数值分析线性代数方程组的直接法
- 格式:pptx
- 大小:651.38 KB
- 文档页数:51
实验报告
一、实验目的
1.了解LU 分解法的优点
二、实验题目
1.给定矩阵A 和向量b:
.1000,123121⎪⎪⎪⎪⎪
⎪⎭
⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--= b n n n n n n A (1)求A 的LU 分解,n 的值自己确定;
(2)利用A 的LU 分解求解下列方程组
(a)b Ax =, (b)b x A =2, (c)b x A =3.
对方程组(c),若先求3A LU =,再解b x LU =)(有何缺点?
三、实验原理
求解线性方程组的LU 分解法直接解线性方程组.
四、实验内容及结果
2. b Ax =,b x A =2,b x A =3的求解。
3. 若先求3
A LU =,再解b x LU =)(.
五、实验结果分析
LU 分解法的优点:根据题目,如果直接用b x A =3来计算的话,需要先计算3A 的值,然后再计算方程组的值,步骤会多出很多,使得计算更复杂。
如果使用LU 分解法来解方程组的话,只需要对系数矩阵做一次LU 分解,以后只要解三角方程即可,计算的步骤明显减少。
数值分析小论文线性方程组的直接解法线性方程组的直接解法是指通过一系列的代数运算直接求解线性方程组的解。
线性方程组是数值分析中非常重要的问题,广泛应用于工程、科学、计算机图形学等领域。
在线性方程组的直接解法中,最常用的方法是高斯消元法,它是一种基于矩阵变换的方法。
高斯消元法将线性方程组表示为增广矩阵,并通过一系列的行变换将增广矩阵转化为行阶梯形矩阵,从而得到方程组的解。
高斯消元法的主要步骤包括消元、回代和得到方程组的解。
消元是高斯消元法的第一步,通过一系列的行变换将增广矩阵的元素转化为上三角形式。
在消元过程中,我们首先找到主元素,即矩阵的对角线元素,然后将其它行的元素通过消元操作转化为0,从而使得矩阵逐步变成上三角形矩阵。
回代是高斯消元法的第二步,通过一系列的回代操作求解线性方程组。
回代操作是从上三角形矩阵的最后一行开始,通过依次求解每个未知数的值,最终得到方程组的解。
高斯消元法的优点是算法简单易于实现,可以在有限的步骤内求解线性方程组,适用于一般的线性方程组问题。
但是高斯消元法也存在一些问题,例如当矩阵的主元素为0时,无法进行消元操作,此时需要通过行交换操作来避免这种情况。
另外,高斯消元法对病态矩阵的求解效果较差,容易引起舍入误差累积,导致解的精度下降。
在实际应用中,为了提高求解线性方程组的效率和精度,人们常常使用一些改进的直接解法,例如列主元高斯消元法和LU分解法。
列主元高斯消元法通过选择最大主元来避免主元为0的情况,进一步提高了求解线性方程组的精度。
LU分解法将矩阵表示为两个矩阵的乘积,从而将线性方程组的求解问题转化为两个三角形矩阵的求解问题,提高了求解效率。
综上所述,线性方程组的直接解法是一种基于矩阵变换的方法,通过一系列的代数运算求解线性方程组的解。
高斯消元法是最常用的直接解法之一,它简单易于实现,适用于一般的线性方程组问题。
在实际应用中,可以通过改进的直接解法来进一步提高求解效率和精度。
第五章 线性代数方程组的数值解法线性方程求解问题是科学研究和工程计算中最常见的问题。
如电学中的网络问题、工程力学中求解连续力学体(微分方程)问题的差分方法、有限元法、边界元法及函数的样条插值、最小二乘拟合等,都包含了解线性方程组问题。
因此,线性方程组的解法在数值计算中占有极其重要的地位。
对于n 阶线性方程组=Ax b ,若det()0≠A ,则方程组有惟一解。
由克莱姆(Cramer )法则,其解为det() (1,2,,)det()i i A x i n A ==,其中i A 为用向量b 代替A 中第i 列向量所得矩阵。
每个n 阶行列式共有!n 项,每项都有n 个因子,所以计算一个n 阶行列式需做(1)!n n -⨯次乘法,我们共需要计算1n +个行列式,要计算出i x ,还要做n 次除法,因此用Cramer 法则求解要做2(1)!n n n -⨯+次乘除法(不计加减法),计算量十分惊人。
如30n =时,就需作约352.3810⨯次乘法。
可见Cramer 法则在理论上是绝对正确的,但当n 较大时,在实际计算中却是不可行的。
因此寻求有效的数值计算方法就成为非常必要的课题。
线性方程组的类型很多,若按其系数矩阵阶数的高低和含零元素多少,大致可分为两类:一类是低阶稠密线性方程组,即系数矩阵阶数不高,含零元素很少。
另一类是高阶稀疏线性方程组,即系数矩阵阶数高,零元素占绝对优势(比如占70%以上)。
线性方程组的数值解法也可分为两大类:直接法和迭代法。
直接法是在没有舍入误差的情况下,通过有限步运算可以得到方程组精确解的方法。
但是,在实际计算时,由于初始数据变为机器数而产生的误差以及计算过程中所产生的舍入误差等都要对解的精确度产生影响,因此直接法实际上也只能算出方程真解的近似值。
常用的有效算法是Gauss 消去法和矩阵的三角分解法。
迭代法是用某种极限过程去逼近准确解的方法。
如对任意给定的初始近似解向量(0)x ,按照某种方法逐步生成近似解序列(0)(1)(),,,,,k x x x使极限()*lim k k →∞=x x 为方程组的解。