遗传学_各章复习重点整理
- 格式:doc
- 大小:167.50 KB
- 文档页数:30
遗传学复习资料遗传学复习资料第⼀章绪论1、遗传:亲代与⼦代之间同⼀性状相似的现象。
2、变异:亲代与⼦代、⼦代与⼦代之间出现性状差异的现象。
3、遗传学模式⽣物——果蝇①只有野⽣型基因存在时,果蝇才长出红眼,该基因突变后,不再长出红眼。
②野⽣型发⽣突变后,出现黄体,则称该突变基因为黄体基因4、孟德尔的豌⾖杂交试验——选择豌⾖的原因:稳定的,可以区分的性状;⾃花(闭花)授粉,没有外界花粉的污染;⼈⼯授粉也能结实。
易栽培,⽣长周期短;种⼦多,便于收集数据;具有许多稳定易区分的性状。
豌⾖花冠各部分结构较⼤,便于操作,易于控制。
成熟后,豌⾖种⼦保留在⾖荚内不会脱落,每粒种⼦的性状不会丢失。
第⼆章、第三章1、减数分裂过程1)减数分裂:是在配⼦形成过程中进⾏的⼀种特殊的有丝分裂。
包括两次连续的核分裂⽽染⾊体只复制⼀次,每个⼦细胞核中只有单倍数的染⾊体的细胞分裂形式。
2)过程:①减数分裂Ⅰ(最复杂最长)A、前期Ⅰ:细线期——出现姐妹染⾊单体,但染⾊质浓缩为细长线状,看不出染⾊体的双重性,核仁依然存在。
在细线期和整个的前期中染⾊体持续地浓缩。
偶线期——同源染⾊体开始联会,出现联会复合体。
(联会复合体=四联体=⼆价体)。
粗线期——染⾊体完全联会,联会配对完毕,缩短变粗,但核仁仍存在。
⼀对配对的同源染⾊体称⼆价体或四联体。
⾮姐妹染⾊单体间可能发⽣交换。
双线期——染⾊体继续变短变粗,双价体中的两条同源染⾊体彼此分开。
在⾮姐妹染⾊单体间可见交叉结构,交叉结构的出现是发⽣过交换的有形结果。
交叉数⽬逐渐减少,在着丝粒两侧的交叉向两端移动,这种现象称为交叉端化。
终变期——染⾊体进⼀步收缩变粗变短,便于分裂移动,分裂进⼊中期。
B、中期Ⅰ:核仁、核膜消失,各个双价体排列在⾚道板上,着丝粒分居于⾚道板的两侧,附着在纺缍丝上,⽽有丝分裂的中期着丝粒位于⾚道板上。
中期I 着丝粒并不分裂。
C、后期Ⅰ:双价体中的同源染⾊体彼此分开,移向两极,但同源染⾊体的各个成员各⾃的着丝粒并不分开。
第一章绪论一、名词解释:1、遗传病(genetic disease):是指遗传物质改变(基因突变或染色体畸变)所引起的疾病。
2、先天性疾病:是指个体出生后即表现出来的疾病。
3、家族性疾病:是指某些表现出家族性聚集现象的疾病,即在一个家族中有多人患同一种疾病。
二、简答(1)遗传病的主要特征:①垂直传递:遗传病是在上、下代之间垂直传递。
②基因突变或染色体畸变是发生遗传病的根本原因,也是遗传病不同于其他疾病的主要特征。
③生殖细胞或受精卵发生的遗传物质改变才能遗传,而体细胞中遗传物质的改变,并不能向后代传递。
④遗传病常有家族性聚集现象。
遗传病患者家系中,亲缘关系越近,发病机率越高,随着亲缘关系疏远,发病率降低。
(2)遗传病的分类:分类依据:根据遗传物质改变的不同和遗传的特点不同。
㈠单基因病1.常染色体显性遗传病(AD);2.常染色体隐性遗传病(AR);3.X连锁隐性遗传病; 4.X连锁显性遗传病;5.Y连锁遗传病6.线粒体遗传病㈡多基因病㈢染色体病㈣体细胞遗传病第二章基因第一节基因的结构与功能一、名词解释:1、基因(gene):是合成一种有功能的多肽链或者RNA分子所必需的一段完整的DNA序列。
2、断裂基因:真核生物结构基因的DNA顺序包括编码顺序和非编码顺序两部分。
编码顺序在DNA分子中是不连续的,被非编码顺序分隔开,形成镶嵌排列的断裂形式,因此称为断裂基因。
3、外显子(exon):真核生物结构基因的DNA编码顺序称为外显子。
4、内含子(intron):真核生物结构基因的DNA非编码顺序称为内子。
5、多基因家族(multigene family):是指由某一共同祖先基因经过重复和变异所产生的一组基因。
根据基因在染色体的分布,可分为基因簇和基因超家族两种类型。
6、假基因(pseudogene):其基因序列与具有编码功能的基因序列类似,因为不能编码蛋白质,所以称为假基因。
2简答二、问答1、人类DNA的存在形式有哪几种?(1)高度重复顺序(卫星DNA,反向重复顺序)(2)中度重复顺序(短分散元件,长分散元件)(3)单一顺序第三节基因突变一、名词解释1、基因突变(gene mutation):是指DNA分子中的核苷酸顺序发生改变,使遗传密码编码产生相应的改变,导致组成蛋白质的氨基酸发生变化,以致引起表型的改变。
遗传学复习整理资料绪论遗传学:是研究生物遗传和变异的科学。
遗传学经历了两个阶段;经典遗传学,现代遗传学遗传学经历了三个水平;个体遗传学、细胞遗传学,分子遗传学1866孟德尔,豌豆,发表“植物杂交试验”论文1910.摩尔根。
果蝇,创办了基因论,证明了基因就是在染色体上而且呈圆形线性排序1953,沃森(美)和克里克(英),提出了著名的dna双螺旋结构,三大定律:分离定律,独立分配定律,连锁遗传定律遗产研习和林木遗传改进在林业生产上的促进作用答:1.直接指导作用,如杂交引种,种子园的建立,加速育种的进程。
2.引发世界森林增加的两大因素。
不合理的砍伐制度;不合理的唐日制3.林木遗传的改进促进作用。
导致成活率低,产量提升,品质提升。
1.什么是遗传,什么是变异,有何区别与联系?答遗传――是指亲代与子代之间相似的现象。
变异――就是指亲代与子代之间、子代个体之间存有差异的现象。
遗传与与变异的辩证关系:既对立又统一,在一定条件下相互转化。
一方面,遗传使生物的性状得到继承和积累,这种继承和积累相对稳定;另一方面,变异产生新的性状,是物种不断发展演化,适应不断变化的环境。
因此,遗传不单是消极、保守的,同时也是积极的、创新的。
变异不单是负面的、消失的,也是进取的,创造的。
孟德尔遗传理论的精髓就是什么?遗传因子是独立的,呈颗粒状,互不融合,互补影响,独立分离,自由组合2.遗传学有几个主要分支,研究内容及手段?请问:经典遗传学、细胞遗传学、分子遗传学、生物统计数据遗传学3.遗传学在社会生产生活中的促进作用?答:1.在生产实践上,遗传学对农林业科学有着直接的指导作用。
2.遗传学在医学中同样起至着关键的指导作用。
人类疾病的产生及其遗传机制都须要遗传学科学知识做为指导。
3.遗传学就是人类计划生育,优生优育的理论基石。
4.遗传学在社会法制问题化解中也起著不可忽视的促进作用。
第一章形成染色体的结构单位:核小体原核细胞:只有拟核,没有细胞核和细胞器,结构较简单。
遗传学复习提纲刘庆昌绪言1、遗传学研究的对象,遗传、变异、选择2、遗传学的发展,遗传学的发展阶段,主要遗传学家的主要贡献3、遗传学在科学和生产发展中的作用第一章遗传的细胞学基础1、细胞的结构和功能:原核细胞、真核细胞、染色质、染色体2、染色体的形态和数目:染色体的形态特征、大小、类别,染色质的基本结构、染色体的结构模型,染色体的数目,核型分析3、细胞的有丝分裂:细胞周期、有丝分裂过程及遗传学意义4、细胞的减数分裂:减数分裂过程及遗传学意义5、配子的形成和受精:生殖方式、雌雄配子的形成、受精、直感现象、无融合生殖6、生活周期:生活周期、世代交替、低等植物的生活周期、高等植物的生活周期、高等动物的生活周期第二章遗传物质的分子基础1、DNA作为主要遗传物质的证据:间接证据、直接证据(细菌的转化、噬菌体的侵染与繁殖、烟草花叶病毒的感染与繁殖)2、核酸的化学结构:DNA和RNA及其分布、DNA和RNA的分子结构3、DNA的复制:DNA复制的一般特点、原核生物DNA合成、真核生物DNA合成的特点以及与原核生物DNA合成的主要区别4、RNA的转录及加工:三种RNA分子、RNA合成的一般特点、原核生物RNA的合成、真核生物RNA的转录及加工5、遗传密码与蛋白质翻译:遗传密码及其特征、蛋白质的合成过程、中心法则及其发展第三章孟德尔遗传1、分离规律:孟德尔的豌豆杂交试验、性状分离、分离现象的解释、表现型和基因型、分离规律的验证(测交法、自交法、F1花粉鉴定法)、分离比例实现的条件、分离规律的应用2、独立分配规律:两对相对性状的遗传及其分离比、独立分配现象的解释、独立分配规律的验证(测交法、自交法)、多对基因的遗传、独立分配规律的应用,某2测验3、孟德尔规律的补充和发展:显隐性关系的相对性、复等位基因、致死基因、非等位基因间的相互作用、多因一效和一因多效第四章连锁遗传和性连锁1、连锁和交换:连锁遗传的发现及解释、完全连锁和不完全连锁、交换及其发生机制2、交换值及其测定:交换值、交换值的测定(测交法、自交法)3、基因定位与连锁遗传图:基因定位(两点测验、三点测验、干扰与符合)、连锁遗传图4、真菌类的连锁与交换:着丝点作图5、连锁遗传规律的应用6、性别决定与性连锁:性染色体、性别决定、性连锁、限性遗传、从性遗传第五章基因突变1、基因突变的时期和特征:基因突变的时期、基因突变的一般特征2、基因突变与性状表现:显性突变和隐性突变的表现、大突变和微突变的表现3、基因突变的鉴定:植物基因突变的鉴定(真实性、显隐性、突变频率)、生化突变的鉴定(营养缺陷型及其鉴定)、人类基因突变的鉴定24、基因突变的分子基础:突变的分子机制(碱基替换、缺失、插入)、突变的修复(光修复、暗修复、重组修复、SOS修复),转换与颠换,DNA防护机制(简并性、回复突变、抑制突变、多倍体、致死突变)5、基因突变的诱发:物理因素诱变(电离辐射与非电离辐射)、化学因素诱变(碱基类似物、DNA诱变剂)第六章染色体结构变异1、缺失:类型、细胞学鉴定、遗传效应2、重复:类型、细胞学鉴定、遗传效应3、倒位:类型、细胞学鉴定、遗传效应4、易位:类型、细胞学鉴定、遗传效应5、染色体结构变异的应用:基因定位、果蝇的CIB测定法、利用易位制造玉米核不育系的双杂合保持系、易位在家蚕生产上的利用、利用易位疏花疏果防治害虫第七章染色体数目变异1、染色体的倍数性变异:染色体组及其整倍性、整倍体与非整倍体(名称、染色体组成、联会方式)2、同源多倍体的形态特征、同源多倍体的联会和分离(染色体随机分离、染色单体随机分离)3、异源多倍体、多倍体的形成与应用、同源联会与异员源联会(烟草、小麦)、单倍体4、非整倍体:亚倍体(单体、缺体)、超倍体(三体、四体),三体的基因分离5、非整倍体的应用:单体测验、三体测验、染色体替换第八章数量遗传1、数量性状的特征:数量性状的特征、多基因假说、超亲遗传2、数量性状遗传研究的基本统计方法:均值、方差、标准差3、遗传模型:加性-显性-上位性效应及其与环境的互作,显性3表现形式4、遗传率的估算及其应用(广义遗传力和狭义遗传力)5、数量性状基因定位,单标记分析法,区间定位法,复合区间定位法,应用(3方面)第九章近亲繁殖和杂种优势1、近交与杂交的概念、自交和回交的遗传效应,纯合率2、纯系学说3、杂种优势的表现和遗传理论(显性假说、超显性假说、上位性假说)4、杂种优势利用与固定第十章细菌和病毒的遗传1、细菌和病毒遗传研究的意义:细菌、病毒、细菌和病毒在遗传研究中的优越性2、噬菌体的遗传分析:噬菌体的结构(烈性噬菌体、温和性噬菌体)、噬菌体的基因重组与作图3、细菌的遗传分析转化:转化的概念与过程、转化和基因重组作图接合:接合的概念与过程、U型管实验、F因子及其存在状态、中断杂交试验及染色体作图性导:性导的概念与过程、性导的作用转导:转导的概念与过程、利用普遍性转导进行染色体作图第十一章细胞质遗传1、细胞质遗传的概念和特点:细胞质遗传的概念、细胞质遗传的特点2、母性影响:母性影响的概念及其与母性遗传的区别3、叶绿体遗传:叶绿体遗传的表现、叶绿体遗传的分子基础4、线粒体遗传:线粒体遗传的表现、线粒体遗传的分子基础5、共生体和质粒决定的染色体外遗传:共生体的遗传(卡巴粒)、4质粒的遗传6、植物雄性不育的遗传:雄性不育的类别及其遗传特点(核不育型和质核不育型、孢子体不育和配子体不育、单基因不育和多基因不育、不育基因的多样性)、雄性不育的发生机理、雄性不育的利用(三系法、二系法)第十二章基因工程1、基因工程概述4、重组DNA分子5、将目的基因导入受体细胞(常用导入方法)、转基因生物的鉴定、基因工程的应用、转基因生物(食品)的安全问题第十三章基因组学1、基因组学的概念与概述、C值、N值2、基因组学的研究内容:结构基因组学、功能基因组学、蛋白质组学3、基因组图谱的构建(遗传图谱与标记种类、物理图谱)4、基因组测序策略:鸟枪法、重叠克隆群法5、基因组图谱的应用(5个方面)6、生物信息学与蛋白质组学第十四章基因表达的调控1、基因的概念及其发展、基因的微细结构、顺反测验、基因的作用与性状的表达2、原核生物的基因调控:转录水平的调控,乳糖操纵元、色氨酸操纵元;翻译水平的调控3、真核生物的基因调控:DNA水平、染色质水平(组蛋白、非组蛋白)、转录水平(顺式作用元件、反式作用因子)、翻译水平的调5控、蛋白质加工4、原核生物与真核生物在基因调控上的区别第十五章遗传与发育1、细胞核和细胞质在个体发育中的作用:细胞质在细胞生长分化中的作用、细胞核在细胞生长分化中的作用、细胞核与细胞质在个体发育中的相互依存、环境条件的影响2、基因对个体发育的控制:个体发育的阶段性、基因与发育模式、基因与发育过程3、细胞的全能性第十六章群体遗传与进化1、群体的遗传平衡:等位基因频率和基因型频率、哈迪-魏伯格定律及其应用2、改变基因平衡的因素:突变、选择、遗传漂变、迁移3、达尔文的进化学说及其发展:生物进化的概念、达尔文的进化学说及其发展、分子水平的进化4、物种的形成:物种概念、物种形成的方式(渐变式、爆发式)6。
遗传学部分整理复习提纲遗传学部分整理复习提纲第⼀章:绪论1. 最重要⼈物的贡献、年份、论著1900年,孟德尔规律的重新发现标志遗传学的诞⽣,贝特⽣发现了连锁现象,但做出了错误的解释,发现连锁与交换规律的科学家是摩尔根。
约翰⽣最先提出“基因”⼀词。
斯特蒂⽂特绘制出第⼀张遗传连锁图。
1953年,⽡特森和克⾥克提出DNA分⼦结构模式理论。
第⼆章:遗传的细胞学基础1. 重要概念:染⾊体:间期细胞核内由DNA、组蛋⽩、⾮组蛋⽩及少量RNA 组成的线性复合结构。
异染⾊质:染⾊质上染⾊深,通常不含有功能基因,在细胞周期中变化较⼩的区域,具有这种固缩特性的染⾊体。
A染⾊体:真核细胞染⾊体组的任何正常染⾊体,包括常染⾊体和性染⾊体(A染⾊体在遗传上是重要的,对个体的正常⽣活和繁殖是必需的。
其数⽬的增减和结构的变化对机体会造成严重的后果);B染⾊体:在⼀组基本染⾊体外,所含的多余染⾊体或染⾊体断⽚称为B染⾊体,它们的数⽬和⼤⼩变化很多。
⼀般在顶端都具有着丝粒,⼤多含有较多的异染⾊质。
随体:位于染⾊体次缢痕末端的、圆形或圆柱形的染⾊体⽚段。
胚乳直感(花粉直感):在3n胚乳的性状上由于精核的影响⽽直接表现⽗本的某些性状。
果实直感:种⽪或果⽪组织在发育过程中由于花粉影响⽽表现⽗本的某些性状。
⽆融合⽣殖:雌雄配⼦不发⽣核融合的⼀种⽆性⽣殖⽅式。
巨型染⾊体:⽐普通染⾊体显著巨⼤的染⾊体的总称。
有丝分裂⼀般没有同源染⾊体联会,果蝇唾腺中的多线染⾊体,染⾊质线不断复制,但是染⾊体着丝粒不分裂。
联会:在减数分裂前期过程中,同源染⾊体彼此配对的过程。
⼆价体:减数分裂前期Ι的偶线期,同源染⾊体联会形成联会复合体的⼀对染⾊体。
单价体:在特殊情况,减数分裂前期Ι的偶线期联会时,存在不能配对的染⾊体。
同源染⾊体:形态、结构和功能相似的⼀对染⾊体,⼀条来⾃⽗本,⼀条来⾃母本。
组型分析:利⽤染⾊体分带技术等,在染⾊体长度、着丝粒位置、长短臂⽐、随体有⽆特点基础上,进⼀步根据染⾊的显带表现区分出各对同源染⾊体。
第一章绪论1.什么是遗传,变异?遗传、变异与环境的关系?(1).遗传(heredity):生物亲子代间相似的现象。
(2).变异(variation):生物亲子代之间以及子代不同个体之间存在差异的现象。
遗传和变异的表现与环境不可分割,研究生物的遗传和变异,必须密切联系其所处的环境。
生物与环境的统一,这是生物科学中公认的基本原则。
因为任何生物都必须具有必要的环境,并从环境中摄取营养,通过新陈代谢进行生长、发育和繁殖,从而表现出性状的遗传和变异。
2.遗传学诞生的时间,标志?1900年孟德尔遗传规律的重新发现 标志着遗传学的建立和开始发展)第二章遗传的细胞学基础1.同源染色体和非同源染色体的概念?答:同源染色体:形态和结构相同的一对染色体;异源染色体:这一对染色体与另一对形态结构不同的染色体,互称为非同源染色体。
2.染色体和姐妹染色单体的概念,关系?染色体:在细胞分裂过程中,染色质便卷缩而呈现为一定数目和形态的染色体姐妹染色单体:有丝分裂中,由于染色质的复制而形成的物质3.染色质和染色体的关系?染色体和染色质实际上是同一物质在细胞分裂周期过程中所表现的不同形态。
4.不同类型细胞的染色体/染色单体数目?(根尖、叶、性细胞,分裂不同时期(前期、中期)的染色体数目的动态变化?)答:有丝分裂:间期前期中期后期末期染色体数目:2n 2n 2n 4n 2nDNA分子数:2n-4n 4n 4n 4n 2n染色单体数目:0-4n 4n 4n 0 0减数分裂:*母细胞初级*母细胞次级*母细胞*细胞染色体数目:2n 2n n(2n) nDNA分子数:2n-4n 4n 2n n染色单体数目:0-4n 4n 2(0) 05.有丝分裂和减数分裂的特点?遗传学意义?在减数分裂过程中发生的重要遗传学事件(交换、交叉,同源染色体分离,姐妹染色单体分裂?基因分离?)特点:细胞进行有丝分裂具有周期性。
即连续分裂的细胞,从一次分裂完成时开始,到下一次分裂完成时为止,为一个细胞周期。
跟老师在书上勾的差不多医学遗传学重点、考点第一章概论学习要求:识记:医学遗传学及遗传病的概念;理解:遗传病的分类;医学遗传学的各研究领域;医学遗传学在现代医学中的地位。
复习要点:医学遗传学:医学遗传学是医学和遗传学相互渗透的一门边缘学科。
它研究人类疾病和遗传的关系,主要研究遗传病的发病机理、传递规律、诊断、治疗和预防等,从而降低人群中的发病率,提高人类的健康素质。
遗传病:是指生殖细胞或受精卵的遗传物质在数量、结构和功能上发生改变所引起的疾病。
遗传病的分类:染色体病、单基因病、多基因病、体细胞遗传病和线粒体遗传病。
第二章遗传的分子基础学习要求:识记:基因、半保留复制、转录、翻译、基因突变等概念;理解:结构基因的结构特点;中心法则的内容。
复习要点:基因:是特定的DNA 片段,带有遗传信息,可通过控制细胞内RNA和蛋白质(酶)的合成,进而决定生物的遗传性状。
半保留复制:DNA的复制方式。
DNA的双链解开,两条单链各自作为模板,在引物酶的催化下,以游离的三磷酸核苷酸为原料,按碱基互补原则合成新的DNA链,以后新合成的互补链和各自的模板链互相盘绕,形成稳定的DNA结构。
这样新的子代DNA 中,一条单链来自亲代,另一条单链是新合成的,就称为半保留复制。
转录:是指以DNA为模板,在RNA聚合酶作用下合成RNA的过程。
翻译:指mRNA指导下的蛋白质生物合成过程。
基因突变:是指基因的核苷酸序列或数目发生改变。
人类结构基因的结构特点:编码序列不连续,被非编码序列所分隔,是典型的断裂基因。
人类结构基因分为:1 编码区,包括外显子和内含子。
2 侧翼序列,位于编码区两侧,包括调控区、前导区和尾部区。
调控区包括启动子、增强子和终止子等。
前导区和尾部区分别为编码区外侧5’端和3’端的可转录的非翻译区。
中心法则:是关于遗传信息复制、转录和翻译等过程中的传递的法则。
DNA上的基因先转录成mRNA,再翻译成细胞内的蛋白质(酶),进而决定生物的性状。
遗传学重点整理⼤纲遗传学重点整理⼤纲第⼀章绪论1、遗传学发展中的⼏个重要⾥程碑。
答:(1)1859年,达尔⽂出版了巨著《物种起源》提出著名的进化论。
(2)1985年,孟德尔根据其8年的植物杂交试验结果,在2⽉8⽇当地科学协会上宣读了⼀篇题为“植物杂交试验”的论⽂。
1900年宣告遗传学诞⽣,孟德尔为遗传学的奠基⼈。
(3)1910年摩尔根创⽴了连锁定律并证实了基因在染⾊体上以直线排列,提出了遗传的染⾊体理论。
(4)1953年沃森和克⾥克建⽴了DNA的双螺旋模型结构,并与1958年提出了中⼼法则。
第⼆章遗传的细胞学基础1、在遗传上有丝分裂和减数分裂哪⼀个更有意义?答:有丝分裂的意义:保证把S期已经复制好的DNA平均分配到两个⼦细胞中去,以保证遗传的连续性和稳定性。
减数分裂的意义:(1)DNA复制⼀次,细胞分裂两次,保证了有性⽣殖⽣物个体世代之间染⾊体数⽬的稳定。
(2)为有性⽣殖过程中创造变异提供了遗传的物质基础。
同源染⾊体分离,⾮同源染⾊体的⾃由组合,⾮姐妹染⾊单体的交叉互换等保证物种的多样性。
因此,在遗传学上减数分裂更有意义。
第四章孟德尔式遗传分析显性基因:在杂合状态下,能够表现其表型效应的基因,⼀般以⼤写字母表⽰。
隐性基因:在杂合的状态下,不表现其表型效应的基因,⼀般以⼩写字母表⽰。
等位基因:在同源染⾊体上占据相同座位的两个不同形式的基因,⼀般都是由突变所造成的。
杂交:在遗传分析中有意识地将两个基因型不同的亲本进⾏交配。
性状:遗传学中把⽣物个体的形态,结构,⽣理,⽣化等特征,如植株的⾼度、种⽪的颜⾊,花⾊等。
遗传病:遗传病或遗传性疾病是指其发⽣需要有⼀定的遗传基础,通过这种遗传基础,按⼀定的⽅式传于后代的疾病。
单基因病:是指受⼀对主基因影响⽽发⽣疾病,符合孟德尔式遗传。
可分为AD、AR、XD、XR、Y连锁和线粒体遗传。
常染⾊体显性遗传病(AD):⼀种疾病的致病基因位于1~22号染⾊体上是显性基因,这种遗传⽅式称为AD遗传病。
遗传学总结(完整版)动物遗传学(总结)第一章绪论1、遗传(heredity):后代和前代的相似性。
2、变异(variation):子代与亲代或子代与子代之间的不相似性。
3、遗传学:是研究遗传物质的结构与功能及遗传信息的传递与表达规律的一门科学。
第二章遗传的细胞学基础一、与遗传有关的细胞器1、线粒体:由双层膜围成的与能量代谢有关的细胞器,主要作用是通过氧化磷酸化合成ATP。
2、内质网:由单层膜围成一个连续的管道系统。
粗面内质网,表面附有核糖体,参与蛋白质的合成和加工;光面内质网表面没有核糖体,参与脂类合成。
3、核糖体:为椭球形的粒状小体,核糖体无膜结构,主要由蛋白质(40%)和rRNA(60%)构成,是细胞内蛋白质合成的场所。
4、中心体:中心粒加中心粒周边物质称为中心体。
或指动物真核细胞质中由两个中心粒组成的物质。
5、核仁:核仁是真核细胞细胞核内的生产核糖体的机器。
二、染色质与染色体1、染色质:是指染色体在细胞分裂的间期所表现的形态,呈纤细的丝状结构,含有许多基因的自主复制核酸分子。
2、染色体:在细胞分裂时期,在细胞核中容易被碱性染料染色、具有一定数目和形态结构的的杆状体。
3、染色质的类型P23:常染色质和异染色质染色质。
其中异染色质又分为结构染色质、兼性异染色质4、染色体的一般形态结构及分类P25:(1)形态结构:通常由长臂、短臂、着丝点、次缢痕、随体及端粒几部分组成。
(2)分类:A、B染色质、巨大染色体。
其中巨大染色体又分为多线染色体、灯刷染色体5、染色体的超微结构P26:两条反向平行的DNA双链。
:6、一倍体:只含有一个染色体组的细胞或生物(X)。
7、二倍体:由受精卵发育而来,且体细胞中含有两个染色体组的生物个体。
(2n)8、单倍体:含有配子染色体数的生物。
(N/2)9、单体:指比正常二倍体缺少一个染色体的个体。
(2n-1)10、缺体:指比正常二倍体(2n)缺少一对同源染色体的个体。
(2n-2)11、三体:指比正常二倍体多一个染色体的个体。
第一章细胞学遗传基础一、名词解释:1 染色质 2异固缩3 同源染色体4 非同源染色体 5 联会6 二价体:7 花粉直感 8 端粒二、简答题1.简述有丝分裂和减数分裂的主要区别?2.减数分裂的遗传学意义。
3.染色体与染色质间的关系。
(绳珠模型)。
4.第四章孟德尔遗传一、名词解释:性状:相对性状:等位基因基因型:不完全显性:共显性:多因一效一因多效交换值遗传距离干扰(干涉):性染色体伴性遗传:从性遗传连锁遗传连锁图二、简答题1 测交及其特点。
2 自由组合规律的实质。
3 等位基因间作用。
第五章连锁和遗传规律一、简答题简述三点测验基因定位的步骤。
二、分析题1. 在杂合体内,a和b之间的交换值为6%,b和y之间的交换值为10%。
在没有干扰的条件下,这个杂合体自交,能产生几种类型的配子;在符合系数为0.26时,配子的比例如何?2. 番茄长蔓(T)为短蔓(t)的显性,圆果(G)为长果(g)的显性,红果(R)为黄果(r)的显性,前两个单位性状的基因位于同一条染色体上,重组率为20%。
今以长蔓、红色果、圆果的纯种同短蔓、黄色果、长果个体杂交。
试写出该组合F2果色与茎蔓,果色与果形,茎蔓与果形各对性状之间表现型的比例。
3. 已知某生物的a, b, c三个基因位于同一条染色体上,用两纯合亲本杂交F1(+a+b+c)与三隐性纯合个体测交,获得得以下结果:(1)两个纯合体亲本的基因型是什么?(2)这三个基因在染色体上的排列顺序如何?(3)求这三个基因两两间的交换值及双交换的符合系数;(4)绘制这三个基因间的连锁遗传图。
1.a, b, c三个基因的连锁关系如图所示:4. 如果符合系数为0.40,预期在abc+++ ×abcabc 的杂交后代中表现型结构(类型与比例)?第六章染色体变异一、名称染色体组(基因组)整倍体:多倍体同源多倍体:异源多倍体:单倍体:非整倍体:超倍体染色体桥亚倍体三价体位置效应一倍体剂量效应二、简答题同源三倍体高度不育的原因。
遗传学复习重点第一章绪论1、遗传学:是研究生物遗传和变异的科学遗传:亲代与子代相似的现象就是遗传。
如“种瓜得瓜、种豆得豆”变异:亲代与子代、子代与子代之间,总是存在着不同程度的差异,这种现象就叫做变异。
2、遗传学研究就是以微生物、植物、动物以及人类为对象,研究他们的遗传和变异。
遗传是相对的、保守的,而变异是绝对的、发展的。
没有遗传,不可能保持性状和物种的相对稳定性;没有变异,不会产生新的性状,也就不可能有物种的进化和新品种的选育。
遗传、变异和选择是生物进化和新品种选育的三大因素。
3、1953年瓦特森和克里克通过X射线衍射分析的研究,提出DNA分子结构模式理念,这是遗传学发展史上一个重大的转折点。
第二章遗传的细胞学基础原核细胞:各种细菌、蓝藻等低等生物有原核细胞构成,统称为原核生物。
真核细胞:比原核细胞大,其结构和功能也比原核细胞复杂。
真核细胞含有核物质和核结构,细胞核是遗传物质集聚的主要场所,对控制细胞发育和性状遗传起主导作用。
另外真核细胞还含有线粒体、叶绿体、内质网等各种膜包被的细胞器。
真核细胞都由细胞膜与外界隔离,细胞内有起支持作用的细胞骨架。
染色质:在细胞尚未进行分裂的核中,可以见到许多由于碱性染料而染色较深的、纤细的网状物,这就是染色质。
染色体:含有许多基因的自主复制核酸分子。
细菌的全部基因包容在一个双股环形DNA 构成的染色体内。
真核生物染色体是与组蛋白结合在一起的线状DNA双价体;整个基因组分散为一定数目的染色体,每个染色体都有特定的形态结构,染色体的数目是物种的一个特征。
染色单体:由染色体复制后并彼此靠在一起,由一个着丝点连接在一起的姐妹染色体。
着丝点:在细胞分裂时染色体被纺锤丝所附着的位置。
一般每个染色体只有一个着丝点,少数物种中染色体有多个着丝点,着丝点在染色体的位置决定了染色体的形态。
细胞周期:包括细胞有丝分裂过程和两次分裂之间的间期。
其中有丝分裂过程分为:(1)DNA合成前期(G1期);(2)DNA合成期(S期);(3)DNA合成后期(G2期);(4)有丝分裂期(M期)。
同源染色体:生物体中,形态和结构相同的一对染色体。
异源染色体:生物体中,形态和结构不相同的各对染色体互称为异源染色体。
无丝分裂:也称直接分裂,只是细胞核拉长,缢裂成两部分,接着细胞质也分裂,从而成为两个细胞,整个分裂过程看不到纺锤丝的出现。
在细胞分裂的整个过程中,不象有丝分裂那样经过染色体有规律和准确的分裂。
有丝分裂:包含两个紧密相连的过程:核分裂和质分裂。
即细胞分裂为二,各含有一个核。
分裂过程包括四个时期:前期、中期、后期、末期。
在分裂过程中经过染色体有规律的和准确的分裂,而且在分裂中有纺锤丝的出现,故称有丝分裂。
单倍体:具有一组基本染色体数的细胞或者个体。
二倍体:具有两组基本染色体数的细胞或者个体。
联会:减数分裂中,同源染色体的配对过程。
胚乳直感:植物经过了双受精,胚乳细胞是3n,其中2n来自极核,n来自精核,如果在3n胚乳的性状上由于精核的影响而直接表现父本的某些性状,这种现象称为胚乳直感。
果实直感:植物的种皮或果皮组织在发育过程中由于花粉影响而表现父本的某些性状,称为果实直感。
2.细胞的膜体系包括哪些膜结构?细胞质里包括哪些主要的细胞器?各有什么特点?答:细胞的膜体系包括膜结构有:细胞膜、线粒体、质体、内质网、高尔基体、液泡、核膜。
细胞质里主要细胞器有:线粒体、叶绿体、核糖体、内质网、中心体。
3.一般染色体的外部形态包括哪些部分?染色体形态有哪些类型?答:一般染色体的外部形态包括:着丝粒、染色体两个臂、主溢痕、次溢痕、随体。
一般染色体的类型有:V型、L型、棒型、颗粒型。
4.植物的10个花粉母细胞可以形成:多少花粉粒?多少精核?多少管核?又10个卵母细胞可以形成:多少胚囊?多少卵细胞?多少极核?多少助细胞?多少反足细胞?答:植物的10个花粉母细胞可以形成:花粉粒:10×4=40个;精核:40×2=80个;管核:40×1=40个。
10个卵母细胞可以形成:胚囊:10×1=10个;卵细胞:10×1=10个;极核:10×2=20个;助细胞:10×2=20个;反足细胞:10×3=30个。
6.玉米体细胞里有10对染色体,写出下面各组织的细胞中染色体数目。
答:⑴. 叶:2n=20(10对)⑵. 根:2n=20(10对)⑶. 胚乳:3n=30 ⑷. 胚囊母细胞:2n=20(10对)⑸. 胚:2n=20(10对)⑹. 卵细胞:n=10⑺. 反足细胞n=10 ⑻. 花药壁:2n=20(10对)⑼. 花粉管核(营养核):n=107.假定一个杂种细胞里有3对染色体,其中A、B、C来表示父本、A'、B'、C'来自母本。
通过减数分裂能形成几种配子?写出各种配子的染色体组织。
答:能形成2n=23=8种配子:ABC ABC' AB'C A'BC A'B'C A'BC' AB'C' A'B'C'5.植物的双受精是怎样的?用图表示。
答:植物被子特有的一种受精现象。
当花粉传送到雌雄柱头上,长出花粉管,伸入胚囊,一旦接触助细胞即破裂,助细胞也同时破坏。
两个精核与花粉管的内含物一同进入胚囊,这时1个精核(n)与卵细胞(n)受精结合为合子(2n),将来发育成胚。
同时另1精核(n)与两个极核(n+n)受精结合为胚乳核(3 n),将来发育成胚乳。
这一过程就称为双受精。
8.有丝分裂和减数分裂有什么不同?用图表示并加以说明。
答:有丝分裂只有一次分裂。
先是细胞核分裂,后是细胞质分裂,细胞分裂为二,各含有一个核。
称为体细胞分裂。
减数分裂包括两次分裂,第一次分裂染色体减半,第二次染色体等数分裂。
细胞在减数分裂时核内,染色体严格按照一定的规律变化,最后分裂成为 4个子细胞,发育成雌性细胞或者雄性细胞,各具有半数的染色体。
也称为性细胞分裂。
减数分裂偶线期同源染色体联合称二价体。
粗线期时非姐妹染色体间出现交换,遗传物质进行重组。
双线期时各个联会了的二价体因非姐妹染色体相互排斥发生交叉互换因而发生变异。
有丝分裂则都没有。
减数分裂的中期I 各个同源染色体着丝点分散在赤道板的两侧,并且每个同源染色体的着丝点朝向哪一板时随机的,而有丝分裂中期每个染色体的着丝点整齐地排列在各个分裂细胞的赤道板上,着丝点开始分裂。
细胞经过减数分裂,形成四个子细胞,,染色体数目成半,而有丝分裂形成二个子细胞,染色体数目相等。
9.有丝分裂和减数分裂意义在遗传学上各有什么意义在遗传学上?l 有丝分裂的遗传学意义:(1)维持个体的正常生长和发育。
使子细胞获得与母细胞同样数量和质量的染色体(2)保证了物种的连续性和持续性。
均等式的细胞分裂,使每一个细胞都得到与当初受精卵所具有的同一套遗传性息l 减数分裂的遗传学意义:(1)维持物种染色体数目的稳定性(2)为生物的变异提供了重要的物质基础10.何谓无融合生殖?它包含有哪几种类型?答:无融合生殖是指雌雄配子不发生核融合的一种无性生殖方式,被认为是有性生殖的一种特殊方式或变态。
它有以下几种类型:⑴. 营养的无融合生殖;⑵. 无融合结子:包括①. 单倍配子体无融合生殖;②. 二倍配子体无融合生殖;③. 不定胚;⑶. 单性结实。
第三章遗传物质的分子基础半保留复制: DNA分子的复制,首先是从它的一端氢键逐渐断开,当双螺旋的一端已拆开为两条单链时,各自可以作为模板,进行氢键的结合,在复制酶系统下,逐步连接起来,各自形成一条新的互补链,与原来的模板单链互相盘旋在一起,两条分开的单链恢复成DNA 双分子链结构。
这样,随着DNA分子双螺旋的完全拆开,就逐渐形成了两个新的DNA分子,与原来的完全一样。
这种复制方式成为半保留复制。
冈崎片段:在DNA复制叉中,后随链上合成的DNA不连续小片段称为冈崎片段。
转录:由DNA为模板合成RNA的过程。
RNA的转录有三步:①. RNA链的起始;②. RNA链的延长;③. RNA链的终止及新链的释放。
翻译:以RNA为模版合成蛋白质的过程即称为遗传信息的翻译过程。
小核RNA:是真核生物转录后加工过程中RNA的剪接体的主要成分,属于一种小分子RNA,可与蛋白质结合构成核酸剪接体。
不均一核RNA:在真核生物中,转录形成的RNA中,含有大量非编码序列,大约只有25%RNA 经加工成为mRNA,最后翻译为蛋白质。
因为这种未经加工的前体mRNA在分子大小上差别很大,所以称为不均一核RNA。
遗传密码:是核酸中核苷酸序列指定蛋白质中氨基酸序列的一种方式,是由三个核苷酸组成的三联体密码。
密码子不能重复利用,无逗号间隔,存在简并现象,具有有序性和通用性,还包含起始密码子和终止密码子。
简并:一个氨基酸由一个以上的三联体密码所决定的现象。
多聚合糖体:一条mRNA分子可以同时结合多个核糖体,形成一串核糖体,成为多聚核糖体。
中心法则:蛋白质合成过程,也就是遗传信息从DNA-mRNA-蛋白质的转录和翻译的过程,以及遗传信息从DNA到DNA的复制过程,这就是生物学的中心法则。
同义密码子:代表一种氨基酸的所有密码子。
反密码子:tRNA顶端有三个暴露的碱基与mRNA链上互补的密码子配对。
2.如何证明DNA是生物的主要遗传物质?答:DNA作为生物的主要遗传物质的间接证据:⑴. 每个物种不论其大小功能如何,其DNA含量是恒定的。
⑵. DNA在代谢上比较稳定。
⑶. 基因突变是与DNA分子的变异密切相关的。
DNA作为生物的主要遗传物质的直接证据:⑴. 细菌的转化已使几十种细菌和放线菌成功的获得了遗传性状的定向转化,证明起转化作用的是DNA;⑵. 噬菌体的侵染与繁殖主要是由于DNA进入细胞才产生完整的噬菌体,所以DNA 是具有连续性的遗传物质。
⑶. 烟草花叶病毒的感染和繁殖说明在不含DNA的TMV中RNA就是遗传物质。
3.简述DNA双螺旋结构及其特点?答:根据碱基互补配对的规律,以及对DNA分子的X射线衍射研究的成果,提出了DNA 双螺旋结构。
特点:⑴. 两条多核苷酸链以右手螺旋的形式,彼此以一定的空间距离,平行的环绕于同一轴上,很像一个扭曲起来的梯子。
⑵. 两条核苷酸链走向为反向平行。
⑶. 每条长链的内侧是扁平的盘状碱基。
⑷. 每个螺旋为3.4nm长,刚好有10个碱基对,其直径为2nm。
⑸. 在双螺旋分子的表面有大沟和小沟交替出现。
6.原核生物DNA聚合酶有哪几种?各有何特点?答:原核生物DNA聚合酶有DNA聚合酶I、DNA聚合酶II和DNA聚合酶III。
DNA聚合酶I :具有5'-3'聚合酶功能外,还具有3'-5'核酸外切酶和5'-3'核酸外切酶的功能。