初一数学上册知识点总结
- 格式:doc
- 大小:84.00 KB
- 文档页数:7
初一数学上册必考知识点归纳总结一、代数初步知识1.代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.二、几个重要的代数式(m、n表示整数)(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;(4)若b>0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2.三、有理数1.有理数:(1)正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;鸩皇怯欣硎?;(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.四、有理数法则及运算规律(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.2.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).4.有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.5.有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.6.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数。
人教七年级数学上知识点
一、整数及其运算
整数的概念、数轴、绝对值、相反数、加法、减法、乘法、除法及运算法则。
二、平面图形
平面图形的基本概念、直线、线段、射线、角、三角形、四边形、圆等基本图形及其性质。
三、一次函数
一次函数的概念、函数的解析式、函数图象、函数的变化及其含义。
四、数据的收集、整理与分析
数据的调查与应用、频数表、频数直方图、统计量和样本。
五、解方程
一元一次方程的概念和性质,基本解法和应用。
六、数列
数列的概念,等差数列、等比数列,数列的通项公式和前n项和。
七、三角形
三角形的基本性质、三角形的元素、三角形的周长和面积、勾股定理、解决实际问题。
八、比例与相似
比例的概念、比例的性质、比例的应用、相似的概念、相似三角形的性质及其应用。
九、两点间的距离与中点
两点间距离公式、平面直角坐标系、中点公式。
十、几何变换
平移、旋转、翻折及其组合。
以上是人教七年级数学上的基本知识点,学生们在学习过程中需要深入掌握,从而能够进行更深入的应用和解决实际问题。
希望本文对广大师生有所帮助,祝大家学习进步!。
数学初一上册全部重要知识点
1.代数初步知识。
代数式、同类项、合并同类项、代数式的值、方程的概念、一元一次方程的解法、二元一次方程和它的解的概念、加减消元法解二元一次方程组、简单计算等。
2.数的开方。
平方根、算术平方根、立方根的概念、求法及其与平方根的关系、实数概念和分类等。
3.数的整除知识。
因数、倍数、质数、合数、质因数、分解质因数、最大公约数、最小公倍数概念和求法等。
4.分数知识。
分数的意义、分数单位、分数性质、分数的加减法、同分母分数的加减法、通分、最简公分母、异分母分数的加减法等。
5.比和比例知识。
比的意义和性质、比例的意义和性质等。
6.几何初步知识。
直线、射线、线段的概念和画法,角的概念和度量法,角的比较和运算等。
7.统计初步知识。
统计表和统计图,平均数和方差等。
8.常用单位量。
米、分米、厘米、毫米等长度单位,吨、千克、克等质量单位,元、角、分等货币单位,日、月、年等时间单位。
9.整数和小数的读写法。
包括数字的写法规则和读法规则等。
10.数的改写方法。
包括用小数表示整数的方法,用分数表示整数的方法,用百分数表示整数的方法等。
11.近似值概念和四舍五入法等。
12.正负数的概念和表示方法等。
13.数的整除性特征和约数与倍数的相互关系等。
14.分数的意义和基本性质等。
15.比和比例的意义和性质等。
16.平面图形的认识和测量等。
17.立体图形的认识和测量等。
18.综合应用题等。
初一上册数学知识点归纳整理第一章有理数(一)正负数1.正数:大于0的数。
2.负数:小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数1.有理数:由整数和分数组成的数。
包括:正整数、0、负整数,正分数、负分数。
可以写成两个整之比的形式。
(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。
如:π)2.整数:正整数、0、负整数,统称整数。
3.分数:正分数、负分数。
(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。
(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。
)2.数轴的三要素:原点、正方向、单位长度。
3.相反数:只有符号不同的两个数叫做互为相反数。
0的相反数还是0。
4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
(四)有理数的加减法1.先定符号,再算绝对值。
2.加法运算法则:同号相加,到相同符号,并把绝对值相加。
异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
一个数同0相加减,仍得这个数。
3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。
4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
5.a-b=a+(-b)减去一个数,等于加这个数的相反数。
(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
2.乘积是1的两个数互为倒数。
3.乘法交换律:ab=ba4.乘法结合律:(ab)c=a(bc)5.乘法分配律:a(b+c)=ab+ac(六)有理数除法1.先将除法化成乘法,然后定符号,最后求结果。
2.除以一个不等于0的数,等于乘这个数的倒数。
初一数学上册知识点总结一、数与代数1. 自然数和整数- 自然数的定义和性质- 整数的定义和性质- 正数和负数的概念- 绝对值的理解2. 有理数- 有理数的定义- 有理数的加法和减法- 有理数的乘法和除法- 有理数的比较大小3. 整式与分数- 整式的概念和运算- 分数的概念和运算- 约分和通分- 混合运算法则4. 代数表达式- 代数表达式的构成- 单项式和多项式- 合并同类项- 代数式的基本变形二、几何1. 几何图形初步- 点、线、面的基本认识- 直线、射线、线段- 角的概念和分类- 角的度量和比较2. 平面图形- 平行线的性质- 三角形的基本性质- 四边形的基本性质- 圆的基本性质3. 面积与体积- 长方形和正方形的面积计算- 三角形的面积计算- 圆的面积计算- 体积的基本概念三、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 统计图表的绘制(条形图、折线图、饼图)2. 概率- 随机事件的概念- 概率的基本计算- 等可能事件的概率四、应用题1. 一元一次方程- 方程的概念和基本性质- 解一元一次方程- 方程在实际问题中的应用2. 比例和相似- 比例的概念和性质- 相似三角形的性质- 比例在几何问题中的应用请注意,这只是一个基本的框架,具体的文档应该包含更详细的解释和示例。
您可以根据这个概要在Word文档中添加具体的解释、公式、图表和例题,以形成一个完整的知识点总结文档。
初一数学上册知识点归纳总结一、数的基本概念1.自然数自然数是正整数,用N表示。
自然数的概念是人们认识数的最早形式之一。
2.整数整数是由自然数加0、负整数所构成的集合,整数的概念是人们对数的深入认识所形成的。
3.有理数有理数是可以表示成分数形式的数,分母和分子都是整数的数,有理数可以通过加、减、乘、除四则运算得到。
4.实数实数是包括有理数和无理数的数的集合,实数无论正负、整小数一律包括。
5.数轴数轴是由一个平面上的一条直线和这条直线上的一个点所确定的。
二、比例与比例应用1.比例的概念比例是指两个同类事物在数量上的相对大小。
具体来说,就是将两个同类的量进行比较和对应,写成分数形式时,这个分数式叫做比例。
2.比例的性质比例有以下性质:若等比例中一项增加(减少)a,则另一项也按比例增加(减少)a;若等比例中两项对调,则比例不变。
3.简单比例应用居中问题、合作分成问题、混合问题、拆分问题、趣味比例问题等。
三、图形的认识1.点、线、面的认识点是图形的最基本元素,线是由无数点连成的,面则由许多条线组成。
2.多边形多边形是由线段围成的,是平面内的一个封闭图形,根据边的数量可以分为三角形、四边形、五边形等。
四、平面直角坐标系1.平面直角坐标系的建立平面直角坐标系是在平面内建立一个原点和坐标轴,表示各点的位置和运动方向,方便进行各种运算。
2.平面直角坐标系中的长度计算平面直角坐标系中的长度计算是指求两点之间的距离,使用勾股定理。
3.平面直角坐标系中的中点坐标公式平面直角坐标系中,两个点的中点坐标的求解,需要利用中点横坐标的公式和中点纵坐标的公式。
五、数学语言和文字阅读1.数字和符号数学是以数字和符号来表达的,其中部分符号如。
初一上册数学知识点归纳总结有理数1.正数与负数(1)正数:大于0的数叫正数。
(根据需要,有时在正数前面也加上“+”)(2)负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
(3)0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
2.数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不全表示有理数。
3.绝对值(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离。
(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
两个负数,绝对值大的反而小。
4.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
5.有理数的乘除法(1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0。
(2)乘积是1的两个数互为倒数。
(3)有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。
6.有理数的乘方(1)求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。
在a的n次方中,a叫做底数,n叫做指数。
负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何次幂都是0。
(2)有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
(3)把一个大于10的数表示成a×10的n次方的形式,使用的就是科学记数法,注意a的范围为1≤a<10。
七年级数学上册知识点总结集合14篇七年级数学上册知识点总结 1第一章有理数(一)正负数1.正数:大于0的数。
2.负数:小于0的数。
3.0既不积极也不消极。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数1.有理数:由整数和分数组成的数。
包括:正整数、0、负整数,正分数、负分数。
可以写成两个整数之比的形式。
(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。
如:π)2.整数:正整数、0、负整数,统称整数。
3.分数:正分数、负分数。
(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。
(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。
)2.数轴的三要素:原点、正方向、单位长度。
3.古物:只有两个符号不同的数叫做倒数。
0的反义词还是0。
4.绝对值:正数的绝对值是它本身,负数的绝对值是它的逆;0的绝对值是0。
两个负数相比较,较大的绝对值较小。
(四)有理数的加减法1.先定符号,再算绝对值。
2.加法算法:加同号,取同号,绝对值相加。
不同符号的加法,取绝对值大的加数的符号,用绝对值大的减去绝对值小的。
两个相反的数相加等于0。
用0加减一个数,还是得到这个数。
3.加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。
4.加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
5. ab = a +(b)减去一个数,等于加这个数的相反数。
(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
2.乘积为1的两个数互为倒数。
3.乘法交换律:ab= ba4.乘法结合律:(ab)c = a (b c)5.乘法分配律:a(b +c)= a b+ ac(六)有理数除法1.先分乘法,再符号,最后求结果。
初一数学上册必背知识点总结
以下是初一数学上册的一些必背知识点总结:
1. 数的分类和集合:自然数、整数、有理数、实数等的概念和分类。
2. 数的运算:加法、减法、乘法、除法,以及它们之间的性质和规律。
3. 数轴和有理数的大小比较:利用数轴表示有理数,并掌握有理数的大小比较方法。
4. 整数的加减法:正数加减正数、负数加减负数、正数与负数相加、零与正数相加、零与负数相加等的运算方法。
5. 有理数的加减法:有理数加减有理数的运算法则。
6. 分数的概念和运算:分数的表示、分数的化简、分数的加减乘除等运算。
7. 小数的概念和运算:小数的表示、小数的加减乘除等运算。
8. 百分数的概念和运算:百分数的表示、百分数的转化、百分数与分数、小数的相互转化等。
9. 平方根和立方根:平方根的概念、立方根的概念、平方根和立方根的计算方法。
10. 算式的变形和推理:算式的基本性质、算式的变形和推理方法。
11. 常用的计算方法和技巧:口算技巧、竖式计算、列竖式解决问题等。
以上是初一数学上册的一些必背知识点总结,希望对你有帮助!但请注意,具体内容可能会因教材版本和学校的不同而有所差异,建议以教材为准。
初一数学知识点总结归纳重点上册一、整数运算:1.正整数和负整数的概念及表示方法;2.整数的加法和减法运算,运用数轴进行计算;3.整数的乘法运算,掌握乘法法则;4.整数的除法运算,求商和余数的方法。
二、分数运算:1.分数的概念和表示方法;2.分数的加法和减法运算;3.分数乘法的性质及运算法则;4.分数除法的性质和运算法则;5.约分和通分的方法。
三、小数运算:1.小数的概念和表示方法;2.小数的加法和减法运算;3.小数乘法的性质和运算法则;4.小数除法的性质和运算法则。
四、比例与相似:1.比例的概念和表示方法;2.比例的性质和运算法则;3.相似的概念和判定方法。
五、几何图形与测量:1.平行线与平行四边形的性质;2.三角形的性质及分类;3.识别和绘制平面图形,如正方形、矩形、长方形、菱形、梯形等;4.体积和质量的单位换算。
六、方程与函数:1.一元一次方程的概念和解法;2.函数的概念和函数图像的绘制;3.解方程和求函数值的运算。
七、统计与概率:1.统计数据的收集和整理;2.统计图的制作和分析;3.概率的概念和计算方法。
这些数学知识点是初一上册数学学习的重点,下面我会对其中几个知识点进行详细介绍。
一、整数运算:整数运算是数学学习的基础,因此非常重要。
正整数是大于零的整数,负整数是小于零的整数。
我们可以用数轴来表示正负整数,数轴上的点表示一个整数。
在数轴上,向右移动表示正数增加,向左移动表示负数增加。
整数的加法和减法运算可以通过数轴进行计算,例如:3 + 5 = 8,-2 + 3 = 1。
整数的乘法运算可以通过乘法法则进行计算,例如:2 × 3 = 6,-2 × -3 = 6。
整数的除法运算可以求商和余数,例如:7 ÷ 3 = 2余1。
二、分数运算:分数是整数的一种表示方法,它由分子和分母两个部分组成。
分数的加法和减法运算可以通过通分进行计算,即将两个分数的分母变为相同的,然后将分子相加或相减。
初一数学上册知识点总结说明:用于晚读,平时多看看,记一记,注意保管好。
(一)有理数及其运算复习一、有理数的基础知识1、三个重要的定义:(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数. 2、有理数的分类: (1)按定义分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0(2)按性质符号分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数03、数轴数轴有三要素:原点、正方向、单位长度.画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴.在数轴上的所表示的数,右边的数总比左边的数大,所以正数都大于0,负数都小于0,正数大于负数.4、相反数如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数.0的相反数是0,互为相反的两上数,在数轴上位于原点的两则,并且与原点的距离相等.5、绝对值(1)绝对值的几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离. (2)绝对值的代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数,可用字母a 表示如下:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a(3)两个负数比较大小,绝对值大的反而小. 二、有理数的运算 1、有理数的加法(1)有理数的加法法则:①同号两数相加,取相同的符号,并把绝对值相加;②绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;③互为相反的两个数相加得0;④一个数同0相加,仍得这个数.(2)有理数加法的运算律:加法的交换律:a+b=b+a;加法的结合律:( a+b ) +c = a + (b +c)用加法的运算律进行简便运算的基本思路是:先把互为相反数的数相加;把同分母的分数先相加;把符号相同的数先相加;把相加得整数的数先相加.2、有理数的减法(1)有理数减法法则:减去一个数等于加上这个数的相反数.(2)有理数减法常见的错误:顾此失彼,没有顾到结果的符号;仍用小学计算的习惯,不把减法变加法;只改变运算符号,不改变减数的符号,没有把减数变成相反数.(3)有理数加减混合运算步骤:先把减法变成加法,再按有理数加法法则进行运算;3、有理数的乘法(1)有理数乘法的法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0.(2)有理数乘法的运算律:交换律:ab=ba;结合律:(ab)c=a(bc);交换律:a(b+c)=ab+ac.(3)倒数的定义:乘积是1的两个有理数互为倒数,即ab=1,那么a和b互为倒数;倒数也可以看成是把分子分母的位置颠倒过来.4、有理数的除法有理数的除法法则:除以一个数,等于乘上这个数的倒数,0不能做除数.这个法则可以把除法转化为乘法;除法法则也可以看成是:两个数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都等于0.5、有理数的乘方(1)有理数的乘法的定义:求几个相同因数a的运算叫做乘方,乘方是一种运算,是a”其中a叫做底数,表示相同的因数,n叫做几个相同的因数的特殊乘法运算,记做“n指数,表示相同因数的个数,它所表示的意义是n个a相乘,不是n乘以a,乘方的结果叫做幂.(2)正数的任何次方都是正数,负数的偶数次方是正数,负数的奇数次方是负数6、有理数的混合运算(1)进行有理数混合运算的关建是熟练掌握加、减、乘、除、乘方的运算法则、运算律及运算顺序.比较复杂的混合运算,一般可先根据题中的加减运算,把算式分成几段,计算时,先从每段的乘方开始,按顺序运算,有括号先算括号里的,同时要注意灵活运用运算律简化运算.(2)进行有理数的混合运算时,应注意:一是要注意运算顺序,先算高一级的运算,再算低一级的运算;二是要注意观察,灵活运用运算律进行简便运算,以提高运算速度及运算能力.7.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.8.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数精确到那一位.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.常用于填空,选择。
(2)整式的加减1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。
2.单项式的系数与次数:单项式中的数字因数,称单项式的系数;单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数; 5.⎩⎨⎧多项式单项式整式 .6.同类项: 所含字母相同,并且相同字母的指数也相同的单项式是同类项. 7.合并同类项法则: 系数相加,字母与字母的指数不变. 8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:一找:(划线);二“+”(务必用+号开始合并)三合:(合并)10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).(3)一元一次方程复习一、方程的有关概念 1、方程的概念:(1)含有未知数的等式叫方程.(2)在一个方程中,只含有一个未知数,并且未知数的指数是1,系数不为0,这样的整式方程叫一元一次方程.(3)一元一次方程的标准形式: ax+b=0(x 是未知数,a 、b 是已知数,且a ≠0). (4)方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!2、等式的基本性质: (1)等式两边同时加上(或减去)同一个代数式,所得结果仍是等式.若a=b ,则a+c=b+c 或a – c = b – c .(2)等式两边同时乘以(或除以)同一个数(除数不能为0),所得结果仍是等式.若a=b ,则ac=bc 或cbc a = (3)对称性:等式的左右两边交换位置,结果仍是等式.若a=b ,则b=a.(4)传递性:如果a=b ,且b=c ,那么a=c ,这一性质叫等量代换. 二、解方程1、移项的有关概念:把方程中的某一项改变符号后,从方程的一边移到另一边,叫做移项.这个法则是根据等式的性质1推出来的,是解方程的依据.要明白移项就是根据解方程变形的需要,把某一项从方程的左边移到右边或从右边移到左边,移动的项一定要变号.2、解一元一次方程的步骤:(1)去分母 等式的性质2注意拿这个最小公倍数乘遍方程的每一项,切记不可漏乘某一项,分母是小数的,要先利用分数的性质,把分母化为整数,若分子是代数式,则必加括号.(2)去括号 去括号法则、乘法分配律严格执行去括号的法则,若是数乘括号,切记不漏乘括号内的项,减号后去括号,括号内各项的符号一定要变号.(3)移项 等式的性质1越过“=”的叫移项,属移项者必变号;未移项的项不变号,注意不遗漏,移项时把含未知数的项移在左边,已知数移在右边,书写时,先写不移动的项,把移动过来的项改变符号写在后面(4)合并同类项 合并同类项法则注意在合并时,仅将系数加到了一起,而字母及其指数均不改变.(5)系数化为1 等式的性质2两边同除以未知数的系数,记住未知数的系数永远是分母(除数),切不可分子、分母颠倒.(6)检验三、列方程解应用题1、列方程解应用题的一般步骤:(1)将实际问题抽象成数学问题;(2)分析问题中的已知量和未知量,找出等量关系; (3)设未知数,列出方程; (4)解方程; (5)检验并作答.2、一些实际问题中的规律和等量关系:(1)日历上数字排列的规律是:横行每整行排列7个连续的数,竖列中,下面的数比上面的数大7.日历上的数字范围是在1到31之间,不能超出这个范围. (2)几种常用的面积公式:长方形面积公式:S=ab ,a 为长,b 为宽,S 为面积;正方形面积公式:S = a 2,a 为边长,S 为面积;梯形面积公式:S =h b a )(21+,a ,b 为上下底边长,h 为梯形的高,S 为梯形面积; 圆形的面积公式:2r S π=,r 为圆的半径,S 为圆的面积; 三角形面积公式:ah S 21=,a 为三角形的一边长,h 为这一边上的高,S 为三角形的面积.(3)几种常用的周长公式:⎧⎨⎩⎧⎨⎩长方形的周长:L=2(a+b ),a ,b 为长方形的长和宽,L 为周长.正方形的周长:L=4a ,a 为正方形的边长,L 为周长. 圆:L=2πr ,r 为半径,L 为周长.(4)柱体的体积等于底面积乘以高,当体积不变时,底面越大,高度就越低.所以等积变化的相等关系一般为:变形前的体积=变形后的体积. (5)行程问题: 距离=速度·时间 时间距离速度= 速度距离时间=;(6)工程问题: 工作量=工效·工时 工时工作量工效=工效工作量工时=; 工程问题常用等量关系: 先做的+后做的=完成量 (7)顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度; 顺水逆水问题常用等量关系: 顺水路程=逆水路程 (8)商品利润问题: 售价=定价×10几折 , %100⨯-=成本成本售价利润率; 利润问题常用等量关系: 售价-进价=利润(9)在一些复杂问题中,可以借助表格分析复杂问题中的数量关系,找出若干个较直接的等量关系,借此列出方程,列表可帮助我们分析各量之间的相互关系.(10)在行程问题中,可将题目中的数字语言用“线段图”表达出来,分析问题中的数量关系,从而找出等量关系,列出方程. (11)关于储蓄中的一些概念:本金:顾客存入银行的钱;利息:银行给顾客的酬金;本息:本金与利息的和;期数:存入的时间;利率:每个期数内利息与本金的比;利息=本金×利率×期数;本息=本金+利息.(4)图形初步认识总复习(一)多姿多彩的图形立体图形:棱柱、棱锥、圆柱、圆锥、球等. 1、几何图形 平面图形:三角形、四边形、圆等. 主(正)视图---------从正面看2、几何体的三视图 左视图--------------从左边看俯视图---------------从上面看(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图. (2)能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型. 4、点、线、面、体 (1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形. 线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.(二)直线、射线、线段1、基本概念图形直线射线线段端点个数无一个两个表示法直线a直线AB(BA)射线AB线段a线段AB(BA)作法叙述作直线AB;作直线a作射线AB作线段a;作线段AB;连接AB延长叙述不能延长反向延长射线AB延长线段AB;反向延长线段BA2、直线的性质经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点.图形:A M B符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM.6、线段的性质两点的所有连线中,线段最短.简单地:两点之间,线段最短.7、两点的距离连接两点的线段长度叫做两点的距离.8、点与直线的位置关系(1)点在直线上(2)点在直线外.(三)角1、角:由公共端点的两条射线所组成的图形叫做角.2、角的表示法(四种):3、角的度量单位及换算4、角的分类∠β锐角直角钝角平角周角范围0<∠β<90°∠β=90°90°<∠β<180°∠β=180°∠β=360°5、角的比较方法(1)度量法(2)叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法.8、角的平分线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线.图形:符号:9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角. (2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:等角的补(余)角相等.10、方向角(1)正方向(2)北(南)偏东(西)方向(3)东(西)北(南)方向。