2017年北京高考试题(理数_word解析版)
- 格式:doc
- 大小:517.14 KB
- 文档页数:11
2017年北京市高考数学试卷(理科)一、选择题.(每小题5分)1.(5分)若集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},则A∩B=()A.{x|﹣2<x<﹣1}B.{x|﹣2<x<3}C.{x|﹣1<x<1}D.{x|1<x<3} 2.(5分)若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)3.(5分)执行如图所示的程序框图,输出的S值为()A.2 B.C.D.4.(5分)若x,y满足,则x+2y的最大值为()A.1 B.3 C.5 D.95.(5分)已知函数f(x)=3x﹣()x,则f(x)()A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数6.(5分)设,为非零向量,则“存在负数λ,使得=λ”是“•<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.3 B.2 C.2 D.28.(5分)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033 B.1053 C.1073 D.1093二、填空题(每小题5分)9.(5分)若双曲线x2﹣=1的离心率为,则实数m=.10.(5分)若等差数列{a n}和等比数列{b n}满足a1=b1=﹣1,a4=b4=8,则=.11.(5分)在极坐标系中,点A在圆ρ2﹣2ρcosθ﹣4ρsinθ+4=0上,点P的坐标为(1,0),则|AP|的最小值为.12.(5分)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则cos(α﹣β)=.13.(5分)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为.14.(5分)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中A i的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点B i的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.(1)记Q i为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是.(2)记p i为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是.三、解答题15.(13分)在△ABC中,∠A=60°,c=a.(1)求sinC的值;(2)若a=7,求△ABC的面积.16.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B﹣PD﹣A的大小;(3)求直线MC与平面BDP所成角的正弦值.17.(13分)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y 的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;(2)从图中A,B,C,D四人中随机选出两人,记ξ为选出的两人中指标x的值大于1.7的人数,求ξ的分布列和数学期望E(ξ);(3)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)18.(14分)已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.19.(13分)已知函数f(x)=e x cosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.20.(13分)设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(1)若a n=n,b n=2n﹣1,求c1,c2,c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.2017年北京市高考数学试卷(理科)参考答案与试题解析一、选择题.(每小题5分)1.(5分)若集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},则A∩B=()A.{x|﹣2<x<﹣1}B.{x|﹣2<x<3}C.{x|﹣1<x<1}D.{x|1<x<3}【分析】根据已知中集合A和B,结合集合交集的定义,可得答案.【解答】解:∵集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},∴A∩B={x|﹣2<x<﹣1}故选:A.【点评】本题考查的知识点集合的交集运算,难度不大,属于基础题.2.(5分)若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)【分析】复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限,可得,解得a范围.【解答】解:复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限,∴,解得a<﹣1.则实数a的取值范围是(﹣∞,﹣1).故选:B.【点评】本题考查了复数的运算法则、几何意义、不等式的解法,考查了推理能力与计算能力,属于基础题.3.(5分)执行如图所示的程序框图,输出的S值为()A.2 B.C.D.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当k=0时,满足进行循环的条件,执行完循环体后,k=1,S=2,当k=1时,满足进行循环的条件,执行完循环体后,k=2,S=,当k=2时,满足进行循环的条件,执行完循环体后,k=3,S=,当k=3时,不满足进行循环的条件,故输出结果为:,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.4.(5分)若x,y满足,则x+2y的最大值为()A.1 B.3 C.5 D.9【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最值即可.【解答】解:x,y满足的可行域如图:由可行域可知目标函数z=x+2y经过可行域的A时,取得最大值,由,可得A(3,3),目标函数的最大值为:3+2×3=9.故选:D.【点评】本题考查线性规划的简单应用,画出可行域判断目标函数的最优解是解题的关键.5.(5分)已知函数f(x)=3x﹣()x,则f(x)()A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数【分析】由已知得f(﹣x)=﹣f(x),即函数f(x)为奇函数,由函数y=3x为增函数,y=()x为减函数,结合“增”﹣“减”=“增”可得答案.【解答】解:f(x)=3x﹣()x=3x﹣3﹣x,∴f(﹣x)=3﹣x﹣3x=﹣f(x),即函数f(x)为奇函数,又由函数y=3x为增函数,y=()x为减函数,故函数f(x)=3x﹣()x为增函数,故选:A.【点评】本题考查的知识点是函数的奇偶性,函数的单调性,是函数图象和性质的综合应用,难度不大,属于基础题.6.(5分)设,为非零向量,则“存在负数λ,使得=λ”是“•<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立.即可判断出结论.【解答】解:,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立.∴,为非零向量,则“存在负数λ,使得=λ”是•<0”的充分不必要条件.故选:A.【点评】本题考查了向量共线定理、向量夹角公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.7.(5分)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.3 B.2 C.2 D.2【分析】根据三视图可得物体的直观图,结合图形可得最长的棱为PA,根据勾股定理求出即可.【解答】解:由三视图可得直观图,再四棱锥P﹣ABCD中,最长的棱为PA,即PA===2,故选:B.【点评】本题考查了三视图的问题,关键画出物体的直观图,属于基础题.8.(5分)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033 B.1053 C.1073 D.1093【分析】根据对数的性质:T=,可得:3=10lg3≈100.48,代入M将M也化为10为底的指数形式,进而可得结果.【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴≈=1093,故选:D.【点评】本题解题关键是将一个给定正数T写成指数形式:T=,考查指数形式与对数形式的互化,属于简单题.二、填空题(每小题5分)9.(5分)若双曲线x2﹣=1的离心率为,则实数m=2.【分析】利用双曲线的离心率,列出方程求和求解m 即可.【解答】解:双曲线x2﹣=1(m>0)的离心率为,可得:,解得m=2.故答案为:2.【点评】本题考查双曲线的简单性质,考查计算能力.10.(5分)若等差数列{a n}和等比数列{b n}满足a1=b1=﹣1,a4=b4=8,则=1.【分析】利用等差数列求出公差,等比数列求出公比,然后求解第二项,即可得到结果.【解答】解:等差数列{a n}和等比数列{b n}满足a1=b1=﹣1,a4=b4=8,设等差数列的公差为d,等比数列的公比为q.可得:8=﹣1+3d,d=3,a2=2;8=﹣q3,解得q=﹣2,∴b2=2.可得=1.故答案为:1.【点评】本题考查等差数列以及等比数列的通项公式的应用,考查计算能力.11.(5分)在极坐标系中,点A在圆ρ2﹣2ρcosθ﹣4ρsinθ+4=0上,点P的坐标为(1,0),则|AP|的最小值为1.【分析】先将圆的极坐标方程化为标准方程,再运用数形结合的方法求出圆上的点到点P的距离的最小值.【解答】解:设圆ρ2﹣2ρcosθ﹣4ρsinθ+4=0为圆C,将圆C的极坐标方程化为:x2+y2﹣2x﹣4y+4=0,再化为标准方程:(x﹣1)2+(y﹣2)2=1;如图,当A在CP与⊙C的交点Q处时,|AP|最小为:|AP|min=|CP|﹣r C=2﹣1=1,故答案为:1.【点评】本题主要考查曲线的极坐标方程和圆外一点到圆上一点的距离的最值,难度不大.12.(5分)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则cos(α﹣β)=﹣.【分析】方法一:根据教的对称得到sinα=sinβ=,cosα=﹣cosβ,以及两角差的余弦公式即可求出方法二:分α在第一象限,或第二象限,根据同角的三角函数的关系以及两角差的余弦公式即可求出【解答】解:方法一:∵角α与角β均以Ox为始边,它们的终边关于y轴对称,∴sinα=sinβ=,cosα=﹣cosβ,∴cos(α﹣β)=cosαcosβ+sinαsinβ=﹣cos2α+sin2α=2sin2α﹣1=﹣1=﹣方法二:∵sinα=,当α在第一象限时,cosα=,∵α,β角的终边关于y轴对称,∴β在第二象限时,sinβ=sinα=,cosβ=﹣cosα=﹣,∴cos(α﹣β)=cosαcosβ+sinαsinβ=﹣×+×=﹣:∵sinα=,当α在第二象限时,cosα=﹣,∵α,β角的终边关于y轴对称,∴β在第一象限时,sinβ=sinα=,cosβ=﹣cosα=,∴cos(α﹣β)=cosαcosβ+sinαsinβ=﹣×+×=﹣综上所述cos(α﹣β)=﹣,故答案为:﹣【点评】本题考查了两角差的余弦公式,以及同角的三角函数的关系,需要分类讨论,属于基础题13.(5分)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为﹣1,﹣2,﹣3.【分析】设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题,则若a>b >c,则a+b≤c”是真命题,举例即可,本题答案不唯一【解答】解:设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题,则若a>b>c,则a+b≤c”是真命题,可设a,b,c的值依次﹣1,﹣2,﹣3,(答案不唯一),故答案为:﹣1,﹣2,﹣3【点评】本题考查了命题的真假,举例说明即可,属于基础题.14.(5分)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中A i的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点B i的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.(1)记Q i为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是Q1.(2)记p i为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是p2.【分析】(1)若Q i为第i名工人在这一天中加工的零件总数,则Q i=A i的综坐标+B i的纵坐标;进而得到答案.(2)若p i为第i名工人在这一天中平均每小时加工的零件数,则p i为A i B i中点与原点连线的斜率;进而得到答案.【解答】解:(1)若Q i为第i名工人在这一天中加工的零件总数,Q1=A1的纵坐标+B1的纵坐标;Q2=A2的纵坐标+B2的纵坐标,Q3=A3的纵坐标+B3的纵坐标,由已知中图象可得:Q1,Q2,Q3中最大的是Q1,(2)若p i为第i名工人在这一天中平均每小时加工的零件数,则p i为A i B i中点与原点连线的斜率,故p1,p2,p3中最大的是p2故答案为:Q1,p2【点评】本题考查的知识点是函数的图象,分析出Q i和p i的几何意义,是解答的关键.三、解答题15.(13分)在△ABC中,∠A=60°,c=a.(1)求sinC的值;(2)若a=7,求△ABC的面积.【分析】(1)根据正弦定理即可求出答案,(2)根据同角的三角函数的关系求出cosC,再根据两角和正弦公式求出sinB,根据面积公式计算即可.【解答】解:(1)∠A=60°,c=a,由正弦定理可得sinC=sinA=×=,(2)a=7,则c=3,∴C<A,由(1)可得cosC=,∴sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=,=acsinB=×7×3×=6.∴S△ABC【点评】本题考查了正弦定理和两角和正弦公式和三角形的面积公式,属于基础题16.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B﹣PD﹣A的大小;(3)求直线MC与平面BDP所成角的正弦值.【分析】(1)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点;(2)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小;(3)求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值.【解答】(1)证明:如图,设AC∩BD=O,∵ABCD为正方形,∴O为BD的中点,连接OM,∵PD∥平面MAC,PD⊂平面PBD,平面PBD∩平面AMC=OM,∴PD∥OM,则,即M为PB的中点;(2)解:取AD中点G,∵PA=PD,∴PG⊥AD,∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C(2,4,0),B(﹣2,4,0),M(﹣1,2,),,.设平面PBD的一个法向量为,则由,得,取z=,得.取平面PAD的一个法向量为.∴cos<>==.∴二面角B﹣PD﹣A的大小为60°;(3)解:,平面BDP的一个法向量为.∴直线MC与平面BDP所成角的正弦值为|cos<>|=||=||=.【点评】本题考查线面角与面面角的求法,训练了利用空间向量求空间角,属中档题.17.(13分)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y 的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;(2)从图中A,B,C,D四人中随机选出两人,记ξ为选出的两人中指标x的值大于1.7的人数,求ξ的分布列和数学期望E(ξ);(3)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)【分析】(1)由图求出在50名服药患者中,有15名患者指标y的值小于60,由此能求出从服药的50名患者中随机选出一人,此人指标小于60的概率.(2)由图知:A、C两人指标x的值大于1.7,而B、D两人则小于1.7,可知在四人中随机选项出的2人中指标x的值大于1.7的人数ξ的可能取值为0,1,2,分别求出相应的概率,由此能求出ξ的分布列和E(ξ).(3)由图知100名患者中服药者指标y数据的方差比未服药者指标y数据的方差大.【解答】解:(1)由图知:在50名服药患者中,有15名患者指标y的值小于60,则从服药的50名患者中随机选出一人,此人指标小于60的概率为:p==.(2)由图知:A、C两人指标x的值大于1.7,而B、D两人则小于1.7,可知在四人中随机选项出的2人中指标x的值大于1.7的人数ξ的可能取值为0,1,2,P(ξ=0)=,P(ξ=1)==,P(ξ=2)==,∴ξ的分布列如下:E(ξ)==1.(3)由图知100名患者中服药者指标y数据的方差比未服药者指标y数据的方差大.【点评】本题考查概率的求法,考查离散型随机变量的分布列、数学期望、方差等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.18.(14分)已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.【分析】(1)根据抛物线过点P(1,1).代值求出p,即可求出抛物线C的方程,焦点坐标和准线方程;(2)设过点(0,)的直线方程为y=kx+,M(x1,y1),N(x2,y2),根据韦达定理得到x1+x2=,x1x2=,根据中点的定义即可证明.【解答】解:(1)∵y2=2px过点P(1,1),∴1=2p,解得p=,∴y2=x,∴焦点坐标为(,0),准线为x=﹣,(2)证明:设过点(0,)的直线方程为y=kx+,M(x1,y1),N(x2,y2),∴直线OP为y=x,直线ON为:y=x,由题意知A(x1,x1),B(x1,),由,可得k2x2+(k﹣1)x+=0,∴x1+x2=,x1x2=∴y1+=kx1++=2kx1+=2kx1+=2kx1+(1﹣k)•2x1=2x1,∴A为线段BM的中点.【点评】本题考查了抛物线的简单性质,以及直线和抛物线的关系,灵活利用韦达定理和中点的定义,属于中档题.19.(13分)已知函数f(x)=e x cosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.【分析】(1)求出f(x)的导数,可得切线的斜率和切点,由点斜式方程即可得到所求方程;(2)求出f(x)的导数,再令g(x)=f′(x),求出g(x)的导数,可得g(x)在区间[0,]的单调性,即可得到f(x)的单调性,进而得到f(x)的最值.【解答】解:(1)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,令g(x)=e x(cosx﹣sinx)﹣1,则g(x)的导数为g′(x)=e x(cosx﹣sinx﹣sinx﹣cosx)=﹣2e x•sinx,当x∈[0,],可得g′(x)=﹣2e x•sinx≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f (x )在区间[0,]上的最大值为f (0)=e 0cos0﹣0=1;最小值为f ()=e cos ﹣=﹣. 【点评】本题考查导数的运用:求切线的方程和单调区间、最值,考查化简整理的运算能力,正确求导和运用二次求导是解题的关键,属于中档题.20.(13分)设{a n }和{b n }是两个等差数列,记c n =max {b 1﹣a 1n ,b 2﹣a 2n ,…,b n ﹣a n n }(n=1,2,3,…),其中max {x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数.(1)若a n =n ,b n =2n ﹣1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,>M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.【分析】(1)分别求得a 1=1,a 2=2,a 3=3,b 1=1,b 2=3,b 3=5,代入即可求得c 1,c 2,c 3;由(b k ﹣na k )﹣(b 1﹣na 1)≤0,则b 1﹣na 1≥b k ﹣na k ,则c n =b 1﹣na 1=1﹣n ,c n +1﹣c n =﹣1对∀n ∈N*均成立;(2)由b i ﹣a i n=[b 1+(i ﹣1)d 1]﹣[a 1+(i ﹣1)d 2]×n=(b 1﹣a 1n )+(i ﹣1)(d 2﹣d 1×n ),分类讨论d 1=0,d 1>0,d 1<0三种情况进行讨论根据等差数列的性质,即可求得使得c m ,c m +1,c m +2,…是等差数列;设=An +B +对任意正整数M ,存在正整数m ,使得n ≥m ,>M ,分类讨论,采用放缩法即可求得因此对任意正数M ,存在正整数m ,使得当n ≥m 时,>M . 【解答】解:(1)a 1=1,a 2=2,a 3=3,b 1=1,b 2=3,b 3=5,当n=1时,c 1=max {b 1﹣a 1}=max {0}=0,当n=2时,c 2=max {b 1﹣2a 1,b 2﹣2a 2}=max {﹣1,﹣1}=﹣1,当n=3时,c 3=max {b 1﹣3a 1,b 2﹣3a 2,b 3﹣3a 3}=max {﹣2,﹣3,﹣4}=﹣2, 下面证明:对∀n ∈N*,且n ≥2,都有c n =b 1﹣na 1,当n ∈N*,且2≤k ≤n 时,则(b k ﹣na k )﹣(b 1﹣na 1),=[(2k ﹣1)﹣nk ]﹣1+n ,=(2k﹣2)﹣n(k﹣1),=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,则(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,因此,对∀n∈N*,且n≥2,c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1,∴c2﹣c1=﹣1,﹣c n=﹣1对∀n∈N*均成立,∴c n+1∴数列{c n}是等差数列;(2)证明:设数列{a n}和{b n}的公差分别为d1,d2,下面考虑的c n取值,由b1﹣a1n,b2﹣a2n,…,b n﹣a n n,考虑其中任意b i﹣a i n,(i∈N*,且1≤i≤n),则b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),下面分d1=0,d1>0,d1<0三种情况进行讨论,①若d1=0,则b i﹣a i n═(b1﹣a1n)+(i﹣1)d2,当若d2≤0,则(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)d2≤0,则对于给定的正整数n而言,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,∴数列{c n}是等差数列;当d2>0,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣n)d2>0,则对于给定的正整数n而言,c n=b n﹣a n n=b n﹣a1n,此时c n﹣c n=d2﹣a1,+1∴数列{c n}是等差数列;此时取m=1,则c1,c2,…,是等差数列,命题成立;②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,则当n≥m时,(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此当n≥m时,c n=b1﹣a1n,﹣c n=﹣a1,故数列{c n}从第m项开始为等差数列,命题成立;此时c n+1③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,则当n≥s时,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i ≤n),因此,当n≥s时,c n=b n﹣a n n,此时==﹣a n+,=﹣d2n+(d1﹣a1+d2)+,令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,下面证明:=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,若C≥0,取m=[+1],[x]表示不大于x的最大整数,当n≥m时,≥An+B≥Am+B=A[+1]+B>A•+B=M,此时命题成立;若C<0,取m=[]+1,当n≥m时,≥An+B+≥Am+B+C>A•+B+C≥M﹣C﹣B+B+C=M,此时命题成立,因此对任意正数M,存在正整数m,使得当n≥m时,>M;综合以上三种情况,命题得证.【点评】本题考查数列的综合应用,等差数列的性质,考查与不等式的综合应用,考查“放缩法”的应用,考查学生分析问题及解决问题的能力,考查分类讨论及转化思想,考查计算能力,属于难题.。
2017年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷与答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出得四个选项中,选出符合题目要求得一项。
(1)若集合A={x|–2x1},B={x|x–1或x3},则A B=(A){x|–2x–1} (B){x|–2x3}(C){x|–1x1} (D){x|1x3}(2)若复数(1–i)(a+i)在复平面内对应得点在第二象限,则实数a得取值范围就是(A)(–∞,1)(B)(–∞,–1)(C)(1,+∞)(D)(–1,+∞)(3)执行如图所示得程序框图,输出得s值为(A)2(B)3 2(C)53(D )85(4)若x ,y 满足,则x + 2y 得最大值为(A )1 (B )3 (C )5 (D )9(5)已知函数1(x)33xx f ⎛⎫=- ⎪⎝⎭,则(x)f(A )就是奇函数,且在R 上就是增函数 (B )就是偶函数,且在R 上就是增函数 (C )就是奇函数,且在R 上就是减函数(D )就是偶函数,且在R 上就是减函数(6)设m,n 为非零向量,则“存在负数λ,使得m n λ=”就是“m n 0⋅<”得 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(7)某四棱锥得三视图如图所示,则该四棱锥得最长棱得长度为(A )32 (B )23 (C )22 (D )2(8)根据有关资料,围棋状态空间复杂度得上限M 约为,而可观测宇宙中普通物质得原子总数N 约为、则下列各数中与MN最接近得就是 (参考数据:lg3≈0、48)(A )1033 (B )1053 (C )1073 (D )1093第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
绝密★本科目考试启用前2017年普通高等学校招生全国统一考试数 学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)若集合A ={x |–2x 1},B={x |x –1或x 3},则A B =(A ){x |–2x –1} (B ){x |–2x 3} (C ){x |–1x 1} (D ){x |1x 3} 【答案】A 【解析】试题分析:{}21A B x x =-<<-I ,故选A.(2)若复数(1–i )(a +i )在复平面内对应的点在第二象限,则实数a 的取值范围是(A )(–∞,1) (B )(–∞,–1) (C )(1,+∞) (D )(–1,+∞) 【答案】B(3)执行如图所示的程序框图,输出的s 值为(A )2 (B )32(C )53(D )85【答案】C(4)若x,y满足32xx yy x≤⎧⎪+≥⎨⎪≤⎩,,,则x + 2y的最大值为(A)1 (B)3 (C)5 (D)9 【答案】D【解析】试题分析:如图,画出可行域,2z x y=+表示斜率为12-的一组平行线,当过点()3,3C时,目标函数取得最大值max3239z=+⨯=,故选D.(5)已知函数1()3()3x xf x=-,则()f x(A)是奇函数,且在R上是增函数(B)是偶函数,且在R上是增函数(C)是奇函数,且在R上是减函数(D)是偶函数,且在R上是减函数【答案】A(6)设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件【答案】A 【解析】试题分析:若0λ∃<,使m n λ=r r,即两向量反向,夹角是0180,那么0cos1800m n m n m n ⋅==-<r r r rr rT ,若0m n ⋅<r r,那么两向量的夹角为(0090,180⎤⎦ ,并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分不必要条件,故选A.(7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A )2 (B )3 (C )2 (D )2 【答案】B 【解析】试题分析:几何体是四棱锥,如图红色线为三视图还原后的几何体,最长的棱长为正方体的对角线,22222223l =++=,故选B. (8)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是(参考数据:lg3≈0.48)(A )1033 (B )1053 (C )1073 (D )1093 【答案】D 【解析】试题分析:设36180310M x N == ,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即MN最接近9310,故选D. 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
高考衣食住用行衣:高考前这段时间,提醒同学们出门一定要看天气,否则淋雨感冒,就会影响考场发挥。
穿着自己习惯的衣服,可以让人在紧张时产生亲切感和安全感,并能有效防止不良情绪产生。
食:清淡的饮食最适合考试,切忌吃太油腻或者刺激性强的食物。
如果可能的话,每天吃一两个水果,补充维生素。
另外,进考场前一定要少喝水!住:考前休息很重要。
好好休息并不意味着很早就要上床睡觉,根据以往考生的经验,太早上床反而容易失眠。
考前按照你平时习惯的时间上床休息就可以了,但最迟不要超过十点半。
用:出门考试之前,一定要检查文具包。
看看答题的工具是否准备齐全,应该带的证件是否都在,不要到了考场才想起来有什么工具没带,或者什么工具用着不顺手。
行:看考场的时候同学们要多留心,要仔细了解自己住的地方到考场可以坐哪些路线的公交车?有几种方式可以到达?大概要花多长时间?去考场的路上有没有修路堵车的情况?考试当天,应该保证至少提前20分钟到达考场。
绝密★本科目考试启用前2017年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)若集合A ={x |–2x1},B={x |x–1或x3},则AB =(A ){x |–2x –1} (B ){x |–2x 3} (C ){x |–1x1} (D ){x |1x3}【答案】A【解析】{}21A Bx x =-<<-I ,故选A.(2)若复数(1–i )(a +i )在复平面内对应的点在第二象限,则实数a 的取值范围是(A )(–∞,1) (B )(–∞,–1) (C )(1,+∞) (D )(–1,+∞) 【答案】B【解析】()()()()111z i a i a a i =-+=++-,因为对应的点在第二象限,所以1010a a +<⎧⎨->⎩ ,解得:1a <-,故选B.(3)执行如图所示的程序框图,输出的s 值为(A )2 (B )32(C )53(D )85【答案】C【解析】0k =时,03<成立,第一次进入循环111,21k s +===,13<成立,第二次进入循环,2132,22k s +===,23<成立,第三次进入循环31523,332k s +===,33< 否,输出53s =,故选C.(4)若x ,y 满足32x x y y x ≤⎧⎪+≥⎨⎪≤⎩,,, 则x + 2y 的最大值为(A )1 (B )3 (C )5 (D )9 【答案】D【解析】如图,画出可行域,2z x y =+表示斜率为12-的一组平行线,当过点()3,3C 时,目标函数取得最大值max 3239z =+⨯=,故选D.(5)已知函数1()3()3x xf x =-,则()f x(A )是奇函数,且在R 上是增函数 (B )是偶函数,且在R 上是增函数(C )是奇函数,且在R 上是减函数(D )是偶函数,且在R 上是减函数【答案】A【解析】()()113333xx xx f x f x --⎛⎫⎛⎫-=-=-=- ⎪ ⎪⎝⎭⎝⎭,所以函数是奇函数,并且3x 是增函数,13x⎛⎫⎪⎝⎭是减函数,根据增函数-减函数=增函数,所以函数是增函数,故选A.(6)设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件【答案】A【解析】若0λ∃<,使m n λ=r r,即两向量反向,夹角是0180,那么0cos1800m n m n m n ⋅==-<r r r rr r,反过来,若0m n ⋅<r r,那么两向量的夹角为(0090,180⎤⎦ ,并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分不必要条件,故选A.(7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A )32 (B )23 (C )22 (D )2 【答案】B【解析】几何体是四棱锥,如图红色线为三视图还原后的几何体,最长的棱长为正方体的对角线,22222223l =++=选B.(8)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是(参考数据:lg3≈0.48)(A )1033 (B )1053 (C )1073 (D )1093 【答案】D【解析】设36180310M x N == ,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即MN最接近9310,故选D.第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
绝密★本科目考试启用前2017年普通高等学校招生全国统一考试数学(理)(北京卷)【试卷点评】2017年北京高考数学试卷,试卷内容上体现新课程理念,贴近中学数学教学,坚持对基础知识、基本技能以及数学思想方法的考查。
我先说一说2017年总体试卷的难度,2017年文科也好、理科也好,整个试卷难度较2015、2016年比较平稳,北京高考应该是从2014年以前和2014年以后,2015、2016年卷子难度都比较低,今年延续了前两年,整体难度比较低。
今天我说卷子简单在于第8题和第14题,难度下降了,相比2014、2015、2016,整体都下降了。
1.体现新课标理念,实现平稳过渡。
试卷紧扣北京考试大纲,新增内容的考查主要是对基本概念、基本公式、基本运算的考查,难度不大。
对传统内容的考查在保持平稳的基础上进行了适度创新,符合北京一贯的风格。
2.关注通性通法,试卷淡化了特殊的技巧,全面考查通性通法,体现了以知识为载体,以方法为依托,题目没有偏怪题,以能力考查为目的的命题要求。
3.体现数学应用,联系实际,例如理科第17 题考查了样本型的概率问题,第三问要求不必证明、直接给出结论(已经连续6年),需注重理解概念的本质原理,第8 题本着创新题的风格,结合生活中的实际模型进行考查,像14 年的成绩评定、15 年的汽车燃油问题,都是由生活中的实际模型转化来的,对推动数学教学中关注身边的数学起到良好的导向。
【试卷解析】本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)若集合A={x|–2<x<1},B={x|x<–1或x>3},则A B=(A){x|–2<x<–1} (B){x|–2<x<3}(C){x|–1<x<1} (D){x|1<x<3}【解析】试题分析:利用数轴可知{}21A B x x =-<<-,故选A.【考点】集合的运算【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示,若集合是无限集合就用描述法表示,注意代表元素是什么,集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.(2)若复数()()1i a i -+在复平面内对应的点在第二象限,则实数a 的取值范围是 (A )(–∞,1) (B )(–∞,–1) (C )(1,+∞) (D )(–1,+∞) 【答案】B【考点】复数的运算【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.复数z =a +b i复平面内的点Z (a ,b )(a ,b ∈R ).复数z =a +b i(a ,b ∈R ) 平面向量OZ .(3)执行如图所示的程序框图,输出的s 值为(A )2 (B )32(C )53(D )85【考点】循环结构【名师点睛】解决此类型时要注意:第一,要明确是当型循环结构,还是直到型循环结构.根据各自的特点执行循环体;第二,要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;第三,要明确循环体终止的条件是什么,会判断什么时候终止循环体,争取写出每一个循环,这样避免出错.(4)若x,y满足32xx yy x≤⎧⎪+≥⎨⎪≤⎩,,,则x + 2y的最大值为(A)1 (B)3 (C)5 (D)9 【答案】D【解析】试题分析:如图,画出可行域,2z x y=+表示斜率为12-的一组平行线,当过点()3,3C时,目标函数取得最大值max3239z=+⨯=,故选D.【考点】线性规划【名师点睛】本题主要考查简单线性规划.解决此类问题的关键是正确画出不等式组表示的可行域,将目标函数赋予几何意义;求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义.常见的目标函数有:(1)截距型:形如z ax by =+.求这类目标函数的最值常将函数z ax by =+转化为直线的斜截式:a z y x b b =-+,通过求直线的截距zb的最值间接求出z 的最值;(2)距离型:形如()()22z x a y b =-+- ;(3)斜率型:形如y b z x a-=-,而本题属于截距形式. (5)已知函数1()3()3xx f x =-,则()f x(A )是奇函数,且在R 上是增函数 (B )是偶函数,且在R 上是增函数 (C )是奇函数,且在R 上是减函数 (D )是偶函数,且在R 上是减函数【答案】A 【解析】试题分析:()()113333xx x x f x f x --⎛⎫⎛⎫-=-=-=- ⎪ ⎪⎝⎭⎝⎭,所以函数是奇函数,并且3x 是增函数,13x⎛⎫⎪⎝⎭是减函数,根据增函数-减函数=增函数,所以函数是增函数,故选A. 【考点】函数的性质【名师点睛】本题属于基础题型,根据奇偶性的定义()f x -与()f x 的关系就可以判断函数的奇偶性,判断函数单调性的方法,1.平时学习过的基本初等函数的单调性;2.函数图象判断函数的单调性;3.函数的四则运算判断,增函数+增函数=增函数,增函数-减函数=增函数,判断函数的单调性;4.导数判断函数的单调性. (6)设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件【答案】A【考点】1.向量;2.充分必要条件.【名师点睛】判断充分必要条件的的方法:1.根据定义,若,p q q p ⇒≠>,那么p 是q 的充分不必要 ,同时q 是p 的必要不充分条件,若p q ⇔,那互为充要条件,若p q <≠>,那就是既不充分也不必要条件,2.当命题是以集合形式给出时,那就看包含关系,若:,:p x A q x B ∈∈,若A B ≠⊂,那么p 是q 的充分必要条件,同时q 是p 的必要不充分条件,若A B =,互为充要条件,若没有包含关系,就是既不充分也不必要条件,3.命题的等价性,根据互为逆否命题的两个命题等价,将p 是q 条件的判断,转化为q ⌝是p ⌝条件的判断. (7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A )(B )(C ) (D )2 【答案】B 【解析】试题分析:几何体是四棱锥,如图红色线为三视图还原后的几何体,最长的棱长为正方体的对角线,l == B. 【考点】三视图【名师点睛】本题考查了空间想象能力,由三视图还原几何体的方法:或者也可根据三视图的形状,将几何体的顶点放在正方体或长方体里面,便于分析问题.(8)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是(参考数据:lg3≈0.48)(A )1033 (B )1053 (C )1073(D )1093【答案】D 【解析】试题分析:设36180310M x N == ,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即MN最接近9310,故选D. 【考点】对数运算【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是36180310x =时,两边取对数,对数运算公式包含log log log a a a M N MN +=,log log log a a aM M N N-=,log log na a M n M =. 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
绝密★启封并使用完毕前2017年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)若集合A={x|–2x1},B={x|x–1或x3},则AB=(A){x|–2x–1} (B){x|–2x3}(C){x|–1x1}(D){x|1x3}(2)若复数(1–i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是(A)(–∞,1)(B)(–∞,–1)(C)(1,+∞)(D)(–1,+∞)(3)执行如图所示的程序框图,输出的s值为(A)2(B)3 2(C )53(D)85(4)若x ,y 满足,则x + 2y 的最大值为(A )1 (B)3 (C)5 (D )9(5)已知函数1(x)33xx f ⎛⎫=- ⎪⎝⎭,则(x)f(A)是奇函数,且在R 上是增函数 (B )是偶函数,且在R 上是增函数 (C )是奇函数,且在R 上是减函数(D )是偶函数,且在R 上是减函数(6)设m,n 为非零向量,则“存在负数λ,使得m n λ=”是“m n 0⋅<"的 (A)充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A)32 (B )23 (C)22 (D)2(8)根据有关资料,围棋状态空间复杂度的上限M 约为,而可观测宇宙中普通物质的原子总数N 约为。
则下列各数中与MN最接近的是 (参考数据:lg3≈0。
48)(A)1033 (B )1053 (C)1073 (D )1093第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
绝密★本科目考试启用前2017年普通高等学校招生全国统一考试理科数学(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题:共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)若集合{|21}{|13}A x x B x x x =-=-<<<>,或,则A B = (A ){|21}x x -<<- (B ){|23}x x -<< (C ){|11}x x -<< (D ){|13}x x <<(2)若复数(1)()i a i -+在复平面内对应的点在第二象限,则实数a 的取值范围是(A )(,1)-∞ (B )(,1)-∞- (C )(1,)+∞ (D )(1,)-+∞ (3)执行如图所示的程序框图,输出的s 值为(A )2(B )32 (C )53(D )85(4)若,x y 满足32x x y y x ≤⎧⎪+≥⎨⎪≤⎩,则2x y +的最大值为(A )1 (B )3 (C )5 (D )9(5)已知函数1()3()3x xf x =-,则()f x(A )是奇函数,且在R 上是增函数 (B )是偶函数,且在R 上是增函数(C )是奇函数,且在R 上是减函数(D )是偶函数,且在R 上是减函数(6)设,m n 为非零向量,则“存在负数λ,使得m n λ=”是“0m n ⋅<”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件(7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A)(B)(C)(D )2(8)根据有关资料,围棋状态空间复杂度的上限M 约为3613,而可观测宇宙中普通物质的原子总数N 约为8010.则下列各数中与MN最接近的是( )(参考数据:lg3≈0.48) (A )3310 (B )5310 (C )7310 (D )9310第二部分(非选择题 共110分)二、填空题:共6小题,每小题5分,共30分。
绝密★启封并使用完毕前2017 年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共 5 页,150 分。
考试时长120 分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40 分)、选择题共8小题,每小题5分,共40 分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1)若集合A={ x|– 2 x 1} ,B={ x|x –1或x 3},则 A B=A){x|–2 x –1} (B){x|–2 x 3}C){x|–1 x 1} (D){x|1 x 3}a 的取值范围是2)若复数(1–i)(a+i)在复平面内对应的点在第二象限,则实数 A )(–∞,1)B)(–∞,–1)C)(1,+∞)D)(–1,+∞) 3)执行如图所示的程序框图,输出的s 值为A)23B)2C)53D)854)若x,y 满足x≤3,x + y ≥2,y≤x,则x + 2y 的最大值为(A)1(C)5(B)3(D)9第二部分 (非选择题 共 110 分)、填空题共 6小题,每小题 5分,共 30 分。
29)若双曲线 x 2 y 1 的离心率为 3 ,则实数 m= ___________________ .m10)若等差数列 a n 和等比数列 b n 满足 a 1=b 1=–1,a 4=b 4=8,则 a2 = ___________n n b 25)已知函数 f (x) 3x1,则 f(x)3A )是奇函数,且在 R 上是增函数B )是偶函数,且在 R 上是增函数C )是奇函数,且在 R 上是减函数D )是偶函数,且在 R 上是减函数6)设 m,n 为非零向量,则“存在负数 ,使得 m n ”是“ m n <0”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( A ) 3 2 (B ) 2 3 (C ) 2 2 (D ) 28)根据有关资料,围棋状态空间复杂度的上限 M 约为 3361,而可观测宇宙中普通物质的原子总数N 约为 1080.则列各数中与 M 最接近的是N参考数据: lg3 ≈ 0.4)8A )1033C )1073B )1053 D )109314)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点 午的工作时间和加工的零件数, 点 B i 的横、纵坐标学科 & 网分别为第 i 名工人下午的工作时间和加工的零件数, i=1, 2,3。
2017年普通高等学校招生全国统一考试(北京卷)数学(理科)本试卷共5页. 150分.考试时长120分钟.考试生务必将答案答在答题卡上.在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题。
每小题5分.共40分.在每小题列出的四个选项中,选出符合胜目要求的一项. 1.已知集合A={x ∈R|3x+2>0} B={x ∈R|(x+1)(x-3)>0} 则A ∩B= A (-∞,-1)B (-1,-23) C (-23,3)D (3,+∞) 【解析】和往年一样,依然的集合(交集)运算,本次考查的是一次和二次不等式的解法。
因为32}023|{->⇒>+∈=x x R x A ,利用二次不等式可得1|{-<=x x B 或}3>x 画出数轴易得:}3|{>=x x B A .故选D .【答案】D 2.设不等式组⎩⎨⎧≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是 (A )4π (B )22π- (C )6π (D )44π-【解析】题目中⎩⎨⎧≤≤≤≤2020y x 表示的区域如图正方形所示,而动点D可以存在的位置为正方形面积减去四分之一圆的面积部分,因此4422241222ππ-=⨯⋅-⨯=P ,故选D 。
【答案】D3.设a ,b ∈R 。
“a=0”是“复数a+bi 是纯虚数”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件【解析】当0=a 时,如果0=b 同时等于零,此时0=+bi a 是实数,不是纯虚数,因此不是充分条件;而如果bi a +已经为纯虚数,由定义实部为零,虚部不为零可以得到0=a ,因此想必要条件,故选B 。
【答案】B4.执行如图所示的程序框图,输出的S 值为( )A. 2 B .4 C.8 D. 16【解析】0=k ,11=⇒=k s ,21=⇒=k s ,22=⇒=k s ,8=s ,循环结束,输出的s 为8,故选C 。
【答案】5.如图. ∠ACB=90º,CD ⊥AB 于点D ,以BD 为直径的圆与BC 交于点E.则( ) A. CE ·CB=AD ·DB B. CE ·CB=AD ·AB C. AD ·AB=CD ² D.CE ·EB=CD ²【解析】在ACB ∆中,∠ACB=90º,CD ⊥AB 于点D ,所以DB AD CD ∙=2,由切割线定理的CB CE CD ∙=2,所以CE ·CB=AD ·DB 。
【答案】A6.从0,2中选一个数字.从1.3.5中选两个数字,组成无重复数字的三位数.其中奇数的个数为( ) A. 24 B. 18 C. 12 D. 6【解析】由于题目要求的是奇数,那么对于此三位数可以分成两种情况:奇偶奇;偶奇奇。
如果是第一种奇偶奇的情况,可以从个位开始分析(3种选择),之后十位(2种选择),最后百位(2种选择),共12种;如果是第二种情况偶奇奇,分析同理:个位(3种情况),十位(2种情况),百位(不能是0,一种情况),共6种,因此总共12+6=18种情况。
【答案】B7.某三棱锥的三视图如图所示,该三梭锥的表面积是( )A. 28+65B. 30+65C. 56+ 125D. 60+125【解析】从所给的三视图可以得到该几何体为三棱锥,如图所示,图中蓝色数字所表示的为直接从题目所给三视图中读出的长度,黑色数字代表通过勾股定理的计算得到的边长。
本题所求表面积应为三棱锥四个面的面积之和,利用垂直关系和三角形面积公式,可得:10=底S ,10=后S ,10=右S ,56=左S ,因此该几何体表面积5630+=+++=左右后底S S S S S ,故选B 。
【答案】B8.某棵果树前n 前的总产量S 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高。
m 值为( )A.5B.7C.9D.11【解析】由图可知6,7,8,9这几年增长最快,超过平均值,所以应该加入,因此选C 。
【答案】C第二部分(非选择题共110分)二.填空题共6小题。
每小题5分。
共30分. 9.直线t ty tx (12⎩⎨⎧--=+=为参数)与曲线ααα(sin 3cos 3⎩⎨⎧==y x 为参数)的交点个数为______。
【解析】直线的普通方程01=-+y x ,圆的普通方程为922=+y x ,可以直线圆相交,故有2个交点。
【答案】210.已知}{n a 等差数列n S 为其前n 项和。
若211=a ,32a S =,则2a =_______。
【解析】因为212111132132==⇒+=++⇒=+⇒=a d d a d a a a a a a S ,所以112=+=d a a ,n n d n n na S n 4141)1(21+=-+=。
【答案】12=a ,n n S n 41412+=11.在△ABC 中,若a =2,b+c=7,cosB=41-,则b=_______。
【解析】在△ABC 中,利用余弦定理cb c b c ac b c a B 4))((4412cos 222-++=-⇒-+= c b c 4)(74-+=,化简得:0478=+-b c ,与题目条件7=+c b 联立,可解得⎪⎩⎪⎨⎧===.2,4,3a b c【答案】412.在直角坐标系xOy 中,直线l 过抛物线=4x 的焦点F.且与该撇物线相交于A 、B 两点.其中点A 在x 轴上方。
若直线l 的倾斜角为60º.则△OAF 的面积为【解析】由x y 42=可求得焦点坐标F(1,0),因为倾斜角为︒60,所以直线的斜率为360tan =︒=k ,利用点斜式,直线方程为33-=x y ,将直线和曲线联立⎪⎩⎪⎨⎧-⇒⎪⎩⎪⎨⎧=-=)332,31()32,3(4332B A xy x y ,因此33212121=⨯⨯=⨯⨯=∆A O A F y OF S . 【答案】313.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则CB DE ⋅的值为________,DC DE ⋅的最大值为______。
【解析】根据平面向量的数量积公式=⋅=⋅DA DE CB DE θcos ||||DA DE ⋅,由图可知,||cos ||DA DE =⋅θ,因此1||2==⋅DA CB DE ,就是向量DE =⋅=⋅αcos ||||DC DE DC DE αcos ||⋅DE ,而αcos ||⋅DE 在边上的射影,要想让DC DE ⋅最大,即让射影最大,此时E 点与B 点重合,射影为,所以长度为1. 【答案】1,114.已知)3)(2()(++-=m x m x m x f ,22)(-=x x g ,若同时满足条件: ①R x ∈∀,0)(<x f 或0)(<x g ; ②)4,(--∞∈∀x , )(x f 0)(<x g 。
则m 的取值范围是_______。
【解析】根据022)(<-=xx g ,可解得1<x 。
由于题目中第一个条件的限制R x ∈∀,0)(<x f 或0)(<x g 成立的限制,导致)(x 在1≥x 时必须是0)(<x f 的。
当0=m 时,0)(=x f 不能做到)(x f 在1≥x 时0)(<x f ,所以舍掉。
因此,)(x f 作为二次函数开口只能向下,故0<m ,且此时两个根为m x 21=,32--=m x 。
为保证此条件成立,需要⎪⎩⎪⎨⎧-><⇒⎩⎨⎧<--=<=421131221m m m x m x ,和大前提0<m 取交集结果为04<<-m ;又由于条件2:要求)4,(--∞∈x ,<)()(x g x f 0的限制,可分析得出在)4,(--∞∈x 时,)(x f 恒负,因此就需要在这个范围内)(x g 有得正数的可能,即4-应该比21,x x 两根中小的那个大,当)0,1(-∈m 时,43-<--m ,解得,交集为空,舍。
当1-=m 时,两个根同为42->-,舍。
当)1,4(--∈m 时,42-<m ,解得2-<m ,综上所述)2,4(--∈m . 【答案】)2,4(--∈m三、解答题公6小题,共80分。
解答应写出文字说明,演算步骤或证明过程。
15.(本小题共13分) 已知函数xxx x x f sin 2sin )cos (sin )(-=。
(1)求)(x f 的定义域及最小正周期; (2)求)(x f 的单调递增区间。
解(1):s i n 0()x x k k Z π≠⇔≠∈得:函数()f x 的定义域为{,}x x k k Z π≠∈(sin cos )sin 2()(sin cos )2cos sin x x xf x x x x x-==-⨯sin 2(1cos 2)2)14x x x π=-+=--得:)(x f 的最小正周期为22T ππ==; (2)函数sin y x =的单调递增区间为[2,2]()22k k k Z ππππ-+∈ 则322224288k x k k x k πππππππππ-≤-≤+⇔-≤≤+得:)(x f 的单调递增区间为3[,),(,]()88k k k k k Z ππππππ-+∈16.(本小题共14分)如图1,在Rt △ABC 中,∠C=90°,BC=3,AC=6,D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE=2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD,如图2. (I)求证:A 1C ⊥平面BCDE ;(II)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(III)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由解:(1)CD DE ⊥,1A E DE ⊥∴DE ⊥平面1A CD ,又1AC ⊂平面1A CD , ∴1AC ⊥DE 又1A C CD ⊥, ∴1AC ⊥平面BCDE 。
(2)如图建系C xyz -,则()200D -,,,(003A ,,,()030B ,,,()220E -,,∴()10323A B =-,,,()1210A E =--,, 设平面1A BE 法向量为()n x y z =,,则1100A B n A E n ⎧⋅=⎪⎨⋅=⎪⎩ ∴323020y z x y ⎧-=⎪⎨--=⎪⎩ ∴32z y y x ⎧=⎪⎪⎨⎪=-⎪⎩∴()123n =-,, 又∵(103M -,, ∴()103CM =-,, ∴2cos ||||14313222CM n CM n θ⋅====⋅++⋅+⋅,∴CM 与平面1A BE 所成角的大小45︒。