1.1 第2课时 等边三角形的性质
- 格式:ppt
- 大小:568.50 KB
- 文档页数:11
1.1 等腰三角形第2课时等边三角形的性质学习目标:1、能够证明等腰三角形的判定定理,并会运用其定理进行证明.2、掌握特殊的等腰三角形---等边三角形的性质定理并会证明.学习过程:一、前置准备:1、等腰三角形的性质是什么?2、等腰三角形的一个内角为700,则顶角为。
3、等腰三角形的一个外角为1000,则其顶角为。
二、自主学习:1、在等腰三角形中作出一些相等的线段(角平分线、中线、高),你能发现其中一些相等的线段吗?你能证明你的结论吗?2、等腰三角形的两底角的平分线相等吗?怎样证明。
已知:求证:证明:得出定理:。
问题:等腰三角形两条腰上的中线相等吗?高呢?还有其他的结论吗?请你证明它们,并与同伴交流。
三、合作交流;请同学们“想一想”,等边三角形是特殊的等腰三角形,那么等边三角形的内角有什么特征?定理:等边三角形的三个内角都相等,并且每个角都等于60°.已知:求证:证明:四、归纳总结:1、我的收获?2、我不明白的问题?五、例题解析:BD=AD,DC=AC,求∠B的度数.温馨提示:先利用等边对等角找出各相等的角,再用方程思想解决,这样可使几何的计算问题化繁为简.六、当堂训练:1.求等边三角形两条中线相交所成锐角的度数.2.如图,在△ABC中,D,E是BC的三等分点,且△ADE是等边三角形,求∠BAC 的度数.中考真题:如图,△ABC 中,AB=AC ,∠A=36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接CE.(1) 求∠ECD 的度数;(2) 若CE=5,求BC 的长.第2学习目标:1.进一步体会不等式的知识在现实生活中的运用.2.通过用不等式的知识去解决实际问题,以发展学生解决问题的能力.学习重点:利用不等式及等式的有关知识解决现实生活中的实际问题.学习难点:认真审题,找出题中的等量或不等关系,全面地考虑问题是本节的难点.预习作业:1、直线y=kx+b(k ≠0)与一元一次不等式的关系:y 0,则__________ y 0,则________2、直线1111222212(0)(0),,y k x b k k x b k y y =+≠=+≠与直线y 若则有__________ 例1、某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10~25 人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用?其余游客八折优惠.该单位选择哪一家旅行社支付的旅游费用较少?例2、某学校计划购买若干台电脑,现从两家商场了解到同一型号电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原价收费,其余每台优惠25%.乙商场的优惠条件是:每台优惠20%.(1)分别写出两家商场的收费与所买电脑台数之间的关系式.(2)什么情况下到甲商场购买更优惠?(3)什么情况下到乙商场购买更优惠?(4)什么情况下两家商场的收费相同?变式训练:1.某学校需刻录一批电脑光盘,若到电脑公司刻录,每张需8元(包括空白光盘带);若学校自刻,除租用刻录机需120元外,每张还需成本4元(包括空白光盘带),问刻录这批电脑光盘,到电脑公司刻录费用省,还是自刻费用省?请说明理由.2.红枫湖门票是每位45元,20人以上(包含20人)的团体票七五折优惠,现在有18位游客买20人的团体票(1)比买普通票总共便宜多少钱?(2)不足20人时,多少人买20人的团体票才比普通票便宜?能力提高:1、某办公用品销售商店推出两种优惠方法:(1)购一个书包,赠送1支水性笔;(2)购书包和水性笔一律按9折优惠。
北师大版八年级下册数学《1.1 第2课时等边三角形的性质》教案一. 教材分析北师大版八年级下册数学《1.1 第2课时等边三角形的性质》这部分内容是在学生已经掌握了三角形的基本概念和等腰三角形的性质的基础上进行学习的。
本节课的主要内容是让学生掌握等边三角形的性质,并能够运用这些性质解决一些实际问题。
教材通过引出等边三角形的定义,引导学生探究等边三角形的性质,并通过例题和练习题让学生加以巩固。
二. 学情分析学生在学习这部分内容时,已经有了一定的数学基础,对三角形的基本概念和等腰三角形的性质已经有了一定的了解。
但是,对于等边三角形的性质,学生可能还比较陌生,需要通过一定的引导和探究才能理解和掌握。
此外,学生可能对于如何运用等边三角形的性质解决实际问题还比较困惑,需要通过例题和练习题的讲解和演练才能加以巩固。
三. 教学目标1.知识与技能:让学生掌握等边三角形的性质,并能够运用这些性质解决一些实际问题。
2.过程与方法:通过学生的自主探究和合作交流,培养学生的观察能力、思考能力和解决问题的能力。
3.情感态度与价值观:让学生在学习的过程中体验到数学的乐趣,增强学生对数学的学习兴趣。
四. 教学重难点教学重点:让学生掌握等边三角形的性质。
教学难点:如何引导学生探究等边三角形的性质,并能够运用这些性质解决实际问题。
五. 教学方法采用问题驱动法,引导学生自主探究等边三角形的性质,并通过合作交流,共同解决问题。
同时,通过例题和练习题的讲解和演练,让学生加以巩固。
六. 教学准备教师准备PPT,包括等边三角形的定义、性质以及例题和练习题。
同时,准备一些相关的教具,如三角板、直尺等,以便于学生进行实际操作。
七. 教学过程1.导入(5分钟)通过复习三角形的基本概念和等腰三角形的性质,引出等边三角形的定义。
2.呈现(10分钟)教师通过PPT呈现等边三角形的性质,引导学生进行自主探究。
同时,教师给予适当的引导和提示,帮助学生理解和掌握等边三角形的性质。
人教版数学八年级上册《等边三角形的性质和判定》教学设计2一. 教材分析等边三角形的性质和判定是初中数学八年级上册的教学内容,这部分内容在教材中占据重要的地位。
等边三角形是特殊类型的三角形,具有独特的性质。
本节课的教学内容主要包括等边三角形的性质及其应用,以及等边三角形的判定方法。
通过学习本节课的内容,学生能够更深入地了解等边三角形的性质,提高他们的空间想象能力和逻辑思维能力。
二. 学情分析学生在学习本节课之前,已经学习了三角形的性质、分类和判定等基础知识,对于三角形的概念和性质有一定的了解。
但等边三角形作为一种特殊的三角形,其性质和判定方法与普通三角形有所不同,需要学生进行进一步的学习和理解。
此外,学生需要通过观察、操作、推理等过程,发现等边三角形的性质和判定方法,因此,学生的观察能力、操作能力和推理能力有待提高。
三. 教学目标1.知识与技能目标:学生能够掌握等边三角形的性质及其应用,了解等边三角形的判定方法,提高他们的空间想象能力和逻辑思维能力。
2.过程与方法目标:通过观察、操作、推理等过程,学生能够发现等边三角形的性质和判定方法,培养他们的观察能力、操作能力和推理能力。
3.情感态度与价值观目标:学生能够积极参与课堂学习,对数学产生浓厚的兴趣,培养他们的团队协作能力和自主学习能力。
四. 教学重难点1.重点:等边三角形的性质及其应用,等边三角形的判定方法。
2.难点:发现等边三角形的性质和判定方法,理解等边三角形性质之间的联系。
五. 教学方法1.情境教学法:通过实物模型、图片等引导学生观察和操作,激发学生的学习兴趣。
2.问题驱动法:设置问题引导学生思考和讨论,培养学生的问题解决能力。
3.小组合作法:学生进行小组讨论和合作,培养学生的团队协作能力。
4.归纳总结法:引导学生总结等边三角形的性质和判定方法,提高学生的归纳能力。
六. 教学准备1.教学素材:准备等边三角形的模型、图片等教学素材。
2.教学工具:准备黑板、粉笔、投影仪等教学工具。
等腰三角形和等边三角形的性质一、等腰三角形的性质1.1 定义:等腰三角形是指有两边相等的三角形。
1.2 两边相等:在等腰三角形中,两个底角相等,两条底边相等。
1.3 底角平分线:在等腰三角形中,底边的垂直平分线同时也是底角平分线。
1.4 顶角平分线:在等腰三角形中,顶角的平分线、底边的中线和底角的平分线三线合一。
1.5 面积公式:等腰三角形的面积公式为:S=12absinC,其中 a 和 b 分别为等腰三角形的底边,C 为顶角。
二、等边三角形的性质2.1 定义:等边三角形是指三边相等的三角形。
2.2 内角相等:在等边三角形中,三个内角都相等,每个内角为60∘。
2.3 外角相等:在等边三角形中,每个外角都相等,每个外角为120∘。
2.4 中线相等:在等边三角形中,三条中线相等,且都垂直于对边。
2.5 高线相等:在等边三角形中,三条高线相等,且都垂直于对边。
2.6 面积公式:等边三角形的面积公式为:S=√34a2,其中 a 为等边三角形的边长。
2.7 圆周角定理:在等边三角形中,每个圆周角都等于60∘。
2.8 圆心对称:等边三角形具有圆心对称性,即三角形的三条高线、三条中线、三条角平分线都相交于同一点,称为三角形的垂心。
2.9 稳定性:等边三角形是稳定的,不会因为外力的作用而变形。
总结:等腰三角形和等边三角形是特殊的三角形,它们具有独特的性质。
通过掌握这些性质,我们可以更好地理解和解决与等腰三角形和等边三角形相关的问题。
习题及方法:1.习题:判断以下三角形是否为等腰三角形。
解答:根据等腰三角形的性质,只需要判断两边是否相等即可。
如果两边相等,则为等腰三角形。
2.习题:已知等腰三角形的底边长为8cm,腰长为5cm,求该三角形的面积。
解答:根据等腰三角形的性质,底边上的高也是腰长的垂直平分线。
因此,可以将三角形分成两个直角三角形,每个直角三角形的底边为4cm,高为5cm。
面积公式为S=12×底边×高,所以面积为12×4cm×5cm=10cm2。
北师大版数学八年级下册1.1《等边三角形的性质》(第2课时)教学设计一. 教材分析等边三角形的性质是北师大版数学八年级下册1.1《等边三角形的性质》(第2课时)的内容。
本节课主要让学生掌握等边三角形的三条边相等,三个角都是60°,以及等边三角形的高、中线、角平分线互相重合的性质。
通过学习本节课,为学生进一步研究三角形的性质和证明几何问题打下基础。
二. 学情分析学生在八年级上册已经学习了三角形的有关知识,对三角形的基本概念和性质有所了解。
但等边三角形作为一种特殊的三角形,其性质较为复杂,需要学生在已有知识的基础上进行进一步的探究。
此外,学生对几何图形的直观感知和逻辑推理能力有待提高。
三. 教学目标1.理解等边三角形的性质,掌握等边三角形的三条边相等,三个角都是60°,以及等边三角形的高、中线、角平分线互相重合的性质。
2.能够运用等边三角形的性质解决一些简单的几何问题。
3.培养学生的观察能力、操作能力、推理能力及合作交流能力。
四. 教学重难点1.重点:等边三角形的三条边相等,三个角都是60°,以及等边三角形的高、中线、角平分线互相重合的性质。
2.难点:等边三角形的高、中线、角平分线互相重合的性质的证明。
五. 教学方法1.采用问题驱动法,引导学生探究等边三角形的性质。
2.运用几何画板、模型等直观教具,帮助学生更好地理解等边三角形的性质。
3.采用小组合作交流的方式,让学生在探究过程中相互启发、共同进步。
4.运用归纳总结法,引导学生概括等边三角形的性质。
六. 教学准备1.准备几何画板、模型等直观教具。
2.准备相关练习题和拓展题。
3.准备黑板、粉笔等教学用具。
七. 教学过程1. 导入(5分钟)教师通过复习三角形的基本概念和性质,引导学生回顾已学知识。
然后提出问题:“等边三角形是怎样的三角形?它有什么特殊的性质?”从而引出本节课的内容。
2. 呈现(10分钟)教师利用几何画板、模型等直观教具,呈现等边三角形的图形,让学生观察并描述等边三角形的特点。