复变函数与积分变换教案
- 格式:doc
- 大小:495.50 KB
- 文档页数:36
《复变函数与积分变换》课程教学大纲(48学时)《复变函数与积分变换》课程教学大纲一、课程基本信息课程编号:0911009课程中文名称:复变函数与积分变换课程英文名称:Complex Function and Integral Transformation课程性质:公共基础理论必修课考核方式:考试开课专业:全校理工科各专业开课学期:3总学时:48学时(全部为理论学时)总学分:3学分二、课程目的复变函数与积分变换是工科类及应用理科类有关专业的基础课。
通过本课程的学习,使学生初步掌握复变函数的基本理论和方法,掌握保形映射的理论和方法,傅里叶变换与拉普拉斯变换的特性与应用,为学习相关专业课程及以后实际应用提供必要的数学基础。
三、教学基本要求1.熟练掌握复数的各种表示方法及其运算;了解点集、区域的概念;理解复变函数的概念,了解复变函数的极限和连续性的概念。
2.理解复变函数的导数概念及求法,理解解析函数的概念,掌握柯西—黎曼条件判断解析性,了解某些初等解析函数的基本性质;了解调和函数与解析函数的关系,掌握从解析函数的实(虚)部求其虚(实部)的方法。
3.理解积分的定义与性质,会求复变函数的积分;掌握柯西定理,会用柯西定理和复合闭路定理计算定积分;掌握柯西积分公式和高阶导数公式计算积分。
4.理解复数项级数、幂级数(绝对收敛、条件收敛)的概念,了解幂级数的基本性质;了解收敛圆概念、会求收敛半径;了解泰勒定理及其初等函数的马克劳林展式,并利用它们将一些简单解析函数展开为幂级数;理解洛朗级数,掌握简单函数在不同圆环域内展开为洛朗级数的间接方法。
5.理解孤立奇点及其分类及函数在各类奇点邻域内的性质;留数的概念及留数定理;掌握极点处留数的求法及用留数求闭路积分和某些实积分的方法。
6.了解导数的几何意义及保角映射的概念;掌握分式线性映射的保圆性、保对称性等映射性质及幂函数、指数函数的映射特点;会求一些简单区域(如半平面、角形域、圆域、带形域等)之间的保形映射。
复变函数与积分变换课程教学大纲1. 课程概述本课程旨在介绍复变函数与积分变换的基本理论和应用。
通过学习本课程,学生将掌握复变函数的性质、解析函数与调和函数的概念以及积分变换的原理与计算方法。
2. 知识要点及教学目标2.1 复变函数的基本概念与性质了解复变函数的定义、光滑性、奇点等基本概念,掌握复变函数的导数、积分、级数展开等性质。
2.2 解析函数与调和函数理解解析函数与调和函数的含义与性质,认识解析函数与调和函数的关系,学习利用调和函数解决实际问题。
2.3 积分变换的基本原理与方法理解积分变换的定义与基本原理,学习拉普拉斯变换、傅里叶变换等常用积分变换的计算方法与应用。
2.4 应用举例与综合训练通过具体实例,分析和解决实际问题,培养学生综合运用所学知识的能力。
3. 教学内容与教学方法3.1 复变函数的基本概念与性质3.1.1 复数与复平面3.1.2 复变函数的定义与性质3.1.3 复变函数的导数与积分3.1.4 复变函数的级数展开教学方法:通过数学示例和图示辅助,引导学生理解和掌握复变函数的基本概念与性质。
3.2 解析函数与调和函数3.2.1 解析函数的定义与性质3.2.2 调和函数的定义与性质3.2.3 解析函数与调和函数的关系3.2.4 应用:调和函数在电磁学中的应用教学方法:结合具体实例,引导学生理解和运用解析函数与调和函数的概念与性质。
3.3 积分变换的基本原理与方法3.3.1 积分变换的定义与性质3.3.2 拉普拉斯变换的定义与计算方法3.3.3 傅里叶变换的定义与计算方法3.3.4 应用:积分变换在信号处理中的应用教学方法:以具体应用场景为背景,引导学生理解积分变换的原理、计算方法及其在工程实践中的作用。
3.4 应用举例与综合训练通过一些典型案例和综合性题目,让学生运用所学知识分析和解决实际问题,培养学生的综合能力。
教学方法:通过解析与讨论,引导学生独立思考问题,并运用相关知识进行分析和求解。
《复变与积分变换教案》第一次课1 教学目标: 使学生重温复数概念,熟练掌握复数及共轭下的运算法,了解复平面,学会运用复数的三角表示出理问题。
2 讲课段落:复数产生的背景,特点; 平面向量和复数的关系; 共轭复数的作用; 三角表示; 复方根求法;复数定义与平面向量变换的内在联系。
3 知识要点:22y x z +=||||,z z z z ==2121z z z z +≤+z z z =22Re ,z z z +=z i z z Im 2=-θθθsin cos i ei +=()θθθθθi re i r ir r z =+=+=sin cos sin cosArg arg 2π,z z k θ==+z z y x yz Im )sin(arg 22=+=212121z z r r z z ==121212Arg()Arg Arg arg arg 2π,z z z z z z k k =+=++∈θϕρi n in n rez w e===nr1=ρ,()2π,k k nθϕ+=∈()nk iner w πθ21+=,1,,2,1,0-=n k4. 例:例1-1 设 ii i i z -+-=11,求z z z ,Im ,Re 。
例1-2 设i z i z 21,4321-=+=,求21z z ,⎪⎪⎭⎫⎝⎛21z z 例1-3 设1z 及2z 为两个复数,试证:2221212122Re()z z z z z z +=++并用此等式证明三角不等式 推导,当0Im =z ,Re 0arg Re 0;z z z π>⎧=⎨<⎩当0Im >z ,Im arcsin Re 0arg Im arcsin Re 0;z z z z z z z π⎧≥⎪⎪=⎨⎪-<⎪⎩当0Im <z ,Im arcsin Re 0arg Im arcsin Re 0z z z z z z z π⎧≥⎪⎪=⎨⎪--<⎪⎩例1-4 求)22a r g(i -和A r g (34i -+例1- 6(较难) 设,0≠z 则有1||1arg z z z z-≤-+例1-7 试求ii -+11的模和主幅角● 见解, 2i 相当于将向量{0,1}逆时针旋转2π度角,从而得到向量{}0,1-,而此向量对应复数1-,这也可解释i 为012=+z 的根。
复变函数与积分变换第八章教案第八章教案:复变函数与积分变换本章的内容主要包括复变函数的积分、Cauchy积分定理和公式、解析函数、留数计算及其应用等。
一、知识目标1.理解复变函数的积分概念,能求解一类简单的复变函数的积分;2. 掌握Cauchy积分定理和公式的概念和计算方法;3.熟练掌握解析函数的判别法和求法,能用留数计算解析函数的积分和求解相关的实际问题。
二、能力目标1.能灵活应用积分变换法求解复变函数的积分;2. 能熟练运用Cauchy积分定理和公式求解实际问题;3.能用解析函数的求法和留数计算求解与实际问题相关的积分。
三、情感目标1.培养学生的实际应用意识和解决实际问题的能力;2.培养学生严谨的数学思维和创新精神;3.培养学生的团队合作意识和表达能力。
四、教学重点1.复变函数的积分与积分变换法;2. Cauchy积分定理和公式的理解和求解;3.解析函数的概念、判别法和求法。
五、教学难点1.解析函数的判别法和求法;2.应用解析函数的留数计算求解积分问题。
六、教学内容及安排1.复变函数的积分及其应用(2课时)a.复变函数的积分概念和性质;b.积分变换法求解复变函数的积分;c.通过实例引导学生应用积分变换法求解复变函数的积分。
2. Cauchy积分定理和公式(2课时)a. Cauchy积分定理和公式的概念和计算方法;b. 通过实例引导学生运用Cauchy积分定理和公式求解实际问题。
3.解析函数与留数计算(3课时)a.解析函数的概念和性质;b.解析函数的判别法和求法;c.通过实例引导学生熟练运用解析函数的留数计算求解相关的实际问题。
四、教学方法1.讲授法:通过讲解理论知识,激发学生的兴趣和求知欲;2.案例分析法:通过实例引导学生理解和运用知识;3.讨论研究法:通过课堂讨论和小组合作,培养学生的团队合作意识和表达能力。
五、教学手段1.多媒体教学手段:利用多媒体技术展示课件,图像等,提高教学效果;2.实物展示手段:利用实物、模型等教具展示相关概念和实例,增加学生的理解和兴趣;3.小组讨论手段:组织学生进行小组讨论和合作,培养学生的团队合作能力。
《复变函数与积分变换》课程教学大纲课程编号:07013111课程名称:复变函数与积分变换英文名称:Functions of Complex Variables & Integral Transformation课程类型:学科基础课程要求:必修学时/学分:32学时,2学分适用专业:通信、测控、电子科学、信息工程、电气工程及其自动化、自动化、生物医学工程、建环一、课程性质与任务复变函数与积分变换是高等工科院校许多专业重要的一门基础课,通过本门课程的教学,使学生较系统的、完整的了解复变函数与积分变换理论的基本内容,学会运用高数的方法处理复变量函数的一些基本问题,包括解析函数概念、复变函数的积分、解析函数的级数表示、洛朗级数、留数理论、共形映射、拉普拉斯变换等。
二、课程与其他课程的联系本课程的先修课程:高等数学。
复变函数与积分变换课程是高等理工科学校各专业学生一门重要的必修的公共基础课。
通过该课程学习,能为学生学习其他的相关课程奠定所需要的数学基础。
三、课程教学目标1.通过本门课程的学习,使学生掌握区域、解析、调和函数、复积分、级数、留数和积分变换的概念以及应用柯西-黎曼方程、柯西-古萨基本定理、柯西积分公式、高阶导数公式和留数定理等知识计算复变函数的积分;能运用泰勒展开,洛朗展开,奇点分类,积分变换等知识解决相关问题。
为学习后继课程以及进一步获得数学知识奠定必要的数学基础。
2.在传授数学知识的同时,还要通过上课、课后辅导、作业等各个教学环节,逐步培养学生具有比较熟练的基本运算能力、一定程度的抽象思维能力、一定程度的逻辑推理能力、空间想象能力和一定程度的自学能力、独立获取知识的能力。
3.在传授数学知识的同时,还要培养学生灵活运用复变函数与积分变换分析问题和解决问题的方法和意识,使之具备较强的数学应用能力。
为学生适应今后的学习和工作打好基础。
四、教学内容、基本要求与学时分配五、教学方法本课程以课堂教学为主,结合作业、自学、撰写小论文及测验等教学手段和形式完成课程教学任务。
《复变函数与积分变换》课程教学大纲一、课程性质和教学目标(在人才培养中的地位与性质及主要内容,指明学生需掌握知识与能力及其应达到的水平)课程性质:《复变函数与积分变换》的理论和方法广泛应用于电气工程、通讯工程、自动化等相关学科,并且已经成为解决众多理论和实际问题的强有力工具,成为了电气工程及其自动化专业一门重要的基础理论课程,而高等数学的是它的必须的先修课程。
对于本专业而言,是学习《自动控制原理》、《现代控制理论》、《线性系统理论》、《信号与系统》等许多相关课程的必须先修课程之一。
教学目标:通过本课程的讲授和学习,使学生在学习高等数学的基础上,系统的掌握《复变函数与积分变换》中必要的基础理论和常用的计算方法,培养学生比较熟练的运算能力,能比较熟练运用复变函数、积分变换的方法来有效地比较系统地解决一些问题。
并且逐步培养能够建立比较复杂系统数学模型的能力,在此基础上,进一步地提升分析问题、解决问题的水平和能力。
并为后续的专业基础课程、专业课程的学习,以及将来从事教学、科研及其它实际工作打下必要相当水准的理论知识基础。
本课程的具体教学目标如下:1.熟练掌握复数与复变函数、解析函数、复变函数积分、复级数、留数、傅里叶变换和拉普拉斯变换的基本概念、基本理论、基本方法和某些相关的应用,为进一步学习打下坚实的理论基础。
2.大致了解理想典型电子线性器件的时域和频域的数学模型,为后续课程比较复杂的线性电气系统或者比较复杂的线性力学系统的数学模型的建立、分析和控制做好理论、学识上准备。
3.基本理解时滞环节的频域表达形式,并且与上述的线性系统有机结合,构建相对更加复杂的非线性系统的数学模型,为以后专业课上对此非线性系统的数学模型的分析、控制做好基础的准备。
为以后解决实际复杂工程问题做好知识上的储备。
教学目标与毕业要求的对应关系:二、课程教学内容及学时分配(含课程教学、自学、作业、讨论等内容和要求,指明重点内容和难点内容。
《复变与积分变换教案》第一次课1 教学目标: 使学生重温复数概念,熟练掌握复数及共轭下的运算法,了解复平面,学会运用复数的三角表示出理问题。
2 讲课段落:复数产生的背景,特点; 平面向量和复数的关系; 共轭复数的作用; 三角表示; 复方根求法;复数定义与平面向量变换的内在联系。
3 知识要点:22y x z +=||||,z z z z ==2121z z z z +≤+z z z =22Re ,z z z +=z i z z Im 2=-θθθsin cos i e i +=()θθθθθi re i r ir r z =+=+=sin cos sin cosArg arg 2π,z z k θ==+z z y x y z Im )sin(arg 22=+=212121z z r r z z ==121212Arg()Arg Arg arg arg 2π,z z z z z z k k =+=++∈θϕρi n in n rez w e===nr1=ρ,()2π,k k nθϕ+=∈()nk iner w πθ21+=,1,,2,1,0-=n k4. 例:例1-1 设 iii i z -+-=11,求z z z ,Im ,Re 。
例1-2 设i z i z 21,4321-=+=,求21z z ,⎪⎪⎭⎫⎝⎛21z z 例1-3 设1z 及2z 为两个复数,试证:2221212122Re()z z z z z z +=++并用此等式证明三角不等式 推导,当0Im =z ,Re 0arg Re 0;z z z π>⎧=⎨<⎩当0Im >z ,Im arcsin Re 0arg Im arcsin Re 0;z z z z z z z π⎧≥⎪⎪=⎨⎪-<⎪⎩当0Im <z ,Im arcsin Re 0arg Im arcsin Re 0z z z z z z z π⎧≥⎪⎪=⎨⎪--<⎪⎩例1-4 求)22arg(i -和Arg(34)i -+例1- 6(较难) 设,0≠z 则有1||1arg z z z z-≤-+例1-7 试求ii -+11的模和主幅角● 见解, 2i 相当于将向量{0,1}逆时针旋转2π度角,从而得到向量{}0,1-,而此向量对应复数1-,这也可解释i 为012=+z 的根。