三维设计江苏专用2017届高三数学一轮总复习第十章算法统计与概率第三节概率第二课时古典概型课件理
- 格式:ppt
- 大小:2.60 MB
- 文档页数:25
课时跟踪检测(五十五)算法初步一抓基础,多练小题做到眼疾手快1.执行如图所示的算法流程图,若输入的实数x=4,则输出结果为________.解析:依题意,输出的y=log24=2.答案:22.阅读如图所示的流程图,若输出结果为15,则①处的处理框内应填的是________.解析:b=15时,2a-3=15,a=9.当a=9时,2x+1=9,x=3,故应填“x←3”.答案:x←33.若运行如图所示的伪代码后输出y的值为9,则应输入的x的值为________.Read xIf x<0 Theny←x+12Print yEnd If解析:算法表示求函数y=(x+1)2,x<0的值,当y=9时,由(x+1)2=9,得x=-4或2(舍去).答案:-44.执行如图所示的算法流程图,如果输入的t∈[-1,3],则输出的s的取值范围为________.解析:当-1≤t<1时,s=3t,则s∈[-3,3).当1≤t≤3时,s=4t-t2.函数在[1,2]上单调递增,在[2,3]上单调递减.∴s∈[3,4].综上知s∈[-3,4].答案:[-3,4]5.执行如图所示的算法流程图,则输出S的值为________.解析:第一次执行程序,得到S=0-12=-1,i=2;第二次执行程序,得到S=-1+22=3,i=3;第三次执行程序,得到S=3-32=-6,i=4;第四次执行程序,得到S=-6+42=10,i=5;第五次执行程序,得到S=10-52=-15,i=6,到此结束循环,输出的S=-15.答案:-15二保高考,全练题型做到高考达标1.当下面的伪代码运行后输出结果时,循环语句循环的次数是________.x←0i←3Dox←x+i2i←i+3Until i>12End DoPrint x解析:x=0,i=3;x=9,i=6;x=45,i=9;x=126,i=12;x=270,i=15,结束循环,循环次数为4.答案:42.(2016·苏州模拟)执行如图所示的算法流程图,输出的S值是________.解析:由算法流程图可知n=1,S=0;S=cosπ4,n=2;S=cosπ4+cos2π4,n=3;这样依次循环,一直到S=cosπ4+cos2π4+cos3π4+…+cos2 014π4=251⎝⎛⎭⎪⎫cosπ4+cos2π4+…+cos8π4+cosπ4+cos2π4+…+cos6π4=251×0+22+0+⎝⎛⎭⎪⎪⎫-22+(-1)+⎝⎛⎭⎪⎪⎫-22+0=-1-22,n=2 015.答案:-1-223.下面伪代码输出的结果是________.解析:S=1+2+3+…+i,当i=6时,S=21<25,继续循环.当i=7时,S>25,终止循环,此时输出的i=8.答案:84.运行如图所示的伪代码,则输出的结果为________.i←0S←0Doi←i+2S←S+i2Until i≥6End DoPrint S解析:i=2时,S=4;i=4时,S=20;i=6时,S=56,这时退出循环体,输出S=56.答案:565.执行如图所示的流程图,已知集合A={x|流程图中输出的x的值},集合B={y|流程图中输出的y的值},全集U=Z.当x=-1时,(∁U A)∩B=________________.解析:当x=-1时,输出y=-3,x=0;当x=0时,输出y=-1,x=1;当x=1时,输出y=1,x=2;当x=2时,输出y=3,x=3;当x=3时,输出y=5,x=4;当x=4时,输出y=7,x=5;当x=5时,输出y=9,x=6,当x=6时,∵6>5,∴终止循环.此时A={0,1,2,3,4,5,6},B={-3,-1,1,3,5,7,9},∴(∁U A)∩B={-3,-1,7,9}.答案:{-3,-1,7,9}6.某算法流程图如图所示,则该程序运行后输出的s值为________.解析:根据算法流程图,所求的值可以通过逐次循环求得,i=5,s=1;i=4,s=2×1+1=3;i=3,s=7;i=2,s=15;i=1,s=31,循环结束,故输出的s=31.答案:317.(2016·苏北四市调研)执行如图所示的算法流程图,输出的s是________.解析:第一次循环:i=1,s=1;第二次循环:i=2,s=-1;第三次循环:i=3,s =2;第四次循环:i=4,s=-2,此时i=5,执行s=3×(-2)=-6.答案:-68.(2016·无锡模拟)数列{a n}满足a n=n,阅读如图所示的算法流程图,运行相应的程序,若输入n=5,a n=n,x=2的值,则输出的结果v=________.解析:该算法流程图循环4次,各次v的值分别是14,31,64,129,故输出结果v=129.答案:1299.求S=120+121+…+12n的值,写出一个算法及伪代码.解:算法如下:第一步,i←0;第二步,S←0;第三步,S←S+12i;第四步,i←i+1;第五步,如果i>n,则输出S,否则,返回第三步.可写出如下伪代码:或者写出如下伪代码:10.(2016·南京调研)阅读下面的问题:1+2+3+…+( )>10 000,虽然括号内可填写的数字不唯一,但是我们只要确定出满足条件的最小正整数n0,括号内填写的数字只要大于或等于n0即可.试写出寻找满足条件的最小正整数n0的算法,并画出相应的流程图.解:算法:第一步,p←0;第二步,i←0;第三步,i←i+1;第四步,p←p+i;第五步,如果p>10 000,则输出i,否则,返回第三步.流程图如图所示:三上台阶,自主选做志在冲刺名校1.执行如图所示的算法流程图,若输入的a的值为3,则输出的i=________.解析:第1次循环,得M=100+3=103,N=1×3=3,i=2;第2次循环,得M=103+3=106,N=3×3=9,i=3;第3次循环,得M=106+3=109,N=9×3=27,i=4;第4次循环,得M=109+3=112,N=27×3=81,i=5;第5次循环,得M=112+3=115,N=81×3=243,i=6,此时M<N,退出循环,输出的i的值为6.答案:62.(2016·连云港调研)如图是一个求20个数的平均数的伪代码,则在横线上应填入________.错误!解析:设20个数分别为x1,x2,…,x19,x20,由伪代码知:i=1时,进入循环S=0+x1=x1,i =2时,进入循环S =x 1+x 2, i =3时,进入循环S =x 1+x 2+x 3,…i =20时,进入循环S =x 1+x 2+…+x 20,此时i =21,应终止循环.故横线上应填入“i >20”或“i ≥21”.答案:i >20(或i ≥21)3.(2016·启东中学月考)某服装厂生产一种服装,每件服装的成本为40元,出厂单价为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购1件,订购的全部服装的出厂单价就降低0.02元.根据市场调查,销售商一次订购量不会超过500件.设一次订购量为x 件,服装的实际出厂单价为P 元,写出函数P =f (x )的表达式,并画出流程图,写出相应的伪代码.解:当0<x ≤100时,P =60;当100<x ≤500时,P =60-0.02(x -100)=62-0.02x .所以P =f (x )=⎩⎪⎨⎪⎧60,0<x ≤100,x ∈N ,62-0.02x ,100<x ≤500,x ∈N ,流程图如图所示:伪代码如下:Read xIf x≤100Then P←60Print PElseIf x≤500Then P←62-0.02xPrint PElsePrint“无意义” End IfEnd If。
课时跟踪检测(五十六)随机抽样一抓基础,多练小题做到眼疾手快1.某学校礼堂有30排座位,每排有20个座位.一次心理讲座时礼堂中坐满了学生,会后为了了解有关情况,留下座位号是15的30名学生.这里运用的抽样方法是________(填序号).①抽签法;②随机数表法;③系统抽样;④分层抽样.解析:由留下的学生座位号均相差一排可知是系统抽样.答案:③2.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为________.7816 6572 0802 6314 0702 4369 9728 01983204 9234 4935 8200 3623 4869 6938 7481解析:从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字中小于20的编号依次为08,02,14,07,01,所以第5个个体的编号为01.答案:013.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法从中抽取样本.若样本中具有初级职称的职工为10人,则样本容量为________.解析:设样本容量为n,则10n=200800,解得n=40.答案:404.某市电视台为调查节目收视率,想从全市3个区按人口数用分层抽样的方法抽取一个容量为n的样本.已知3个区人口数之比为2∶3∶5,如果最多的一个区抽出的个体数是60,那么这个样本的容量为________.解析:设样本容量为n ,则52+3+5=60n. 解得n =120.答案:1205.某校2015届有840名学生,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为________.解析:使用系统抽样方法,从840名学生中抽取42人,即从20人中抽取1人.所以从编号1~480的人中,恰好抽取48020=24(人),接着从编号481~720共240人中抽取24020=12人.答案:12二保高考,全练题型做到高考达标1.(2016·淮安调研)为了解72名学生的学习情况,采用系统抽样的方法,从中抽取容量为8的样本,则分段的间隔为________.解析:由系统抽样方法知,72人分成8组,故分段间隔为72÷8=9.答案:92.(2016·扬州检测)某学校有体育特长生25人,美术特长生35人,音乐特长生40人.若采用分层抽样的方法从中抽取40人,则抽取的体育特长生、美术特长生、音乐特长生的人数分别为________.解析:因为特长生总人数为25+35+40=100,所以抽样比为40100=25,所以抽取的体育特长生、美术特长生、音乐特长生的人数分别为25×25=10,35×25=14,40×25=16. 答案:10,14,163.(2015·南京调研)某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二780人、高三n 人中,抽取35人进行问卷调查.已知高二被抽取的人数为13,则n =________.解析:由已知条件,抽样比为13780=160, 从而35600+780+n =160,解得n =720. 答案:7204.从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为________.解析:根据系统抽样的定义可知样本的编号成等差数列,令a 1=7,a 2=32,d =25,所以7+25(n -1)≤500,所以n ≤20,最大编号为7+25×19=482.答案:4825.某城市修建经济适用房.已知甲、乙、丙三个社区分别有低收入家庭360户、270户、180户,若首批经济适用房中有90套住房用于解决住房紧张问题,采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为________.解析:利用分层抽样的比例关系,设从乙社区抽取n 户,则270360+270+180=n 90. 解得n =30.答案:306.某市有大型超市100家、中型超市200家、小型超市700家.为掌握各类超市的营业情况,现按分层抽样方法抽取一个容量为80的样本,应抽取中型超市________家.解析:根据分层抽样的知识,设应抽取中型超市t 家,则801 000=t 200,解得t =16. 答案:167.某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,…,第十组46~50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为________的学生.解析:因为12=5×2+2,即第三组抽出的是第二个同学,所以每一组都相应抽出第二个同学.所以第8组中抽出的号码为5×7+2=37.答案:378.(2016·南师附中模拟)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷C的人数为________.解析:设第n组抽到的号码为a n,则a n=9+30(n-1)=30n-21,由750<30n-21≤960,得25.7<n≤32.7,所以n的取值为26,27,28,29,30,31,32,共7个,因此做问卷C的人数为7人.答案:79.(2016·南京外国语学校检测)某网站针对“2016年法定节假日调休安排”提出的A,B,C三种放假方案进行了问卷调查,调查结果如下:(1)从所有参与调查的人中,用分层抽样的方法抽取n人,已知从支持A方案的人中抽取了6人,求n的值;(2)支持B方案的人中,用分层抽样的方法抽取5人,这5人中在35岁以上(含35岁)的人数是多少?35岁以下的人数是多少?解:(1)由题意,得6100+200=n200+400+800+100+100+400,解得n=40.(2)35岁以下的人数为5500×400=4, 35岁以上(含35岁)的人数为5500×100=1. 10.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率. 解:(1)因为在20至40岁的58名观众中有18名观众收看新闻节目,在大于40岁的42名观众中有27名观众收看新闻节目.所以,经直观分析,收看新闻节目的观众与年龄是有关的.(2)应抽取大于40岁的观众人数为2745×5=3(名). (3)用分层抽样方法抽取的5名观众中,20至40岁的有2名(记为Y 1,Y 2),大于40岁的有3名(记为A 1,A 2,A 3).5名观众中任取2名,共有10种不同取法:Y 1Y 2,Y 1A 1,Y 1A 2,Y 1A 3,Y 2A 1,Y 2A 2,Y 2A 3,A 1A 2,A 1A 3,A 2A 3.设A 表示随机事件“5名观众中任取2名,恰有1名观众年龄为20至40岁”,则A中的基本事件有6种:Y 1A 1,Y 1A 2,Y 1A 3,Y 2A 1,Y 2A 2,Y 2A 3,故所求概率为P (A )=610=35. 三上台阶,自主选做志在冲刺名校1.某工厂的三个车间在12月份共生产了3 600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从第一、二、三车间抽取的产品数分别为a ,b ,c ,且a ,b ,c 构成等差数列,则第二车间生产的产品数为________.解析:因为a ,b ,c 成等差数列,所以2b =a +c .所以a +b +c3=b .所以第二车间抽取的产品数占抽样产品总数的13.根据分层抽样的性质,可知第二车间生产的产品数占总数的13,即为13×3 600=1 200. 答案:1 2002.(2016·徐州一中检测)下列关于简单随机抽样、系统抽样、分层抽样之间的共同点的叙述正确的是________(填序号).①都是从总体中随机抽取;②将总体分成几部分,按事先确定的规则在各部分抽取;③抽样过程中每个个体被抽取的机会相同;④将总体分成几层,分层进行抽取.解析:三种抽样方法有共同点也有不同点,它们的共同点就是抽样过程中每个个体被抽取的机会相同.答案:③3.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n 个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求n .解:总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n,分层抽样的比例是n 36,抽取的工程师人数为n 36×6=n 6, 技术员人数为n 36×12=n 3,技工人数为n 36×18=n 2. 所以n 应是6的倍数,36的约数,即n =6,12,18. 当样本容量为(n +1)时,总体容量是35人, 系统抽样的间隔为35n +1,因为35n +1必须是整数,所以n 只能取6.即样本容量为n =6.。
第十章算法、统计与概率第一节算法初步1.算法与流程图(1)算法通常是指对一类问题的机械的、统一的求解方法.(2)流程图是由一些图框和流程线组成的,其中图框表示各种操作的类型,图框中的文字和符号表示操作的内容,流程线表示操作的先后次序.2.三种基本逻辑结构(1)顺序结构是由若干个依次执行的步骤组成的,这是任何一个算法都离不开的基本结构.其结构形式为(2)选择结构是先根据条件作出判断,再决定执行哪一种操作的结构.其结构形式为(3)循环结构是指从某处开始,按照一定条件反复执行某些步骤的情况.反复执行的处理步骤称为循环体.循环结构又分为当型和直到型.其结构形式为3.基本算法语句(1)赋值语句、输入语句、输出语句赋值语句用符号“←”表示,其一般格式是变量←表达式(或变量)其作用是对程序中的变量赋值;输入语句“Read a ,b ”表示输入的数据依次送给a ,b ,输出语句“Print x ”表示输出的运算结果x .(2)算法的选择结构由条件语句来表达,条件语句有两种,一种是If —Then —Else 语句,其格式是If A ThenBElse C End If.————————(3)算法中的循环结构,可以运用循环语句来实现. ①当循环的次数已经确定,可用“For”语句表示. “For”语句的一般形式为For I From“初值”To“终值”Step“步长” 循环体End For说明:上面“For”和“End For”之间缩进的步骤称为循环体,如果省略“Step 步长”,那么重复循环时,I 每次增加1.②不论循环次数是否确定都可以用下面循环语句来实现循环结构当型和直到型两种语句结构.当型语句的一般格式是 ,直到型语句的一般格式是 .[小题体验]1.(教材习题改编)如图所示,算法流程图的输出结果是________.解析:s =0,n =2,2<8,s =0+12=12;n =2+2=4,4<8,s =12+14=34; n =4+2=6,6<8,s =34+16=1112;n =6+2=8,8<8不成立,输出s 的值为1112.答案:11122.对于如图所示的伪代码,若输入a =4,则输出的结果为________.Read aIf a >0 Then a ←2a +3End If b ←-a Print b解析:∵a =4>0,∴a =2×4+3=11,b =-a =-11. 答案:-113.如图所示的伪代码的功能为________________________________________________.S ←1i ←2While i ≤10S ←3i×S i ←i +1End While Print S解析:当i =10时,满足条件,执行循环体,S =32×33×…×310=354,i =11,不满足“i ≤10”,结束循环,输出S .答案:计算32×33×…×310的值1.易混淆处理框与输入框,处理框主要是赋值、计算,而输入框只是表示一个算法输入的信息.2.易忽视循环结构中必有选择结构,其作用是控制循环进程,避免进入“死循环”,是循环结构必不可少的一部分.3.易混淆当型循环与直到型循环.直到型循环是“先循环,后判断,条件满足时终止循环”;而当型循环则是“先判断,后循环,条件满足时执行循环”;两者的判断框内的条件表述在解决同一问题时是不同的,它们恰好相反.[小题纠偏]1.(2016·扬州中学检测)如图给出的是计算1+13+15+…+129的值的一个流程图,则图中①处应填的是________,②处应填的是________.解析:根据所求式子的分母为1,3,5,7,…,29,得①处应填“n ←n +2”,而1+13+15+…+129是15个数的和,可知②处应填“i >15”或“i ≥16”.答案:n ←n +2 i >15(或i ≥16)2.(2016·镇江名校高三联考)下面伪代码的输出结果为________.A ←8B ←7A ←A +B B ←A -BC ←A ×B A ←CPrint A ,B解析:伪代码运行的过程中,A ,B,C 的值的变化情况为:A =8,B =7,A =15,B =8,C =120,A =120,故输出结果是120,8.答案:120,8考点一 算法的基本结构重点保分型考点——师生共研[典例引领]1.定义运算a ⊗b 为执行如图所示的算法流程图输出的S 值,则⎝ ⎛⎭⎪⎫2cos 5π3⊗⎝ ⎛⎭⎪⎫2tan 5π4的值为________.第1题图 第2题图解析:由算法流程图可知,S =⎩⎪⎨⎪⎧aa -b ,a ≥b ,ba +,a <b ,因为2cos 5π3=1,2tan 5π4=2,1<2,所以⎝ ⎛⎭⎪⎫2cos 5π3⊗⎝ ⎛⎭⎪⎫2tan 5π4=2(1+1)=4. 答案:42.(2015·陕西高考改编)如图所示框图,当输入x 为2 006时,输出的y =________. 解析:x 每执行一次循环减少2,当x 变为-2时跳出循环,y =3-x+1=32+1=10. 答案:10[由题悟法]解决流程图基本问题的3个常用变量及1个关键点 (1)3个常用变量①计数变量:用来记录某个事件发生的次数,如i ←i +1. ②累加变量:用来计算数据之和,如S ←S +i . ③累乘变量:用来计算数据之积,如p ←p ×i . (2)1个关键点处理循环结构的流程图问题,关键是理解并认清终止循环结构的条件及循环次数.[即时应用](2016·南京师大附中检测)根据如图所示的流程图回答以下问题:(1)该流程图解决的是一个什么问题?(2)若当输入的x的值为0和4时,输出的f(x)的值相等,则当输入的x的值为3时,输出的f(x)的值为多大?解:(1)该流程图解决的是求二次函数f(x)=-x2+mx的函数值的问题.(2)当输入的x的值为0和4时,输出的f(x)的值相等,即f(0)=f(4).∵f(0)=0,f(4)=-16+4m,∴-16+4m=0,∴m=4,∴f(x)=-x2+4x.∵f(3)=-32+4×3=3,∴输入的x的值为3时,输出的f(x)的值为3.考点二算法的交汇性问题(常考常新型考点——多角探明)[命题分析]算法是高考热点内容之一,算法的交汇性问题是高考的一大亮点.常见的命题角度有:(1)与统计的交汇问题;(2)与函数的交汇问题;(3)与不等式的交汇问题;(4)与数列求和的交汇问题.[题点全练]角度一:与统计的交汇问题1.(2016·黄冈模拟)随机抽取某中学甲、乙两个班各10名同学,测量他们的身高获得身高数据的茎叶图如图,在样本的20人中,记身高在[150,160),[160,170),[170,180),[180,190)的人数依次为A1,A2,A3,A4.如图是统计样本中身高在一定范围内的人数的算法流程图.若图中输出的S=18,则判断框应填________.解析:由于i从2开始,也就是统计大于或等于160的所有人数,于是就要计算A2+A3+A4,因此,判断框应填i<5或i≤4.答案:i<5或i≤4角度二:与函数的交汇问题2.(2015·山东高考)执行下边的程序框图,若输入的x的值为1,则输出的y的值是________.解析:当x=1时,1<2,则x=1+1=2;当x=2时,不满足x<2,则y=3×22+1=13.答案:133.(2016·南京外国语学校检测)如图所示的流程图的输入值x∈[-1,3],则输出值y 的取值范围为________.解析:由流程图可知,当x∈[0,3]时,输出y的值是函数y=log2(x+1)的值,此时输出值y的取值范围为[0,2];当x∈[-1,0)时,输出y的值是函数y=2-x-1的值,此时输出值y的取值范围为(0,1].综上可知,输出值y的取值范围为[0,2].答案:[0,2]角度三:与不等式的交汇问题4.执行如图所示的算法流程图,若输入的x的值为2,则输出的y的值为________.解析:第一次循环:x=2,y=5,|2-5|=3<8;第二次循环:x =5,y =11, |5-11|=6<8;第三次循环:x =11,y =23, |11-23|=12>8.满足条件,输出的y 的值为23. 答案:23角度四:与数列求和的交汇问题5.(2015·湖南高考改编)执行如图所示的程序框图,如果输入n =3,则输出的S =________.解析:第一次循环:S =11×3,i =2;第二次循环:S =11×3+13×5,i =3;第三次循环:S =11×3+13×5+15×7,i =4,满足循环条件,结束循环. 故输出S =11×3+13×5+15×7=121-13+13-15+15-17=37. 答案:37[方法归纳]解决算法交汇问题的3个关键点(1)读懂算法流程图,明确交汇知识; (2)根据给出问题与算法流程图处理问题; (3)注意流程图中结构的判断.考点三 基本算法语句(重点保分型考点——师生共研)[典例引领]1.执行如图所示的伪代码,输出的结果是________.i←2While i≤5a←i+2i←i+1S←2a+3End WhilePrint S解析:初始值:i=2,2<5,第一次循环:a=4,i=3,S=11;3<5,第二次循环:a=5,i=4,S=13;4<5,第三次循环:a=6,i=5,S=15;5=5,第四次循环:a=7,i=6,S=17.因为6>5,所以结束循环.输出的结果为17.答案:172.运行如图所示的伪代码,输出的结果为________.i←3DoS←4i+3i←i+2Until i≥10End DoPrint S解析:当i=9时,满足条件,执行循环体,S=4×9+3=39,i=9+2=11,判断条件“11≥10”成立,跳出循环,输出39.答案:39[由题悟法]算法语句应用的4个关注点(1)输入、输出语句:在输入、输出语句中加提示信息时,要加引号,变量之间用逗号隔开.(2)赋值语句:左、右两边不能对换,赋值号左边只能是变量.(3)条件语句:条件语句中包含条件语句时,要分清内外条件结构,保证结构完整性.(4)循环语句:分清“for”和“while”的格式,不能混用.[即时应用]1.运行如图所示的伪代码,则输出的结果是________.S ←1For I From 1 To 10 Step 3S ←S ×I End For Print S解析:根据伪代码可得I =1时,S =1×1=1;I =4时,S =1×4=4;I =7时,S =4×7=28;I =10时,S =28×10=280,此时退出循环,输出的S 的值为280.答案:2802.(2014·无锡期末)已知一个算法如图,则输出结果为________.解析:初始值a =1,b =1,n =3.第一次循环:b =2,a =1,n =4;第二次循环:b =3,a =2,n =5;第三次循环:b =5,a =3,n =6;第四次循环:b =8,a =5,n =7;第五次循环:b =13,a =8,n =8;第六次循环:b =21,a =13,n =9;第七次循环:b =34,a =21,n =10;第八次循环:b =55,a =34,退出循环,输出b的值为55.答案:55一抓基础,多练小题做到眼疾手快1.执行如图所示的算法流程图,若输入的实数x =4,则输出结果为________.解析:依题意,输出的y =log 24=2. 答案:22.阅读如图所示的流程图,若输出结果为15,则①处的处理框内应填的是________.解析:b =15时,2a -3=15,a =9.当a =9时,2x+1=9,x =3,故应填“x ←3”. 答案:x ←33.若运行如图所示的伪代码后输出y 的值为9,则应输入的x 的值为________.Read xIf x <0 Then y x +2Print y End If解析:算法表示求函数y =(x +1)2,x <0的值,当y =9时,由(x +1)2=9,得x =-4或2(舍去).答案:-44.执行如图所示的算法流程图,如果输入的t ∈[-1,3],则输出的s 的取值范围为________.解析:当-1≤t <1时,s =3t ,则s ∈[-3,3). 当1≤t ≤3时,s =4t -t 2.函数在[1,2]上单调递增,在[2,3]上单调递减. ∴s ∈[3,4].综上知s ∈[-3,4]. 答案:[-3,4]5.执行如图所示的算法流程图,则输出S 的值为________.解析:第一次执行程序,得到S =0-12=-1,i =2; 第二次执行程序,得到S =-1+22=3,i =3; 第三次执行程序,得到S =3-32=-6,i =4; 第四次执行程序,得到S =-6+42=10,i =5; 第五次执行程序,得到S =10-52=-15,i =6, 到此结束循环,输出的S =-15. 答案:-15二保高考,全练题型做到高考达标1.当下面的伪代码运行后输出结果时,循环语句循环的次数是________.x ←0i ←3Dox ←x +i2i ←i +3Until i >12End Do Print x解析:x =0,i =3;x =9,i =6;x =45,i =9;x =126,i =12;x =270,i =15,结束循环,循环次数为4.答案:42.(2016·苏州模拟)执行如图所示的算法流程图,输出的S 值是________.解析:由算法流程图可知n =1,S =0;S =cos π4,n =2;S =cos π4+cos 2π4,n =3;这样依次循环,一直到S =cos π4+cos2π4+cos 3π4+…+cos 2 014π4=251⎝ ⎛⎭⎪⎫cos π4+cos 2π4+…+cos 8π4+cos π4+cos 2π4+…+cos 6π4=251×0+22+0+⎝ ⎛⎭⎪⎫-22+(-1)+⎝ ⎛⎭⎪⎫-22+0 =-1-22,n =2 015. 答案:-1-223.下面伪代码输出的结果是________.解析:S =1+2+3+…+i ,当i =6时,S =21<25,继续循环.当i =7时,S >25,终止循环,此时输出的i =8.答案:84.运行如图所示的伪代码,则输出的结果为________.i ←0S ←0Doi ←i +2S ←S +i 2Until i ≥6End Do Print S解析:i =2时,S =4;i =4时,S =20;i =6时,S =56,这时退出循环体,输出S =56.答案:565.执行如图所示的流程图,已知集合A ={x |流程图中输出的x 的值},集合B ={y |流程图中输出的y 的值},全集U =Z.当x =-1时,(∁U A )∩B =________________.解析:当x=-1时,输出y=-3,x=0;当x=0时,输出y=-1,x=1;当x=1时,输出y=1,x=2;当x=2时,输出y=3,x=3;当x=3时,输出y=5,x=4;当x=4时,输出y=7,x=5;当x=5时,输出y=9,x=6,当x=6时,∵6>5,∴终止循环.此时A={0,1,2,3,4,5,6},B={-3,-1,1,3,5,7,9},∴(∁U A)∩B={-3,-1,7,9}.答案:{-3,-1,7,9}6.某算法流程图如图所示,则该程序运行后输出的s值为________.解析:根据算法流程图,所求的值可以通过逐次循环求得,i=5,s=1;i=4,s=2×1+1=3;i=3,s=7;i=2,s=15;i=1,s=31,循环结束,故输出的s=31.答案:317.(2016·苏北四市调研)执行如图所示的算法流程图,输出的s是________.解析:第一次循环:i =1,s =1;第二次循环:i =2,s =-1;第三次循环:i =3,s =2;第四次循环:i =4,s =-2,此时i =5,执行s =3×(-2)=-6.答案:-68.(2016·无锡模拟)数列{a n }满足a n =n ,阅读如图所示的算法流程图,运行相应的程序,若输入n =5,a n =n ,x =2的值,则输出的结果v =________.解析:该算法流程图循环4次,各次v 的值分别是14,31,64,129,故输出结果v =129. 答案:1299.求S =120+121+…+12n 的值,写出一个算法及伪代码.解:算法如下: 第一步,i ←0; 第二步,S ←0; 第三步,S ←S +12i ;第四步,i ←i +1;第五步,如果i >n ,则输出S ,否则,返回第三步. 可写出如下伪代码:或者写出如下伪代码:10.(2016·南京调研)阅读下面的问题:1+2+3+…+( )>10 000,虽然括号内可填写的数字不唯一,但是我们只要确定出满足条件的最小正整数n0,括号内填写的数字只要大于或等于n0即可.试写出寻找满足条件的最小正整数n0的算法,并画出相应的流程图.解:算法:第一步,p←0;第二步,i←0;第三步,i←i+1;第四步,p←p+i;第五步,如果p>10 000,则输出i,否则,返回第三步.流程图如图所示:三上台阶,自主选做志在冲刺名校1.执行如图所示的算法流程图,若输入的a的值为3,则输出的i=________.解析:第1次循环,得M=100+3=103,N=1×3=3,i=2;第2次循环,得M=103+3=106,N=3×3=9,i=3;第3次循环,得M=106+3=109,N=9×3=27,i=4;第4次循环,得M=109+3=112,N=27×3=81,i=5;第5次循环,得M=112+3=115,N=81×3=243,i=6,此时M<N,退出循环,输出的i的值为6.答案:62.(2016·连云港调研)如图是一个求20个数的平均数的伪代码,则在横线上应填入________.错误!解析:设20个数分别为x1,x2,…,x19,x20,由伪代码知:i=1时,进入循环S=0+x1=x1,i=2时,进入循环S=x1+x2,i=3时,进入循环S=x1+x2+x3,…i=20时,进入循环S=x1+x2+…+x20,此时i=21,应终止循环.故横线上应填入“i>20”或“i≥21”.答案:i>20(或i≥21)3.(2016·启东中学月考)某服装厂生产一种服装,每件服装的成本为40元,出厂单价为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购1件,订购的全部服装的出厂单价就降低0.02元.根据市场调查,销售商一次订购量不会超过500件.设一次订购量为x件,服装的实际出厂单价为P元,写出函数P=f(x)的表达式,并画出流程图,写出相应的伪代码.解:当0<x≤100时,P=60;当100<x≤500时,P=60-0.02(x-100)=62-0.02x.所以P =f (x )=⎩⎪⎨⎪⎧60,0<x ≤100,x ∈N ,62-0.02x ,100<x ≤500,x ∈N ,流程图如图所示:伪代码如下:Read xIf x ≤100 Then P←60 PrintP ElseIf x ≤500 ThenP ←62-0.02x Print P ElsePrint“无意义” End If End If第二节 统计初步 第一课时 随机抽样1.简单随机抽样(1)抽取方式:逐个不放回抽取; (2)每个个体被抽到的概率相等; (3)常用方法:抽签法和随机数表法. 2.分层抽样(1)在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.(2)分层抽样的应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样. 3.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本. (1)采用随机的方式将总体中的N 个个体编号;(2)将编号按间隔k 分段,当N n 是整数时,取k =N n ;当N n不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数N ′能被n 整除,这时取k =N ′n,并将剩下的总体重新编号;(3)在第一段中用简单随机抽样确定起始的个体编号l ;(4)按照一定的规则抽取样本,通常将编号为l ,l +k ,l +2k ,…,l +(n -1)k 的个体抽出.[小题体验]1.(教材习题改编)老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是____________.解析:因为抽取学号是以5为公差的等差数列,故采用的抽样方法应是系统抽样. 答案:系统抽样2.(教材习题改编)某校高中生有900名,其中高一有400名,高二有300名,高三有200名,打算抽取容量为45的一个样本,则高三学生应抽取________人.答案:103.某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.解析:设应从高二年级抽取x 名学生,则x 50=310.解得x =15.答案:151.简单随机抽样中易忽视样本是从总体中逐个抽取,是不放回抽样,且每个个体被抽到的概率相等.2.系统抽样中,易忽视抽取的样本数也就是分段的段数,当N n不是整数时,注意剔除,剔除的个体是随机的,各段入样的个体编号成等差数列.3.分层抽样中,易忽视每层抽取的个体的比例是相同的,即样本容量n总体个数N .[小题纠偏]1.为了了解某校高三年级学生的学习情况,将该校高三年级的300名学生编号为0,1,…,299,用系统抽样的方法抽取一个容量为60的样本,若某一段上抽到的编号为38,则第49段上抽到的编号为________.解析:从300名学生中抽取一个容量为60的样本, 即分段间隔为5.设从第1段编号0~4中抽到的编号为n 0, 编号38在第x 段,则38=n 0+5(x -1),x ∈N *,n 0∈N ,且0≤n 0≤4, 则x =8,n 0=3,则第49段上抽到的编号为3+(49-1)×5=243. 答案:2432.防疫站对学生进行身体健康调查,采用分层抽样的方法抽取样本.红星中学共有1 600名学生,抽取一个容量为200的样本,已知女生比男生少抽了10名,则该校有女生________名.解析:设女生有x 名,则男生有(1 600-x )名.由题意知2001 600×(1 600-x )=2001 600×x+10,解得x =760.答案:760考点一 简单随机抽样基础送分型考点——自主练透[题组练透]1.已知下列抽取样本的方式:①从无限多个个体中抽取100个个体作为样本;②盒子里共有80个零件,从中选出5个零件进行质量检验,在抽样操作时,从中任意拿出1个零件进行质量检验后再把它放回盒子里;③从20件玩具中一次性抽取3件进行质量检验;④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛. 其中,不是简单随机抽样的个数是________.解析:①不是简单随机抽样,因为被抽取的总体的个体数是无限的,而不是有限的;②不是简单随机抽样,因为它是放回抽样;③不是简单随机抽样,因为这是“一次性”抽取,而不是“逐个”抽取;④不是简单随机抽样,因为指定个子最高的5名同学是56名同学中特指的,不存在随机性,不是等可能抽样.所以不是简单随机抽样的个数是4.答案:42.用简单随机抽样的方法从含有100个个体的总体中抽取一个容量为5的样本,则个体M 被抽到的概率为________.解析:一个总体含有100个个体,某个个体被抽到的概率为1100,用简单随机抽样方法从该总体中抽取容量为5的样本,则某个个体被抽到的概率为1100×5=120. 答案:1203.(2016·南京学情调研)某个车间的工人已加工100件某种轴承.为了了解这种轴承的直径,要从中抽出20件在同一条件下测量,用简单随机抽样的方法得到样本的步骤为:(1)________________________________________________________________________;(2)________________________________________________________________________;(3)________________________________________________________________________.解析:按照抽签法的方法得到样本,步骤为:(1)将100件轴承分别编号1到100;(2)写号签;(3)搅拌均匀后逐个抽取20个.答案:将100件轴承分别编号1到100 写号签 搅拌均匀后逐个抽取20个.[谨记通法]一个抽样试验用抽签法的2个注意事项一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.考点二 系统抽样(重点保分型考点——师生共研)[典例引领]1.将某班的60名学生编号为:01,02,…,60,若采用系统抽样的方法抽取一个容量为5的样本,且随机抽得的第一个号码为04,则剩下的四个号码依次是________________.解析:采用系统抽样的方法抽出5名学生的号码,间隔为12,随机抽得的第一个号码为04,则剩下的四个号码依次是16,28,40,52.答案:16,28,40,522.(2015·苏州模拟)将参加夏令营的600名学生按001,002,…,600进行编号.采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分别住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为______________.解析:由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k (k ∈N *)组抽中的号码是3+12(k -1).令3+12(k -1)≤300,得k ≤1034,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k -1)≤495,得1034<k ≤42,因此第Ⅱ营区被抽中的人数是42-25=17;第Ⅲ营区被抽中的人数为50-25-17=8.答案:25,17,8[由题悟法]解决系统抽样问题的2个关键步骤(1)分组的方法应依据抽取比例而定,即根据定义每组抽取一个样本.(2)起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定了.[即时应用]1.为规范学校办学,省教育厅督察组对某所高中进行了抽样调查.抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽到一个容量为4的样本.已知7号,33号,46号同学在样本中,那么样本中另一位同学的编号应是________号.解析:由系统抽样的原理知,抽样的间隔为52÷4=13,故抽取的样本的编号分别为7,7+13,7+13×2,7+13×3,即7号,20号,33号,46号.答案:202.(2016·常州调研)要从容量为102的总体中用系统抽样法随机抽取一个容量为9的样本,则下列叙述正确的是________(填序号).①将总体分11组,每组间隔为9;②将总体分9组,每组间隔为11;③从总体中随机剔除2个个体后分11组,每组间隔为9;④从总体中随机剔除3个个体后分9组,每组间隔为11.解析:因为102=9×11+3,所以需从总体中随机剔除3个个体后分9组,每组间隔为11.答案:④考点三 分层抽样的交汇命题(常考常新型考点——多角探明)[命题分析]分层抽样是历年高考的重要考点之一,高考中常把分层抽样、频率分布、概率综合起来进行考查,反映了当前高考的命题方向.这类试题难度不大,但考查的知识面较为宽广,在解题中要注意准确使用所学知识,不然在一个点上的错误就会导致整体失误.常见的命题角度有:(1)与频率分布相结合问题;(2)与概率相结合问题.[题点全练]角度一:与频率分布相结合问题1.某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到如图所示的部分频率分布直方图.观察图中的信息,回答下列问题.(1)求分数在[120,130)内的频率;(2)若在同一组数据中,将该组区间的中点值作为这组数据的平均分,据此估计本次考试的平均分;(3)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.解:(1)分数在[120,130)内的频率为1-(0.1+0.15+0.15+0.25+0.05)=1-0.7=0.3.(2)估计平均分为x -=95×0.1+105×0.15+115×0.15+125×0.3+135×0.25+145×0.05=121.(3)由题意,得[110,120)分数段的人数为60×0.15=9(人),[120,130)分数段的人数为60×0.3=18(人).∵用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,∴需在[110,120)分数段内抽取2人,分别记为m ,n ;在[120,130)分数段内抽取4人,分别记为a ,b ,c ,d .设“从样本中任取2人,至多有1人在分数段[120,130)内”为事件A ,所有基本事件有(m ,n ),(m ,a ),(m ,b ),(m ,c ),(m ,d ),(n ,a ),(n ,b ),(n ,c ),(n ,d ),(a ,b ),(a ,c ),(a ,d ),(b ,c ),(b ,d ),(c ,d ),共15个,其中事件A 包含9个.∴P (A )=915=35. 角度二:与概率相结合问题2.(2016·无锡调研)最新高考改革方案已在上海和浙江实施,某教育机构为了解我省广大师生对新高考改革方案的看法,对某市部分学校500名师生进行调查,统计结果如下:z =2y .(1)现从全部500名师生中用分层抽样的方法抽取50名进行问卷调查,则应抽取“不赞成改革”的教师和学生人数各是多少?(2)在(1)中所抽取的“不赞成改革”的人中,随机选出3人进行座谈,求至少有1名教师被选出的概率.解:(1)由题意知x500=0.3,所以x =150,所以y +z =60, 因为z =2y ,所以y =20,z =40,则应抽取“不赞成改革”的教师人数为50500×20=2, 应抽取“不赞成改革”的学生人数为50500×40=4. (2)所抽取的“不赞成改革”的2名教师记为a ,b,4名学生记为1,2,3,4,随机选出3人的不同选法有(a ,b,1),(a ,b,2),(a ,b,3),(a ,b,4),(a,1,2),(a,1,3),(a,1,4),(a,2,3),(a,2,4),(a,3,4),(b,1,2),(b,1,3),(b,1,4),(b,2,3),(b,2,4),(b,3,4),(1,2,3),(1,2,4),(1,3,4),(2,3,4),共20种,至少有1名教师的选法有(a ,b,1),(a ,b,2),(a ,b,3),(a ,b,4),(a,1,2),(a,1,3),(a,1,4),(a,2,3),(a,2,4),(a,3,4),(b,1,2),(b,1,3),(b,1,4),(b,2,3),(b,2,4),(b,3,4),共16种,故至少有1名教师被选出的概率P =1620=45. [方法归纳]进行分层抽样的相关计算时,常用到的2个关系(1)样本容量n 总体的个数N =该层抽取的个体数该层的个体数; (2)总体中某两层的个体数之比等于样本中这两层抽取的个体数之比.一抓基础,多练小题做到眼疾手快1.某学校礼堂有30排座位,每排有20个座位.一次心理讲座时礼堂中坐满了学生,会后为了了解有关情况,留下座位号是15的30名学生.这里运用的抽样方法是________(填序号).①抽签法;②随机数表法;③系统抽样;④分层抽样.解析:由留下的学生座位号均相差一排可知是系统抽样.答案:③2.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为________. 7816 6572 0802 6314 0702 4369 9728 0198 3204 9234 4935 8200 3623 4869 6938 7481解析:从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字中小于20的编号依次为08,02,14,07,01,所以第5个个体的编号为01.答案:013.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法从中抽取样本.若样本中具有初级职称的职工为10人,则样本容量为________.解析:设样本容量为n ,则10n =200800,解得n =40. 答案:404.某市电视台为调查节目收视率,想从全市3个区按人口数用分层抽样的方法抽取一个容量为n 的样本.已知3个区人口数之比为2∶3∶5,如果最多的一个区抽出的个体数是60,那么这个样本的容量为________.解析:设样本容量为n ,则52+3+5=60n . 解得n =120.答案:1205.某校2015届有840名学生,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为________.解析:使用系统抽样方法,从840名学生中抽取42人,即从20人中抽取1人.所以从编号1~480的人中,恰好抽取48020=24(人),接着从编号481~720共240人中抽取24020=12人.答案:12二保高考,全练题型做到高考达标1.(2016·淮安调研)为了解72名学生的学习情况,采用系统抽样的方法,从中抽取容量为8的样本,则分段的间隔为________.解析:由系统抽样方法知,72人分成8组,故分段间隔为72÷8=9.答案:92.(2016·扬州检测)某学校有体育特长生25人,美术特长生35人,音乐特长生40人.若采用分层抽样的方法从中抽取40人,则抽取的体育特长生、美术特长生、音乐特长生的人数分别为________.解析:因为特长生总人数为25+35+40=100,所以抽样比为40100=25,所以抽取的体育特长生、美术特长生、音乐特长生的人数分别为25×25=10,35×25=14,40×25=16. 答案:10,14,163.(2015·南京调研)某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二780人、高三n 人中,抽取35人进行问卷调查.已知高二被抽取的人数为13,则n =________.解析:由已知条件,抽样比为13780=160, 从而35600+780+n =160,解得n =720. 答案:7204.从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为________.解析:根据系统抽样的定义可知样本的编号成等差数列,令a 1=7,a 2=32,d =25,所以7+25(n -1)≤500,所以n ≤20,最大编号为7+25×19=482.答案:4825.某城市修建经济适用房.已知甲、乙、丙三个社区分别有低收入家庭360户、270户、180户,若首批经济适用房中有90套住房用于解决住房紧张问题,采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为________.解析:利用分层抽样的比例关系,设从乙社区抽取n 户,则270360+270+180=n 90. 解得n =30.答案:306.某市有大型超市100家、中型超市200家、小型超市700家.为掌握各类超市的营业情况,现按分层抽样方法抽取一个容量为80的样本,应抽取中型超市________家.解析:根据分层抽样的知识,设应抽取中型超市t 家,则801 000=t 200,解得t =16. 答案:167.某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,…,第十组。
江苏省2017年高考一轮复习专题突破训练统计与概率一、填空题1、(2016年江苏高考) 已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________▲________.2、(2016年江苏高考)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 ▲ .3、(2015年江苏高考)已知一组数据4,6,5,8,7,6,那么这组数据的平均数是__6________。
4、(2014年江苏高考)在底部周长]130,80[ 的树木进行研究,频率分布直方图如图所示,则在抽测的60株树木中,有 ▲ 株树木的底部周长小于100cm.5、(2015年江苏高考)袋中有大小形状都相同的4只球,其中1只白球,1只红球,2只黄球,从中随机摸出2只球,这2只球颜色不同的概率为________________。
6、(南京市2016届高三三模)甲、乙两位选手参加射击选拔赛,其中连续5轮比赛的成绩(单位:环)如下表:则甲、乙两位选手中成绩最稳定的选手的方差是▲________.7、(南京市2016届高三三模)从2个白球,2个红球,1个黄球这5个球中随机取出两个球,则取出的两球中恰有一个红球的概率是▲________.8、(南通、扬州、泰州三市2016届高三二模)为了解一批灯泡(共5000只)的使用寿命,从中随机抽取了100只进行测试,其使用寿命(单位:h )如下表:根据该样本的频数分布,估计该批灯泡使用寿命不低于1100h的灯泡只数是▲.9、(南通、扬州、泰州三市2016届高三二模)电视台组织中学生知识竞赛,共设有5个版块的试题,主题分别是:立德树人、社会主义核心价值观、依法治国理念、中国优秀传统文化、创新能力.某参赛队从中任选2个主题作答,则“立德树人”主题被该队选中的概率是▲.10、(南通市2016届高三一模)从1,2,3,4这四个数中一次随机地取2个数,则所取2个数的乘积为偶数的概率是11、(南通市2016届高三一模)为了了解居民家庭网上购物消费情况,某地区调查了10000户家庭的月消费金额(单位:元),所有数据均在区间]4500,0[上,其频率分布直方图如下图所示,则被调查的10000户家庭中,有户月消费额在1000元以下12、(苏锡常镇四市2016届高三一模)一个容量为n的样本,分成若干组,已知某组的频致和频率分别为40,0.125.则n的值为.13、(苏锡常镇四市2016届高三一模)为强化安全意识,某校拟在周一至周五的五天中随机选择2天进行紧急疏散演练,则选择的2天恰好为连续2天的概率是14、(苏锡常镇四市市2016届高三二模)从某班抽取5名学生测量身高(单位:cm),得到的数据为160,162,159,160,159,则该组数据的方差2s=▲.15、(苏锡常镇四市市2016届高三二模)同时抛掷三枚质地均匀、大小相同的硬币一次,则至少有两枚硬币正面向上的概率为▲.16、(镇江市2016届高三一模)箱子中有形状、大小都相同的3只红球和2只白球,一次摸出2只球,则摸到的2球颜色不同的概率为________.17、(南通市海安县2016届高三上期末)用大小完全相同的黑、白两种颜色的正六边形积木拼成如图所示的图案,按此规律再拼5个图案,并将这8 个图案中的所有正六边形积木充分混合后装进一个盒子中,现从盒子中随机取出一个积木,则取出黑色积木的概率是;18、(苏州市2016届高三上期末)连续2次抛掷一枚骰子(六个面上分别标有数字1,2,3,4,5,6),则事件“两次向上的数字之和等于7”发生的概率为 ▲ .19、(泰州市2016届高三第一次模拟)甲乙两人下棋,若甲获胜的的概率为15,甲乙下成和棋的概率为25,则乙不输棋的概率为 ▲20、(扬州市2016届高三上期末)从1,2,3,4,5这5个数中,随机抽取2个不同的数,则这2个数的和为偶数的概率是 ▲二、解答题1、(苏锡常镇四市市2016届高三二模)一个口袋中装有大小相同的3个白球和1个红球,从中有放回地摸球,每次摸出一个,若有3次摸到红球即停止. (1)求恰好摸4次停止的概率;(2)记4次之内(含4次)摸到红球的次数为X ,求随机变量X 的分布列.2、(苏州市2016届高三上期末) 一位网民在网上光顾某网店,经过一番浏览后,对该店铺中的A ,B ,C 三种商品有购买意向.已知该网民购买A 种商品的概率均为34,购买B 种商品的概率均为23,购买E 种商品的概率为12.假设该网民是否购买这三种商品相互独立. (1)求该网民至少购买2种商品的概率;(2)用随机变量η表示该网民购买商品的种数,求η的概率分布和数学期望.3、(无锡市2016届高三上期末)甲乙丙三名射击运动员射中目标的概率分别为1,,(01)2a a a <<,三人各射击一次,击中目标的次数为ξ(1)求ξ的分布列及数学期望;(2)在概率()(0,1,2,3)P i i ξ==中,若(1)P ξ=的值最大,求实数a 的取值范围。
第十章⎪⎪⎪统计与统计案例全国卷5年考情图解 高考命题规律把握1.本章在高考中的分值在12分左右,主要题型是选择题、解答题.2.随机抽样、样本估计总体、独立性检验多在解答题中作为问题的一部分出现.3.解答题多以实际生活为背景,考查利用统计知识解决实际问题的能力. 第一节随机抽样一、基础知识批注——理解深一点1.简单随机抽样(1)定义:一般地,设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.这样抽取的样本,叫做简单随机样本.(2)常用方法:抽签法和随机数法.2.分层抽样(1)在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.(2)分层抽样的应用范围: 当总体是由差异明显的几个部分组成时,往往选用分层抽样.3.系统抽样(1)定义:当总体中的个体数较多时,可以将总体分成均衡的几部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需的样本,这种抽样的方法叫做系统抽样.(2)系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本.①先将总体的N 个个体编号;②确定分段间隔k ,对编号进行分段.当N n (n 是样本容量)是整数时,取k =N n ;当总体中的个体数不能被样本容量整除时,可先用简单随机抽样的方法从总体中剔除几个个体,使剩下的个体数能被样本容量整除,然后再按系统抽样进行.这时在整个抽样过程中每个个体被抽取的可能性仍然相等.③在第1段用简单随机抽样确定第一个个体编号l(l≤k);④按照一定的规则抽取样本.通常是将l加上间隔k得到第2个个体编号l+k,再加k 得到第3个个体编号l+2k,依次进行下去,直到获取整个样本.二、常用结论汇总——规律多一点(1)不论哪种抽样方法,总体中的每一个个体入样的概率都是相同的.(2)系统抽样一般也称为等距抽样,入样个体的编号相差分段间隔k的整数倍.(3)分层抽样是按比例抽样,每一层入样的个体数为该层的个体数乘抽样比.(4)三种抽样方法的特点、联系及适用范围三、基础小题强化——功底牢一点(一)判一判(对的打“√”,错的打“×”)(1)在简单随机抽样中,某一个个体被抽到的可能性与第几次抽取有关,第一次被抽到的可能性最大.()(2)从100件玩具中随机拿出一件,放回后再拿出一件,连续拿5次,是简单随机抽样.()(3)系统抽样适用于元素个数很多且均衡的总体.()(4)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.()(5)分层抽样中,每个个体被抽到的可能性与层数及分层有关.()(6)某校即将召开学生代表大会,现从高一、高二、高三共抽取60名代表,则可用分层抽样方法抽取.()答案:(1)×(2)×(3)√(4)×(5)×(6)√(二)选一选1.下面抽样方法是简单随机抽样的是()A.从平面直角坐标系中抽取5个点作为样本B.可口可乐公司从仓库中的1 000箱可乐中一次性抽取20箱进行质量检查C.某连队从200名战士中,挑选出50名最优秀的战士去参加抢险救灾活动D.从10个手机中逐个不放回地随机抽取2个进行质量检验(假设10个手机已编号) 解析:选D平面直角坐标系中有无数个点,这与简单随机抽样中要求总体中的个体数有限不相符,故A错误;一次性抽取不符合简单随机抽样逐个抽取的特点,故B错误;50名战士是最优秀的,不符合简单随机抽样的等可能性,故C错误.D选项显然符合简单随机抽样的特点,故选D.2.某学院A,B,C三个专业共有1 200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本,已知该学院的A专业有380名学生,B专业有420名学生,则应在该学院的C专业抽取的学生人数为()A.30B.40C.50 D.60解析:选B C专业的学生有1 200-380-420=400名,由分层抽样知应抽取120×400=40名.1 2003.假设从高一年级全体同学(500人)中随机抽出60人参加一项活动,利用随机数法抽取样本时,先将500名同学按000,001,…,499进行编号,如果从随机数表第8行第11列的数开始,按三位数连续向右读取,最先抽出的5名同学的号码是(下面摘取了此随机数表第7行和第8行)()84421 75331 57245 50688 77047 44767 21763 35025 83921 2067663016 37859 16955 56719 98105 07175 12867 35807 44395 23879A.455068047447176B.169105071286443C.050358074439332D.447176335025212解析:选B由随机数表法的随机抽样的过程可知最先抽出的5名同学的号码为169,105,071,286,443.(三)填一填4.(2018·全国卷Ⅲ)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.解析:因为客户数量大,且不同年龄段客户对其服务的评价有较大差异,所以最合适的抽样方法是分层抽样.答案:分层抽样5.某班共有56人,学号依次为1,2,3,…,56,现用系统抽样的方法抽取一个容量为4的样本,已知学号为2,30,44的同学在样本中,则样本中还有一位同学的学号为________.解析:由题意得,需要将56人按学号从小到大分成4组,每组抽取第2个学号对应的同学,所以还有一位同学的学号为1×14+2=16.答案:16考点一简单随机抽样[典例]下列抽取样本的方式属于简单随机抽样的个数有()①从无限多个个体中抽取100个个体作为样本;②盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里;③用抽签方法从10件产品中选取3件进行质量检验;④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.A.0个B.1个C.2个D.3个[解析]①不是简单随机抽样,因为被抽取样本的总体的个数是无限的,而不是有限的;②不是简单随机抽样,因为它是有放回抽样;③明显为简单随机抽样;④不是简单随机抽样,因为不是等可能抽样.[答案] B[解题技法] 应用简单随机抽样应注意的问题(1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.(2)在使用随机数法时,如遇到三位数或四位数,可从选择的随机数表中的某行某列的数字计起,每三个或四个作为一个单位,自左向右选取,有超过总体号码或出现重复号码的数字舍去.[题组训练]1.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A.08 C .02 D .01解析:选D 由随机数法的随机抽样的过程可知选出的5个个体是08,02,14,07,01,所以第5个个体的编号是01.2.利用简单随机抽样,从n 个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为13,则在整个抽样过程中,每个个体被抽到的概率为( ) A.14B.13C.514D.1027解析:选C 根据题意,9n -1=13, 解得n =28.故在整个抽样过程中每个个体被抽到的概率为1028=514. 考点二 系统抽样[典例] (1)某校为了解1 000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1 000进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为( )A .16B .17C .18D .19(2)中央电视台为了解观众对某综艺节目的意见,准备从502名现场观众中抽取10%进行座谈,现用系统抽样的方法完成这一抽样,则在进行分组时,需剔除________个个体,抽样间隔为________.[解析] (1)因为从1 000名学生中抽取一个容量为40的样本,所以系统抽样的分段间隔为1 00040=25, 设第一组随机抽取的号码为x ,则抽取的第18组编号为x +17×25=443,所以x =18.(2)把502名观众平均分成50组,由于502除以50的商是10,余数是2,所以每组有10名观众,还剩2名观众,采用系统抽样的方法抽样时,应先用简单随机抽样的方法从502名观众中抽取2名观众,这2名观众不参加座谈;再将剩下的500名观众编号为1,2,3,…,500,并均匀分成50段,每段含50050=10个个体.所以需剔除2个个体,抽样间隔为10. [答案] (1)C (2)2 10[变透练清]1.(变结论)若本例(1)的条件不变,则编号落入区间[501,750]的人数为________.解析:从1 000名学生中抽取一个容量为40的样本,系统抽样分40组,每组1 00040=25个号码,每组抽取一个,从501到750恰好是第21组到第30组,共抽取10人.答案:102.(2018·南昌摸底调研)某校高三(2)班现有64名学生,随机编号为0,1,2,…,63,依编号顺序平均分成8组,组号依次为1,2,3,…,8.现用系统抽样方法抽取一个容量为8的样本,若在第1组中随机抽取的号码为5,则在第6组中抽取的号码为________.解析:由题知分组间隔为648=8,又第1组中抽取的号码为5,所以第6组中抽取的号码为5×8+5=45.答案:45[解题技法] 系统抽样中所抽取编号的特点系统抽样又称等距抽样,所以依次抽取的样本对应的号码就是一个等差数列,首项就是第1组所抽取样本的号码,公差为间隔数,根据等差数列的通项公式就可以确定每一组内所要抽取的样本号码.[提醒] 系统抽样时,如果总体中的个数不能被样本容量整除时,可以先用简单随机抽样从总体中剔除几个个体,然后再按系统抽样进行.考点三 分层抽样[典例] 某电视台在网上就观众对其某一节目的喜爱程度进行调查,参加调查的一共有20 000人,其中各种态度对应的人数如下表所示:电视台为了了解观众的具体想法和意见,打算从中抽取100人进行详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中应抽取的人数分别为( )A .25,25,25,25B .48,72,64,16C .20,40,30,10D .24,36,32,8 [解析] 法一:因为抽样比为10020 000=1200,所以每类人中应抽取的人数分别为 4 800×1200=24,7 200×1200=36,6 40032,1 600×1200=8. 法二: 4 800∶7 200∶6 400∶1 600=6∶9∶8∶2, 所以每类人中应抽取的人数分别为66+9+8+2×100=24,96+9+8+2×100=36,86+9+8+2×100=32,26+9+8+2×100=8. [答案] D[解题技法] 分层抽样问题的类型及解题思路(1)求某层应抽个体数量:按该层所占总体的比例计算.(2)已知某层个体数量,求总体容量或反之求解:根据分层抽样就是按比例抽样,列比例式进行计算.(3)分层抽样的计算应根据抽样比构造方程求解,其中“抽样比=样本容量总体容量=各层样本数量各层个体数量”. [题组训练]1.(2019·山西五校联考)某校为了解学生的学习情况,采用分层抽样的方法从高一1 000人、高二1 200人、高三n 人中抽取81人进行问卷调查,若高二被抽取的人数为30,则n =( )A .860B .720C .1 020D .1 040 解析:选D 由已知条件知抽样比为301 200=140,从而811 000+1 200+n =140,解得n = 1 040,故选D.2.(2018·广州高中综合测试)已知某地区中小学学生人数如图所示.为了解该区学生参加某项社会实践活动的意向,拟采用分层抽样的方法来进行调查.若高中需抽取20名学生,则小学与初中共需抽取的学生人数为________.解析:设小学与初中共需抽取的学生人数为x ,依题意可得1 2002 700+2 400+1 200=20x +20,解得x =85.答案:85[课时跟踪检测]1.从2 019名学生中选取50名学生参加全国数学联赛,若采用以下方法选取:先用简单随机抽样法从2 019名学生中剔除19名学生,剩下的2 000名学生再按系统抽样的方法抽取,则每名学生入选的概率( )A .不全相等B .均不相等C .都相等,且为502 019D .都相等,且为140 解析:选C 从N 个个体中抽取M 个个体,则每个个体被抽到的概率都等于M N,故每名学生入选的概率都相等,且为502 019. 2.福利彩票“双色球”中红球的号码可以从01,02,03,…,32,33这33个两位号码中选取,小明利用如下所示的随机数表选取红色球的6个号码,选取方法是从第1行第9列的数字开始,从左到右依次读取数据,则第四个被选中的红色球的号码为( )81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75 85 61 39 8506 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49C .06D .16解析:选C 被选中的红色球的号码依次为17,12,33,06,32,22,所以第四个被选中的红色球的号码为06.3.某班共有学生52人,现根据座号,用系统抽样的方法,抽取一个容量为4的样本.已知5号、18号、44号同学在样本中,那么样本中还有一个同学的座号是( )A .23B .27C .31D .33解析:选C 分段间隔为524=13,故样本中还有一个同学的座号为18+13=31. 4.某工厂在12月份共生产了3 600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a ,b ,c ,且a ,b ,c 构成等差数列,则第二车间生产的产品数为( )A .800双B .1 000双C .1 200双D .1 500双解析:选C 因为a ,b ,c 成等差数列,所以2b =a +c ,即第二车间抽取的产品数占抽样产品总数的三分之一,根据分层抽样的性质可知,第二车间生产的产品数占12月份生产总数的三分之一,即为1 200双皮靴.5.(2018·南宁摸底联考)已知某地区中小学生人数和近视情况分别如图甲和图乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A .100,20B .200,20C .200,10D .100,10解析:选B 由题图甲可知学生总人数是10 000,样本容量为10 000×2%=200,抽取的高中生人数是2 000×2%=40,由题图乙可知高中生的近视率为50%,所以抽取高中生的近视人数为40×50%=20,故选B.6.一个总体中有100个个体,随机编号为0,1,2,…,99.依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,如果在第一组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同.若m =6,则在第7组中抽取的号码是()A.63 B.64C.65 D.66解析:选A若m=6,则在第7组中抽取的号码个位数字与13的个位数字相同,而第7组中的编号依次为60,61,62,63,…,69,故在第7组中抽取的号码是63.7.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间(450,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为()A.7 B.9C.10 D.15解析:选C960÷32=30,故由题意可得抽到的号码构成以9为首项,以30为公差的等差数列,其通项公式为a n=9+30(n-1)=30n-21.由450<30n-21≤750,解得15.7<n≤25.7.又n为正整数,所以16≤n≤25,故做问卷B的人数为25-16+1=10.故选C.8.,企业统计员制作了如下的统计表格:由于不小心,表格中A产品的样本容量比C产品的样本容量多10,根据以上信息,可得C的产品数量是________件.解析:设样本容量为x,则x3 000×1 300=130,∴x=300.∴A产品和C产品在样本中共有300-130=170(件).设C产品的样本容量为y,则y+y+10=170,∴y=80.∴C产品的数量为3 000300×80=800(件).答案:8009.某企业三个分厂生产同一种电子产品,三个分厂产量分布如图所示,现在用分层抽样方法从三个分厂生产的该产品中共抽取100件做使用寿命的测试,则第一分厂应抽取的件数为________;由所得样品的测试结果计算出一、二、三分厂取出的产品的使用寿命平均值分别为1 020小时、980小时、1 030小时,估计这个企业所生产的该产品的平均使用寿命为________小时.解析:第一分厂应抽取的件数为100×50%=50;该产品的平均使用寿命为1 020×0.5+980×0.2+1 030×0.3=1 015.答案:50 1 01510.将参加冬季越野跑的600名选手编号为:001,002,…,600,采用系统抽样方法抽取一个容量为50的样本,把编号分为50组后,在第一组的001到012这12个编号中随机抽得的号码为004,这600名选手穿着三种颜色的衣服,从001到301穿红色衣服,从302到496穿白色衣服,从497到600穿黄色衣服,则抽到穿白色衣服的选手人数为________.解析:由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k (k ∈N *)组抽中的号码是4+12(k -1).令302≤4+12(k -1)≤496,得2556≤k ≤42,因此抽到穿白色衣服的选手人数为42-25=17(人).答案:1711.某初级中学共有学生2 000名,各年级男、女生人数如下表:初一年级 初二年级初三年级女生 373 x y 男生377370z(1)求x 的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名? 解:(1)∵x2 000=0.19,∴x =380.(2)初三年级人数为y +z =2 000-(373+377+380+370)=500,现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为482 000×500=12(名). 第二节用样本估计总体一、基础知识批注——理解深一点1.频率分布直方图(1)纵轴表示频率组距,即小长方形的高=频率组距;(2)小长方形的面积=组距×频率组距=频率; (3)各个小方形的面积总和等于1 . 2.频率分布表的画法第一步:求极差,决定组数和组距,组距=极差组数;第二步:分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间; 第三步:登记频数,计算频率,列出频率分布表. 3.茎叶图茎叶图是统计中用来表示数据的一种图, 茎是指中间的一列数,叶就是从茎的旁 边生长出来的数.4.中位数、众数、平均数的定义 (1)中位数将一组数据按大小依次排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.(2)众数一组数据中出现次数最多的数据叫做这组数据的众数. (3)平均数一组数据的算术平均数即为这组数据的平均数,n 个数据x 1,x 2,…,x n 的平均数x =1n (x 1+x 2+…+x n ).5.样本的数字特征如果有n 个数据x 1,x 2,…,x n ,那么这n 个数的①“叶”位置只有一个数字,而“茎”位置的数字位数一般不需要统一;②茎(1)平均数x=1n(x1+x2+…+x n).(2)标准差s=1n[(x1-x)2+(x2-x)2+…+(x n-x)2].(3)方差s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2].二、常用结论汇总——规律多一点1.频率分布直方图中的常见结论(1)众数的估计值为最高矩形的中点对应的横坐标.(2)平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.(3)中位数的估计值的左边和右边的小矩形的面积和是相等的.2.平均数、方差的公式推广(1)若数据x1,x2,…,x n的平均数为x,则mx1+a,mx2+a,mx3+a,…,mx n+a的平均数是m x+a.(2)若数据x1,x2,…,x n的方差为s2,则数据ax1+b,ax2+b,…,ax n+b的方差为a2s2.三、基础小题强化——功底牢一点(一)判一判(对的打“√”,错的打“×”)(1)在频率分布直方图中,小矩形的高表示频率.()(2)频率分布直方图中各个长方形的面积之和为1.()(3)茎叶图中的数据要按从小到大的顺序写,相同的数据可以只记一次.()(4)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.()(5)一组数据的方差越大,说明这组数据的波动越大.()答案:(1)×(2)√(3)×(4)√(5)√(二)选一选1.某便利店记录了100天某商品的日需求量(单位:件),整理得下表:日需求量n/件1415161820频率0.10.20.30.20.2A.16件B.16.2件C.16.6件D.16.8件解析:选D由题意可知,日平均需求量为14×0.1+15×0.2+16×0.3+18×0.2+20×0.2=16.8(件).2.(2019·长春监测)已知某班级部分同学某次测验成绩的茎叶图如图所示,则其中位数和众数分别为( )A .92,94B .92,86C .99,86D .95,91解析:选B由茎叶图可知,此组数据由小到大排列依次为76,79,81,83,86,86,87,91,92,94,95,96,98,99,101,103,114,故中位数为92,众数为86.故选B.3.样本中共有五个个体,其值分别为0,1,2,3,m .若该样本的平均值为1,则其方差为( ) A.105 B.305C. 2 D .2解析:选D 依题意得m =5×1-(0+1+2+3)=-1,则样本方差s 2=15×[(-1)2+02+12+22+(-2)2]=2,即所求的样本方差为2.(三)填一填4.某校为了了解教科研工作开展状况与教师年龄之间的关系,将该校不小于35岁的80名教师按年龄分组,分组区间为[35,40),[40,45),[45,50),[50,55),[55,60],由此得到频率分布直方图如图,则这80名教师中年龄小于45岁的有________人.解析:由频率分布直方图可知45岁以下的教师的频率为5×(0.040+0.080)=0.6,所以年龄小于45岁的共有80×0.6=48(人).答案:485.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________.解析:5个数的平均数x =4.7+4.8+5.1+5.4+5.55=5.1,所以它们的方差s 2=15[(4.7-5.1)2+(4.8-5.1)2+(5.1-5.1)2+(5.4-5.1)2+(5.5-5.1)2]=0.1.答案:0.1考点一 茎叶图[典例] (2017·山东高考)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( )A .3,5B .5,5C .3,7D .5,7[解析] 由两组数据的中位数相等可得65=60+y ,解得y =5,又它们的平均值相等, 所以15×[56+62+65+74+(70+x )]=15×(59+61+67+65+78),解得x =3.[答案] A[解题技法] 茎叶图的应用(1)茎叶图通常用来记录两位数的数据,可以用来分析单组数据,也可以用来比较两组数据.通过茎叶图可以确定数据的中位数,数据大致集中在哪个茎,数据是否关于该茎对称,数据分布是否均匀等.(2)给定两组数据的茎叶图,比较数字特征时,“重心”下移者平均数较大,数据集中者方差较小.[题组训练]1.在如图所示一组数据的茎叶图中,有一个数字被污染后模糊不清,但曾计算得该组数据的极差与中位数之和为61,则被污染的数字为( )A .1B .2C .3D .4解析:选B 由图可知该组数据的极差为48-20=28,则该组数据的中位数为61-28=33,易得被污染的数字为2.2.甲、乙两名篮球运动员5场比赛得分的原始记录如茎叶图所示,若甲、乙两人的平均得分分别为x 甲,x 乙,则下列结论正确的是( )A.x 甲<x 乙;乙比甲得分稳定B.x 甲>x 乙;甲比乙得分稳定C.x 甲>x 乙;乙比甲得分稳定D.x 甲<x 乙;甲比乙得分稳定 解析:选A 因为x甲=2+7+8+16+225=11,x 乙=8+12+18+21+255=16.8,所以x 甲<x 乙且乙比甲成绩稳定.考点二 频率分布直方图[典例] 某城市100户居民的月平均用电量(单位:千瓦时),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数.[解] (1)由(0.002+0.009 5+0.011+0.012 5+x +0.005+0.002 5)×20=1,解得x =0.007 5.即直方图中x 的值为0.007 5.(2)月平均用电量的众数是220+2402=230.∵(0.002+0.009 5+0.011)×20=0.45<0.5, (0.002+0.009 5+0.011+0.012 5)×20=0.7>0.5, ∴月平均用电量的中位数在[220,240)内.设中位数为a ,则0.45+0.012 5×(a -220)=0.5,解得a =224,即中位数为224. [变透练清]1.某校随机抽取20个班,调查各班有出国意向的人数,所得数据的茎叶图如图所示.以5为组距将数据分组为[0,5),[5,10),…,[30,35),[35,40],所作的频率分布直方图是( )解析:选A 以5为组距将数据分组为[0,5),[5,10),…,[30,35),[35,40],各组的频数依次为1,1,4,2,4,3,3,2,可知画出的频率分布直方图为选项A 中的图.2.(变结论)在本例条件下,在月平均电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取________户.解析:月平均用电量在[220,240)的用户有0.012 5×20×100=25(户).同理可得月平均用电量在[240,260)的用户有15户,月平均用电量在[260,280]的用户有10户,月平均用电量在[280,300]的用户有5户,故抽取比例为1125+15+10+5=15.所以月平均用电量在[220,240)的用户中应抽取25×15=5(户).答案:53.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由.解:(1)由频率分布直方图可知,月均用水量在[0,0.5)的频率为0.08×0.5=0.04.同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]6组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a+0.5×a,解得a=0.30.(2)估计全市居民中月均用水量不低于3吨的人数为3.6万.理由如下:由(1)知,100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000=3.6(万).[解题技法]熟记结论(1)在频率分布直方图中,各小长方形的面积表示相应各组的频率,所有小长方形的面积的和等于1;(2)频率组距×组距=频率;(3)频数样本容量=频率,此关系式的变形为频数频率=样本容量,样本容量×频率=频数易错防范频率分布直方图的纵坐标是频率组距,而不是频率考点三样本的数字特征考法(一)样本的数字特征与频率分布直方图交汇[典例](2019·辽宁师范大学附属中学模拟)某校初三年级有400名学生,随机抽查了40名学生测试1分钟仰卧起坐的成绩(单位:次),将数据整理后绘制成如图所示的频率分布直方图.用样本估计总体,下列结论正确的是()。