°),则a 、b 、c 、d 中最大的是( )A .aB .bC .cD .d解析:注意到2010°=360°×5+180°+30°,因此sin2010°=-sin30°=-12,cos2010°=-cos30°=-32,-π2<-32<0,-π2<-12<0,0<12<32<π2,cos 12>cos 32>0,a =sin ⎝ ⎛⎭⎪⎫-32=-sin 32<0,b =sin ⎝ ⎛⎭⎪⎫-12=-sin 12<0,c =cos ⎝ ⎛⎭⎪⎫-12=cos 12>d =cos ⎝ ⎛⎭⎪⎫-32=cos 32>0, 因此选C. 答案:C4.(2011·江西师大附中、临川一中高三联考)若实数a ,b ,c 成公差不为0的等差数列,则下列不等式不成立的是( )A .|b -a +1c -b |≥2B .a 3b +b 3c +c 3a ≥a 4+b 4+c 4C .b 2>acD .|b |-|a |≤|c |-|b |解析:设等差数列a ,b ,c 的公差为d (d ≠0),则|b -a +1c -b |=|d +1d |=|d |+|1d|≥2|d |×1|d |=2,因此A 成立;b 2-ac =⎝⎛⎭⎪⎫a +c 22-ac =(a -c )24>0,因此C 成立;由2b =a +c 得|2b |=|a +c |≤|c |+|a |,即|b |-|a |≤|c |-|b |,因此D 成立;对于B ,当a =-1,b =-2,c =-3时,a 3b +b 3c +c 3a =53,a 4+b 4+c 4=98,此时B 不成立.综上所述,选B.答案:B5.(2011·西安市五校第一次模拟考试)已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个数对是( )A .(7,5)B .(5,7)C .(2,10)D .(10,1)解析:依题意,就每组整数对的和相同的分为一组,不难得知每组整数对的和为n +1,且每组共有n 个整数对,这样的前n 组一共有n (n +1)2个整数对,注意到10(10+1)2<60<11(11+1)2,因此第60个整数对处于第11组(每对整数对的和为12的组)的第5个位置,结合题意可知每对整数对的和为12的组中的各对数依次为(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个整数对是(5,7),选B.答案:B6.(2011·江苏镇江模拟)用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是( )A .假设三内角都不大于60度B .假设三内角都大于60度C .假设三内角至多有一个大于60度D .假设三内角至多有两个大于60度解析:根据反证法的步骤,假设是对原命题结论的否定,即“三内角都大于60度”.故选B.答案:B二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.7.(2011·南昌一模)观察下列等式: 12=112-22=-3, 12-22+32=6, 12-22+32-42=-10, …,由以上等式推测到一个一般的结论:对于n ∈N *, 12-22+32-42+…+(-1)n +1n 2=________.解析:注意到第n 个等式的左边有n 项,右边的结果的绝对值恰好等于左边的各项的所有底数的和,即右边的结果的绝对值等于1+2+3+…+n =n (n +1)2=n 2+n 2,注意到右边的结果的符号的规律是:当n 为奇数时,符号为正;当n 为偶数时,符号为负,因此所填的结果是(-1)n +1n 2+n 2. 答案:(-1)n +1n 2+n 28.(2011·东北三省四市教研联合体等值模拟诊断)设S 、V 分别表示面积和体积,如△ABC 面积用S △ABC 表示,三棱锥O -ABC 的体积用V O -ABC 表示.对于命题:如果O 是线段AB 上一点,则|OB →|·OA →+|OA →|·OB →=0.将它类比到平面的情形是:若O 是△ABC 内一点,有S △OBC ·OA →+S △OCA ·OB →+S △OBA ·OC →=0.将它类比到空间的情形应该是:若O 是三棱锥A -BCD 内一点,则有___________________________ _________.解析:由类比思想可得结论.答案:V O -BCD ·OA →+V O -ACD ·OB →+V O -ABD ·OC →+V O -ABC ·OD →=0 9.(2011·山东威海模拟)用数学归纳法证明不等式1+12+14+…+12n -1>12764(n ∈N *)成立,其初始值至少应取________.解析:1+12+14+…+12n -1=1-12n1-12>12764,整理得2n >128,解得n >7,故原不等式的初始值至少应为8.答案:810.(2011·辽宁沈阳模拟)用数学归纳法证明:(n +1)+(n +2)+…+(n +n )=n (3n +1)2(n ∈N *)的第二步中,当n =k +1时等式左边与n=k 时的等式左边的差等于________.解析:当n =k 时,等式左边为(k +1)+(k +2)+…+(k +k ),当n =k +1时,等式左边为(k +2)+(k +3)+…+(k +1+k +1),所以其差为3k +2.答案:3k +2三、解答题:本大题共2小题,共25分.解答应写出文字说明、证明过程或演算步骤.11.(12分)已知正数数列{a n }的前n 项和为S n ,且4a n -2S n =1,数列{b n }满足b n =2log 12a n ,n ∈N *.(1)求函数{a n }的通项公式a n 与{b n }的前n 项和T n ; (2)设数列{b na n }的前n 项和为U n ,求证:0<U n ≤4.解:(1)易得a 1=12.当n ≥2时,4a n -2S n =1, ① 4a n -1-2S n -1=1, ②①-②得2a n -4a n -1=0⇒a n =2a n -1, ∴a n a n -1=2(n ≥2), ∴数列{a n }是以a 1=12为首项,2为公比的等比数列,∴a n =2n -2,a 1=12也适合此式,故a n =2n -2.从而b n =4-2n ,其前n 项和T n =-n 2+3n .(2)证明:∵{a n }为等比数列、{b n }为等差数列,b n a n =4-2n2n -2.∴U n =212+01+-22+…+6-2n 2n -3+4-2n 2n -2, ③12U n =21+02+-222+…+6-2n 2n -2+4-2n 2n -1, ④ ③-④得12U n =4-21-22-222-…-22n -2-4-2n 2n -1,∴U n =4n2n -1.易知U 1=U 2=4,当n ≥3时,U n -U n -1=2-n2n -3<0,∴当n ≥3时,数列{U n }是递减数列, ∴0<U n ≤U 3=3. 综上,0<U n ≤4.12.(13分)在数列{a n },{b n }中,a 1=2,b 1=4,且a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列(n ∈N *).求a 2,a 3,a 4及b 2,b 3,b 4,由此猜测{a n },{b n }的通项公式,并证明你的结论.解:由条件得2b n =a n +a n +1,a 2n +1=b n b n +1,由此可得a 2=6,b 2=9,a 3=12,b 3=16,a 4=20,b 4=25. 猜测a n =n (n +1),b n =(n +1)2,n ∈N *. 用数学归纳法证明:①当n =1时,由已知a 1=2,b 1=4可得结论成立. ②假设当n =k (k ≥2且k ∈N *)时,结论成立,即 a k =k (k +1),b k =(k +1)2, 那么当n =k +1时,a k +1=2b k -a k =2(k +1)2-k (k +1)=(k +1)(k +2), b k +1=a 2k +1b k =(k +1)2(k +2)2(k +1)2(k +2)2. 所以当n =k +1时,结论也成立.由①②可知,a n =n (n +1),b n =(n +1)2对一切n ∈N *都成立.。
高考数学(理)真题专题汇编:推理与证明一、选择题1.【来源】2017年高考真题——理科数学(全国Ⅱ卷)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 2.【来源】2014年高考真题理科数学(山东卷)用反证法证明命题:“已知,a b 为实数,则方程20x ax b ++=至少有一个实根”时,要做的假设是(A )方程20x ax b ++=没有实根(B )方程20x ax b ++=至多有一个实根 (C )方程20x ax b ++=至多有两个实根(D )方程20x ax b ++=恰好有两个实根3.【来源】2013年普通高等学校招生全国统一考试(广东卷)数学(理科) 设整数4n ≥,集合{}1,2,3,,X n =.令集合(){},,|,,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是( )A . (),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈C .(),,y z w S ∉,(),,x y w S ∈D .(),,y z w S ∉,(),,x y w S ∈4.【来源】辽宁省大连24中2012届高三模拟考试理科数学 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线:已知直线bα平面,直线a α⊂平面,直线b ∥平面α,则b ∥a ”的结论显然是错误的,这是因为 A .大前提错误 B .小前提错误C .推理形式错误D .非以上错误5.【来源】2012年高考真题——理科数学(江西卷)观察下列各式:221,3,a b a b +=+=3344554,7,11,a b a b a b +=+=+=则1010a b+=A.28 B.76 C.123 D.1996.【来源】2012年高考真题——理科数学(湖北卷)我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径. “开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式316 9d V≈.人们还用过一些类似的近似公式. 根据π =3.14159判断,下列近似公式中最精确的一个是A.316 9d V≈ B.32d V≈ C.3300 157d V≈ D.321 11d V≈7.【来源】2012年高考真题——理科数学(全国卷)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=73.动点P从E出发沿直线喜爱那个F运动,每当碰到正方形的方向的边时反弹,反弹时反射等于入射角,当点P第一次碰到E时,P与正方形的边碰撞的次数为(A)16(B)14(C)12(D)108.【来源】2011年高考数学理(江西)如右图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点。
离散数学(屈婉玲)答案-1-5章第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
”答:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式//最后一列全为1(5)公式类型为可满足式(方法如上例)//最后一列至少有一个1(6)公式类型为永真式(方法如上例)//第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14.在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p ⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x): 2=(x+)(x).G(x): x+5=9.(1)在两个个体域中都解释为)(x∀,在(a)中为假命题,在(b)中为真命xF题。
高考专题训练十四 推理与证明班级_______ 姓名_______ 时间:45分钟 分值:75分 总得分________一、选择题:本大题共6小题,每小题5分,共30分.在每小题给出的四个选项中,选出符合题目要求的一项填在答题卡上.1.依次写出数列a 1=1,a 2,a 3,…,a n (n ∈N *)的法则如下:如果a n -2为自然数且未写过,则写a n +1=a n -2,否则就写a n +1=a n +3,则a 6=( )A .4B .5C .6D .7解析:根据题中法则,依次逐个代入,得a 2=4,a 3=2,a 4=0,a 5=3,a 6=6.答案:C2.(2011·郑州市高中毕业班第一次质量预测)已知a ,b ,c ∈R +,若c a +b <a b +c <b c +a,则( ) A .c <a <b B .b <c <a C .a <b <cD .c <b <a解析:由已知得c (b +c )<a (a +b ),a (c +a )<b (b +c ),即(c -a )(a +b +c )<0,(a -b )(a +b +c )<0.又a +b +c >0,因此有c -a <0,a -b <0,故c <a <b ,选A.答案:A3.(2011·四川省绵阳市高三第二次诊断性测试)记a =Sin (cos2010°),b =sin(sin2010°),c =cos(sin2010°),d =cos(cos2010°),则a 、b 、c 、d 中最大的是( )A .aB .bC .cD .d解析:注意到2010°=360°×5+180°+30°,因此sin2010°=-sin30°=-12,cos2010°=-cos30°=-32,-π2<-32<0,-π2<-12<0,0<12<32<π2,cos 12>cos 32>0,a =sin ⎝ ⎛⎭⎪⎫-32=-sin 32<0,b =sin ⎝ ⎛⎭⎪⎫-12=-sin 12<0,c =cos ⎝ ⎛⎭⎪⎫-12=cos 12>d =cos ⎝ ⎛⎭⎪⎫-32=cos 32>0, 因此选C. 答案:C4.(2011·江西师大附中、临川一中高三联考)若实数a ,b ,c 成公差不为0的等差数列,则下列不等式不成立的是( )A .|b -a +1c -b |≥2B .a 3b +b 3c +c 3a ≥a 4+b 4+c 4C .b 2>acD .|b |-|a |≤|c |-|b |解析:设等差数列a ,b ,c 的公差为d (d ≠0),则|b -a +1c -b |=|d +1d |=|d |+|1d|≥2|d |×1|d |=2,因此A 成立;b 2-ac =⎝⎛⎭⎪⎫a +c 22-ac =(a -c )24>0,因此C 成立;由2b =a +c 得|2b |=|a +c |≤|c |+|a |,即|b |-|a |≤|c |-|b |,因此D 成立;对于B ,当a =-1,b =-2,c =-3时,a 3b +b 3c +c 3a =53,a 4+b 4+c 4=98,此时B 不成立.综上所述,选B.答案:B5.(2011·西安市五校第一次模拟考试)已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个数对是( )A .(7,5)B .(5,7)C .(2,10)D .(10,1)解析:依题意,就每组整数对的和相同的分为一组,不难得知每组整数对的和为n +1,且每组共有n 个整数对,这样的前n 组一共有n (n +1)2个整数对,注意到10(10+1)2<60<11(11+1)2,因此第60个整数对处于第11组(每对整数对的和为12的组)的第5个位置,结合题意可知每对整数对的和为12的组中的各对数依次为(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个整数对是(5,7),选B.答案:B6.(2011·江苏镇江模拟)用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是( )A .假设三内角都不大于60度B .假设三内角都大于60度C .假设三内角至多有一个大于60度D .假设三内角至多有两个大于60度解析:根据反证法的步骤,假设是对原命题结论的否定,即“三内角都大于60度”.故选B.答案:B二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.7.(2011·南昌一模)观察下列等式: 12=112-22=-3, 12-22+32=6, 12-22+32-42=-10, …,由以上等式推测到一个一般的结论:对于n ∈N *, 12-22+32-42+…+(-1)n +1n 2=________.解析:注意到第n 个等式的左边有n 项,右边的结果的绝对值恰好等于左边的各项的所有底数的和,即右边的结果的绝对值等于1+2+3+…+n =n (n +1)2=n 2+n 2,注意到右边的结果的符号的规律是:当n 为奇数时,符号为正;当n 为偶数时,符号为负,因此所填的结果是(-1)n +1n 2+n 2. 答案:(-1)n +1n 2+n 28.(2011·东北三省四市教研联合体等值模拟诊断)设S 、V 分别表示面积和体积,如△ABC 面积用S △ABC 表示,三棱锥O -ABC 的体积用V O -ABC 表示.对于命题:如果O 是线段AB 上一点,则|OB →|·OA →+|OA →|·OB →=0.将它类比到平面的情形是:若O 是△ABC 内一点,有S △OBC ·OA →+S △OCA ·OB →+S △OBA ·OC →=0.将它类比到空间的情形应该是:若O 是三棱锥A -BCD 内一点,则有___________________________ _________.解析:由类比思想可得结论.答案:V O -BCD ·OA →+V O -ACD ·OB →+V O -ABD ·OC →+V O -ABC ·OD →=0 9.(2011·山东威海模拟)用数学归纳法证明不等式1+12+14+…+12n -1>12764(n ∈N *)成立,其初始值至少应取________.解析:1+12+14+…+12n -1=1-12n1-12>12764,整理得2n >128,解得n >7,故原不等式的初始值至少应为8.答案:810.(2011·辽宁沈阳模拟)用数学归纳法证明:(n +1)+(n +2)+…+(n +n )=n (3n +1)2(n ∈N *)的第二步中,当n =k +1时等式左边与n=k 时的等式左边的差等于________.解析:当n =k 时,等式左边为(k +1)+(k +2)+…+(k +k ),当n =k +1时,等式左边为(k +2)+(k +3)+…+(k +1+k +1),所以其差为3k +2.答案:3k +2三、解答题:本大题共2小题,共25分.解答应写出文字说明、证明过程或演算步骤.11.(12分)已知正数数列{a n }的前n 项和为S n ,且4a n -2S n =1,数列{b n }满足b n =2log 12a n ,n ∈N *.(1)求函数{a n }的通项公式a n 与{b n }的前n 项和T n ; (2)设数列{b na n }的前n 项和为U n ,求证:0<U n ≤4.解:(1)易得a 1=12.当n ≥2时,4a n -2S n =1, ① 4a n -1-2S n -1=1, ②①-②得2a n -4a n -1=0⇒a n =2a n -1, ∴a n a n -1=2(n ≥2), ∴数列{a n }是以a 1=12为首项,2为公比的等比数列,∴a n =2n -2,a 1=12也适合此式,故a n =2n -2.从而b n =4-2n ,其前n 项和T n =-n 2+3n .(2)证明:∵{a n }为等比数列、{b n }为等差数列,b n a n =4-2n2n -2.∴U n =212+01+-22+…+6-2n 2n -3+4-2n 2n -2, ③12U n =21+02+-222+…+6-2n 2n -2+4-2n 2n -1, ④ ③-④得12U n =4-21-22-222-…-22n -2-4-2n 2n -1,∴U n =4n2n -1.易知U 1=U 2=4,当n ≥3时,U n -U n -1=2-n2n -3<0,∴当n ≥3时,数列{U n }是递减数列, ∴0<U n ≤U 3=3. 综上,0<U n ≤4.12.(13分)在数列{a n },{b n }中,a 1=2,b 1=4,且a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列(n ∈N *).求a 2,a 3,a 4及b 2,b 3,b 4,由此猜测{a n },{b n }的通项公式,并证明你的结论.解:由条件得2b n =a n +a n +1,a 2n +1=b n b n +1,由此可得a 2=6,b 2=9,a 3=12,b 3=16,a 4=20,b 4=25. 猜测a n =n (n +1),b n =(n +1)2,n ∈N *. 用数学归纳法证明:①当n =1时,由已知a 1=2,b 1=4可得结论成立. ②假设当n =k (k ≥2且k ∈N *)时,结论成立,即 a k =k (k +1),b k =(k +1)2, 那么当n =k +1时,a k +1=2b k -a k =2(k +1)2-k (k +1)=(k +1)(k +2), b k +1=a 2k +1b k =(k +1)2(k +2)2(k +1)2(k +2)2. 所以当n =k +1时,结论也成立.由①②可知,a n =n (n +1),b n =(n +1)2对一切n ∈N *都成立.。