【同步测控 优化设计】高二人教A版数学选修2-2练习:2章测评A Word版含答案[ 高考]
- 格式:doc
- 大小:109.50 KB
- 文档页数:5
2019-2020 学年数学选修2-2 模块综合检测(时间: 120 分钟满分: 150 分)一、选择题 (本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的 )i(i 为虚数单位 )的虚部是 ( )1.复数2+i1 12 2 A.B. i C. i D .5 5 5 5解析:选 Di i 2-i 1 2 i 2因为==+ i,所以复数的虚部为,故选2+i 2+i 2-i 5 5 2+i 5D.2.已知复数 z=(2+i)(a + 2i3) 在复平面内对应的点在第四象限,则实数 a 的取值范围是 ( )A. (-∞,-1) B. (4,+∞)C.(-1,4) D.(-4,- 1)解析:选 C 复数 z=(2+i)(a+2i3) =(2+ i)(a- 2i)= 2a+2+(a- 4)i,其在复平面内对应的点 (2a +2,a- 4)在第四象限,则 2a+2>0 ,且 a-4<0 ,解得- 1<a<4 ,则实数 a 的取值范围是 (- 1,4) .故选 C.3.用反证法证明“若 a+b+c<3 ,则 a,b,c 中至少有一个小于1,”应 ( ) A.假设 a, b, c 至少有一个大于 1 B.假设 a,b,c 都大于 1C.假设 a, b, c 至少有两个大于 1 D.假设 a,b,c 都不小于 1解析:选 D 假设 a,b,c 中至少有一个小于 1 不成立,即 a,b,c 都不小于1,故选 D.114.设 a = 1x 3dx ,b =1- 1 x 2 dx ,c = 1x3dx ,则 a 、b 、c 的大小关系是0 0 ()A . a>b>cB .b>a>cC . a>c>bD . b>c>a1 1 1 1 x 3 3 3解析:选 A 由题意可得 a = 1 x 3dx =1 0 = x 20 2- +13313 0= ;b = 1- 1 2 01 x 2121x4 1 1x 2 1x3dx =dx =1- 0 =1--0 = ;c = 4 0= .综上, a>b>c.3 3 3 0 425.由① y =2x + 5 是一次函数;② y =2x + 5 的图象是一条直线;③一次函数 的图象是一条直线.写一个“三段论”形式的正确推理,则作为大前提、小前提和结 论的分别是 ()A .②①③B .③①②C .①②③D .②③①解析:选 B该三段论应为:一次函数的图象是一条直线(大前提 ),y = 2x +5是一次函数 (小前提 ),y =2x +5 的图象是一条直线 (结论 ).6.已知点列:P1(1,1) ,P2(1,2) ,P3(2,1) ,P4(1,3) ,P5(2,2) ,P6(3,1) ,P7(1,4) , P8(2,3) ,P9(3,2) ,P10(4,1) ,P11(1,5) , P12(2,4) ,⋯,则 P60 的坐标为 ()A . (3,8)B .(4,7)C. (4,8) D.(5,7)解析:选 D 横纵坐标之和为 2 的有 1 个,横纵坐标之和为 3 的有 2 个,横纵坐标之和为 4 的有 3 个,横纵坐标之和为 5 的有 4 个.因此横纵坐标之和为2,3,⋯, 11 的点共有 1+ 2+ 3+⋯+ 10 =55 个,横纵坐标之和为12 的有 11 个.因此 P60 为横纵坐标之和为12 的第 5 个点,即为 (5,7) ,故选 D.7.函数 f(x) = ax3 +bx2 +cx +d 的图象如图,则函数 y=3 c)ax2 + bx+的单调递增区间是 (2 31A. (-∞,-2] B. ,+∞29C. [-2,3] D. ,+∞8解析:选 D 由题图可知 d= 0.不妨取 a=1 ,∵f(x) = x3+bx2 + cx,∴f′(x) =3x2 +2bx +c.由图可知 f′(- 2)=0,f′(3)= 0,∴12 -4b +c=0,27 + 6b+c=0,39 9 9∴b=-,c=- 18. ∴y=x2 - x- 6, y′=2x- .当 x>时, y′>0,∴y= x2 2 4 4 89 9- x- 6 的单调递增区间为,+∞ .故选 D.4 88.如图,在平面直角坐标系 xOy 中,圆 x2+y2 =r2(r>0) 内―→ ―→―→切于正方形 ABCD ,任取圆上一点 P,若OP =mOA + nOB (m,n1x2 y2∈R) ,则是 m2 ,n2 的等差中项.现有一椭圆+=1(a>b>0)4a2b2―→―→ ―→,则 m2 ,内切于矩形 ABCD ,任取椭圆上一点 P,若OP = mOA +nOB (m ,n∈R)n2 的等差中项为 ( )1 1A.B.4 22C. D.12x2 y2解析:选 A 图,设 P(x,y),由+=1 知 A(a ,b),B(-a2 b2―→ ―→ ―→x= m- n a,x2+y2a, b),由 OP= mOA +nOB 可得y= m+ n b,代入=1a2b21 m2 +n2 1可得 (m -n)2 +(m +n)2 =1,即 m2 +n2 =,所以2 =,即 m2, n2 的等2 41差中项为.49.已知函数 f(x) = x3-ax 在(-1,1) 上单调递减,则实数 a 的取值范围为 ( )A. (1,+∞) B .[3 ,+∞)C. (-∞,1] D . (-∞,3]解析:选 B ∵f(x) =x3 -ax,∴f′(x) =3x2 -a. 又 f(x) 在 (-1,1) 上单调递减,∴3x2 -a≤0 在(- 1,1) 上恒成立,∴a ≥3,故选 B.10 .设函数 f(x) 在 R 上可导, f(x) =x2f ′(2) -3x ,则 f(- 1)与 f(1) 的大小关系是( )A. f(- 1)=f(1) B. f(- 1)>f(1)C. f(- 1)<f(1) D.不确定解析:选 B 因为 f(x) = x2f′(2)- 3x,所以 f ′(x) =2xf ′(2)- 3,则 f′(2) =4f′(2)-3,解得 f′(2) =1,所以 f(x) =x2 -3x ,所以 f(1) =- 2,f(-1)=4,故 f(-1)>f(1).11 .若不等式 2xln x≥-x2 +ax- 3 对 x∈(0,+∞)恒成立,则实数 a 的取值范围是()A. (-∞,0) B .(-∞,4]C. (0,+∞)D. [4,+∞)解析:选 B 由 2xln x≥-x2+ ax-3 ,得 a≤2ln3x+x+,设 h(x) =2ln xx3x+3 x-1+x+ (x>0),则 h′(x) =.当 x∈(0,1) 时,h′(x) <0,函数 h(x) 单调递减;x x2当x∈(1,+∞)时, h′(x) >0,函数 h(x) 单调递增,所以 h(x)min =h(1) = 4.所以 a≤h(x)min =4. 故 a 的取值范围是 (-∞,4].12 .定义在 R 上的偶函数 f(x)的导函数为 f′(x),若对任意的实数x,都有 2f(x)+xf′(x)<2 恒成立,则使 x2f(x) - f(1)<x2 -1 成立的实数 x 的取值范围为 ( ) A. {x|x ≠±1} B.(-∞,-1)∪(1 ,+∞)C. (-1,1) D. (-1,0) ∪(0,1)解析:选 B 构造函数 g(x) =x2f(x) - x2,x∈R,则 g′(x)=2xf(x) +x2f ′(x)- 2x =x[2f(x) +xf′(x) -2].由题意得 2f(x) +xf′(x) -2<0 恒成立,故当 x<0 时,g′(x)>0 ,函数 g(x) 单调递增;当 x>0 时,g′(x)<0 ,函数 g(x) 单调递减.因为 x2f(x) -f(1)<x2 -1,所以 x2f(x) - x2<f(1) -1,即 g(x)<g(1) ,当 x>0 时,解得 x>1; 当 x<0 时,因为 f(x) 是偶函数,所以 g(x) 是偶函数,同理解得 x<-1.故实数 x 的取值范围为 (-∞,-1)∪(1,+∞).故选 B.二、填空题 (本大题共 4 小题,每小题 5 分,共 20 分,把答案填在题中的横线上 )13 .已知复数 z= (1+i)(1 +2i) ,其中 i 是虚数单位,则 z 的模是 ________.解析:∵z =(1+i)(1 + 2i)=1+2i + i +2i2 =3i - 1, ∴|z|= 32 + - 1 2= 10.答案: 10x 14 .已知 f(x) = ,则曲线 y =f(x) 在点 (1 ,f(1)) 处的切线方程是 ________.x2+ 1x1- x2解析: f(x) =x2+1 的导数为 f ′(x) = ,在点 (1,f(1)) 处的切线的斜率为1+x2 2′ = ,切点为 1 ,所以在点11, (1 ,f(1)) 处的切线方程为 y = . f (1)2 2 1答案: y =215 .某商场从生产厂家以每件 20 元购进一批商品,若该商品零售价为p 元,销量 Q(单位:件 )与零售价 p(单位:元 )有如下关系: Q =8 300 - 170p -p2 ,则该 商品零售价定为 ______元时利润最大,利润的最大值为______元.解析:设商场销售该商品所获利润为 y 元,则y =(p - 20)(8 300 - 170p -p2)=- p3- 150p2 + 11 700p -166 000(p ≥20) , 则 y ′=-3p2 -300p +11 700. 令 y ′=0 得 p2+ 100p -3 900 = 0, 解得 p =30 或 p =- 130( 舍去 ). 则 p ,y ,y ′变化关系如下表:(20,30p 30(30 ,+∞))y+0 -′极y大值故当 p=30 时, y 取极大值为 23 000 元.又y=- p3 -150p2 +11 700p -166 000 在[20 ,+∞)上只有一个极值,故也是最值.所以该商品零售价定为每件30 元,所获利润最大为23 000 元.答案: 30 23 00016 .某商场橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的产品,其中第 1 堆只有一层,就一个球;第2、3、 4、⋯堆最底层 (第一层 )分别按下图①②③所示方式固定摆放,其余堆类推,从第二层开始,每层的小球自然垒放在下一层之上,第 n 堆第 n 层就放一个乒乓球,以 f(n) 表示第 n 堆的乒乓球总数,则 f(3) =________,f(n) =________(用含 n 的式子表示 ).g(1) =1,g(2) = 1+ 2,g(3) =1 解析:设第n 堆第一层乒乓球数为g(n) ,则+2+3,⋯,n n+ 1 n2 +n则 g(n) = 1+ 2+ 3+⋯+ n==.2 2所以 f(3) = g(1) +g(2) +g(3)=1+(1+2)+(1+2+3)=10.f(n) = g(1) +g(2) +g(3) +⋯+ g(n)1 1 1=(12 + 1)+ (22 +2)+⋯+ (n2 +n)2 2 21=[(12 +22 +⋯+ n2) + (1+2+3+⋯+ n)] 21 n n+1 2n + 1 n n+1 n n+1 n+2=6 +=.2 2 6答案: 10n n+1 n+26三、解答题 (本大题共 6 小题,共 70 分,解答时应写出必要的文字说明、证明过程或演算步骤 )1+i 5i17.(本小题 10 分)(1)计算2+;23+4i(2)复数 z=x+yi(x ,y∈R)满足 z+2i z = 3+ i,求复数 z.解: (1) 原式=2i5i 3- 4i+3+4i 3-4i 25i 3- 4i4+3i 4 8= i += i+5=+i. 32+42 5 5(2)(x +yi) +2i(x -yi) =3+i,即(x+2y) +(2x +y)i =3+i,1x+2y =3,x=-,3即解得2x +y=1, 5y= .31 5∴z=-+ i.3 318 .(本小题 12 分)设 a,b,c 均为大于 1 的正数,且 ab=10 ,求证: logac +logbc ≥4lg c.证明:法一:∵ab= 10,∴lg a + lg b =lg ab =1,lg c lgc lg c lg a + lg b lg c则 logac +logbc =+==.lg a lgb lg a ·lg b lg a ·lg b∵a>1 , b>1,∴lg a>0 ,lg b>0 ,lg a +lg b 1 1则 lg a ·lg b ≤2=,≥4,2 4 lg alg b又 c>1,lg c >0.lg c≥4lg c∴lg a ·lgb即logac +logbc ≥4lg c.法二:要证 logac + logbc ≥4lg c ,lg c lg c只需证+≥4lg c.lg a lg b又因为 c>1,所以 lg c>0 ,1 1≥4,故只需证+lg a lg blg a +lg b即证≥4.lg a ·lg b又因为 ab=10 ,所以 lg a + lg b =lg(ab) =1,1故只需证≥4.lg a ·lg b又因为 lg a>0 , lg b>0 ,lg a +lg b 1 1所以 0<lg a ·lg b ≤2=2=,2 2 41则≥4 成立.lg a ·lg b所以原不等式成立,即 logac +logbc ≥4lg c.119 .(本小题 12 分)已知函数 f(x) = x3- ax+b 在 y 轴上的截距为 1,且曲线32 1上一点 P ,y0 处的切线斜率为 .2 3(1)求曲线在 P 点处的切线方程;(2)求函数 f(x) 的极大值和极小值.1解: (1) 因为函数 f(x) = x3 -ax+ b 在 y 轴上的截距为 1,所以 b=1.32 1 1又 y′=x2 -a,所以 2 -a=,所以 a=,2 3 61 1所以 f(x) = x3 - x+1,3 62 2 1 2所以 y0 =f =1,故点 P ,1 ,所以切线方程为y-1= x-,2 23 2即 2x -6y+ 6-2=0.1(2)由(1) 可得 f′(x)=x2 -,66令 f ′(x)= 0,得 x =± .6当 x 变化时, f(x) ,f ′(x) 变化情况如下表:-x 错误 !6错误 !错误 ! 6,+∞66f ′(x) + 0 -0 +极极 f(x)大值小值6时,函数 f(x) 有极大值为 f - 6 6 ,当 x = 6因此,当 x =- 6 =1+时,654 6 函数 f(x) 有极小值为 f 666=1-.5420 .(本小题 12 分)已知函数 f(x) =x2 -mln x ,h(x) =x2- x + a. (1)当 a = 0 时, f(x) ≥h(x) 在 (1,+∞)上恒成立,求实数 m 的取值范围;(2)当 m =2 时,若函数 k(x) = f(x) -h(x) 在区间 (1,3) 上恰有两个不同零点,求实数 a 的取值范围.解: (1) 由 f(x) ≥h(x) , x得 m ≤ 在(1,+∞)上恒成立. lnx令 g(x) = xln x - 1,则 g ′(x)= ,ln x ln x 2 当 x ∈(1 ,e)时, g ′(x)< 0; 当 x ∈(e ,+∞)时, g ′(x)> 0,所以 g(x) 在(1,e) 上递减,在 (e ,+∞)上递增.故当 x =e 时, g(x) 的最小值为 g(e) = e. 所以 m ≤e.即 m 的取值范围是 (-∞,e]. (2) 由已知可得 k(x) =x -2ln x -a. 函数 k(x) 在(1,3) 上恰有两个不同零点,相当于函数φ (x)= x - 2ln x 与直线 y =a 有两个不同的交点.2 x -2φ′(x)=1- = ,x x当 x ∈(1,2) 时,φ′(x)< 0,φ(x)递减, 当 x ∈(2,3) 时,φ′(x)> 0,φ(x)递增.又φ(1)=1,φ(2) =2-2ln 2 ,φ(3) =3-2ln 3 , 要使直线 y =a 与函数φ(x)= x - 2ln x 有两个交点, 则 2-2ln 2 <a <3-2ln 3.即实数 a 的取值范围是 (2-2ln 2,3 -2ln 3) .21 .(本小题 12 分)(2019 ·全国卷Ⅱ)已知函数 f(x) =(x -1)ln x -x -1.证明: (1)f(x) 存在唯一的极值点;(2)f(x) =0 有且仅有两个实根,且两个实根互为倒数. 证明: (1)f(x) 的定义域为 (0 ,+∞),f ′(x) =x -1+ln x -1=ln x -1.x x1因为 y =ln x 在(0,+∞)上单调递增, y = 在 (0,+∞)上单调递减, x 所以f ′(x) 在(0,+∞)上单调递增.1ln 4 -1又 f ′(1)=- 1<0,f ′(2) =ln 2 - =>0,2 2故存在唯一 x0 ∈(1,2) ,使得 f′(x0) = 0.又当 x<x0 时, f′(x)<0 ,f(x) 单调递减;当x>x0 时, f′(x)>0 , f(x) 单调递增,所以 f(x) 存在唯一的极值点.(2)由(1) 知 f(x0)<f(1) =- 2,又 f(e2) =e2 -3>0 ,所以 f(x) = 0 在(x0 ,+∞)内存在唯一根 x=α.1由α>x0>1 得<1<x0.α1 1 1 1 f α又 f =-1 ln --1== 0,ααα αα1故是 f(x) =0 在 (0,x0) 内的唯一根.α所以 f(x) = 0 有且仅有两个实根,且两个实根互为倒数.22 .(本小题 12 分)两县城 A 和 B 相距 20 km ,现计划在两县城外以AB 为直径的半圆弧 AB 上选择一点 C 建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城 A 和城 B 的总影响度为对城 A 与对城 B 的影响度之和.记C 点到城 A 的距离为 x km ,建在 C 处的垃圾处理厂对城 A 和城 B 的总影响度为y.统计调查表明:垃圾处理厂对城 A 的影响度与所选地点到城 A 的距离的平方成反比,比例系数为4;对城 B 的影响度与所选地点到城 B 的距离的平方成反比,比例系数为 k,当垃圾处理厂建在AB 的中点时,对城A和城B的总影响度为0.065.(1)将 y 表示成 x 的函数 f(x) ;(2)讨论 (1)中函数的单调性,并判断AB上是否存在一点,使建在此处的垃圾处理厂对城 A 和城 B 的总影响最小?若存在,求出该点到城 A 的距离;若不存在,说明理由.解:(1)根据题意∠ACB =90 °,|AC| =x km ,|BC| =400 -x2 km ,且建在 CA 的影响度为4 k处的垃圾处理厂对城,对城 B 的影响度为,因此,总影x2 400 -x24 k(0<x<20) .响度 y=+x2400 -x2又垃圾处理厂建在AB的中点时,对城 A 和城 B 的总影响度为0.065 ,故有4 k= 0.065 ,+102 + 102 2 400 -102 +102 24 9解得 k=9,故 y=f(x) =+(0<x<20) .x2 400 -x2(2)f ′ (x) =8 18x 18x4 - 8×400 -x2 2-+==x3 400 -x2 2 x3 400 -x2 2x3 +800 10x2 -1 600.x3 400 -x2 2令f′(x)= 0,解得 x=4 10或 x=- 4 10( 舍去 ).所以当 x∈(0,4 10) 时, f′(x)<0 ,f(x) 为减函数;当 x∈(4 10, 20) 时, f′(x)>0 ,f(x) 为增函数.故在 x=4 10 处,函数f(x) 取得极小值,也是最小值.即垃圾场离城 A 的距离为 4 10 m 时,对城 A 和城 B 的总影响最小.。
人教A版高中数学选修2-2全册同步测控知能训练题集目录第1章1.1.2知能优化训练第1章1.1.3知能优化训练第1章1.2.2(一)知能优化训练第1章1.2.2(二)知能优化训练第1章1.3.1知能优化训练第1章1.3.2知能优化训练第1章1.3.3知能优化训练第1章1.4知能优化训练第1章1.5.2知能优化训练第1章1.5.3知能优化训练第1章1.6知能优化训练第1章1.7.2知能优化训练第2章2.1.1知能优化训练第2章2.1.2知能优化训练第2章2.2.1知能优化训练第2章2.2.2知能优化训练第2章2.3知能优化训练第3章3.1.1知能优化训练第3章3.1.2知能优化训练第3章3.2.1知能优化训练第3章3.2.2知能优化训练1.当自变量从x 0变到x 1时函数值的增量与相应自变量的增量之比是函数( ) A .在区间[x 0,x 1]上的平均变化率 B .在x 0处的变化率 C .在x 1处的变化量D .在区间[x 0,x 1]上的导数 答案:A2.已知函数f (x )=2x 2-4的图象上一点(1,-2)及邻近一点(1+Δx ,-2+Δy ),则ΔyΔx等于( )A .4B .4xC .4+2ΔxD .4+2(Δx )2解析:选C.Δy Δx =f (1+Δx )-f (1)Δx=2(1+Δx )2-4+2Δx=2(Δx )2+4Δx Δx=2Δx +4.3.一物体的运动方程为s =7t 2+8,则其在t =________时的瞬时速度为1.解析:Δs Δt =7(t 0+Δt )2+8-(7t 20+8)Δt=7Δt +14t 0,当li mΔt →0(7Δt +14t 0)=1时,t 0=114. 答案:1144.求函数y =x -1x 在x =1处的导数.解:Δy =(1+Δx )-11+Δx -(1-11)=Δx +Δx 1+Δx,Δy Δx =Δx +Δx 1+Δx Δx =1+11+Δx, ∴li m Δx →0 Δy Δx =li mΔx →0 (1+11+Δx )=2,从而y ′|x =1=2.一、选择题1.已知函数y =f (x )=x 2+1,则在x =2,Δx =0.1时,Δy 的值为( ) A .0.40 B .0.41 C .0.43 D .0.44解析:选B.Δy =f (2.1)-f (2)=2.12-22=0.41.2.函数f (x )=2x 2-1在区间(1,1+Δx )上的平均变化率ΔyΔx等于( )A .4B .4+2ΔxC .4+2(Δx )2D .4x 解析:选 B.因为Δy =[2(1+Δx )2-1]-(2×12-1)=4Δx +2(Δx )2,所以ΔyΔx=4+2Δx ,故选B.3.如果质点M 按照规律s =3t 2运动,则在t =3时的瞬时速度为( ) A .6 B .18 C .54 D .81解析:选B.Δs Δt =3(3+Δt )2-3×32Δt =18+3Δt ,s ′=li m Δt →0 ΔsΔt =li mΔt →0(18+3Δt )=18,故选B.4.某质点沿曲线运动的方程y =-2x 2+1(x 表示时间,y 表示位移),则该点从x =1到x =2时的平均速度为( ) A .-4 B .-8 C .6 D .-6解析:选D.令f (x )=y =-2x 2+1,则质点从x =1到x =2时的平均速度v -=Δy Δx =f (2)-f (1)2-1=-2×22+1-(-2×12+1)2-1=-6.5.如果某物体做运动方程为s =2(1-t 2)的直线运动(位移单位:m ,时间单位:s),那么其在1.2 s 末的瞬时速度为( ) A .-0.88 m/s B .0.88 m/s C .-4.8 m/s D .4.8 m/s解析:选C.s ′|t =1.2=li mΔt →02[1-(1.2+Δt )2]-2(1-1.22)Δt =-4.8.6.已知f (x )=-x 2+10,则f (x )在x =32处的瞬时变化率是( )A .3B .-3C .2D .-2解析:选B.∵ΔyΔx =f (32+Δx )-f (32)Δx=-Δx -3,∴li mΔx →0 ΔyΔx =-3.二、填空题7.已知函数f (x )在x =1处的导数为1,则li mx →0f (1+x )-f (1)x =________. 解析:li mx →0f (1+x )-f (1)x =f ′(1)=1.答案:18.设函数y =f (x )=ax 2+2x ,若f ′(1)=4,则a =________.解析:li mΔx →0 ΔyΔx=li mΔx →0a (x +Δx )2+2(x +Δx )-ax 2-2xΔx=li mΔx →02ax ·Δx +2·Δx +a (Δx )2Δx=2ax +2.∴f ′(1)=2a +2=4, ∴a =1. 答案:19.已知函数y =f (x )在x =x 0处的导数为11,则li mΔx →0f (x 0-2Δx )-f (x 0)Δx =________.解析:li mΔx →0f (x 0-2Δx )-f (x 0)Δx=-2li m-2Δx →0f (x 0-2Δx )-f (x 0)-2Δx=-2f ′(x 0)=-2×11=-22. 答案:-22 三、解答题10.若f ′(x 0)=2,求lim k →0f (x 0-k )-f (x 0)2k 的值.解:令-k =Δx ,∵k →0,∴Δx →0. 则原式可变形为lim Δx →0 f (x 0+Δx )-f (x 0)-2Δx=-12lim Δx →0 f (x 0+Δx )-f (x )Δx=-12f ′(x 0)=-12×2=-1.11.一作直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2(位移:m ,时间:s). (1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度; (3)求t =0到t =2时的平均速度.解:(1)初速度v 0=li mΔt →0s (Δt )-s (0)Δt=li m Δt →0 3Δt -(Δt )2Δt =li mΔt →0(3-Δt )=3.即物体的初速度为3 m/s.(2)v 瞬=li mΔt →0s (2+Δt )-s (2)Δt=li mΔt →03(2+Δt )-(2+Δt )2-(3×2-4)Δt=li mΔt →0-(Δt )2-ΔtΔt=li mΔt →(-Δt -1)=-1. 即此物体在t =2时的瞬时速度为1 m/s ,方向与初速度相反.(3)v -=s (2)-s (0)2-0=6-4-02=1.即t =0到t =2时的平均速度为1 m/s.12.若函数f (x )=-x 2+x 在[2,2+Δx ](Δx >0)上的平均变化率不大于-1,求Δx 的范围. 解:∵函数f (x )在[2,2+Δx ]上的平均变化率为: Δy Δx =f (2+Δx )-f (2)Δx=-(2+Δx )2+(2+Δx )-(-4+2)Δx=-4Δx +Δx -(Δx )2Δx=-3-Δx ,∴由-3-Δx ≤-1,得Δx ≥-2. 又∵Δx >0,∴Δx >0,即Δx 的取值范围是(0,+∞).1.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( ) A .不存在 B .与x 轴平行或重合 C .与x 轴垂直 D .与x 轴相交但不垂直解析:选B.函数在某点处的导数为零,说明相应曲线在该点处的切线的斜率为零.2.曲线y =-1x 在点(1,-1)处的切线方程为( ) A .y =x -2 B .y =x C .y =x +2 D .y =-x -2解析:选A.f ′(1)=li m Δx →0 -11+Δx +11Δx =li mΔx →0 11+Δx=1,则在(1,-1)处的切线方程为y +1=x -1,即y =x -2.3.函数y =x 2+4x 在x =x 0处的切线斜率为2,则x 0=________________________________________________________________________.解析:2=li mΔx →0(x 0+Δx )2+4(x 0+Δx )-x 20-4x 0Δx=2x 0+4,∴x 0=-1. 答案:-14.求证:函数y =x +1x图象上的各点处的斜率小于1.证明:∵y =li mΔx →0f (x +Δx )-f (x )Δx=li m Δx →0(x +Δx +1x +Δx)-(x +1x )Δx=x 2-1x 2=1-1x2<1,∴y =x +1x 图象上的各点处的斜率小于1.一、选择题1.下列说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处就没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在,则曲线在该点处就没有切线解析:选C.k =f ′(x 0),所以f ′(x 0)不存在只说明曲线在该点的切线斜率不存在,而当斜率不存在时,切线方程也可能存在,其切线方程为x =x 0.2.已知曲线y =2x 2上一点A (2,8),则A 处的切线斜率为( ) A .4 B .16 C .8 D .2解析:选C.曲线在点A 处的切线的斜率就是函数y =2x 2在x =2处的导数.f ′(x )=li m Δx →0 ΔyΔx =li mΔx →02(x +Δx )2-2x 2Δx =li mΔx →04x ·Δx +2(Δx )2Δx =4x .则f ′(2)=8.3.已知曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为2x +y +1=0,那么( ) A .f ′(x 0)=0 B .f ′(x 0)<0 C .f ′(x 0)>0 D .f ′(x 0)不确定解析:选B.曲线在某点处的切线的斜率为负,说明函数在该点处的导数也为负.4.下列点中,在曲线y =x 2上,且在该点处的切线倾斜角为π4的是( )A .(0,0)B .(2,4)C .(14,116)D .(12,14)解析:选D.k =li m Δx →0 ΔyΔx =li mΔx →0(x +Δx )2-x 2Δx=li mΔx →(2x +Δx )=2x . ∵倾斜角为π4,∴斜率为1.∴2x =1,得x =12,故选D.5.设f (x )为可导函数,且满足li mx →f (1)-f (1-x )x=-1,则曲线y =f (x )在点(1,f (1))处的切线的斜率是( )A .2B .-1 C.12D .-2解析:选B.∵li mx →f (1)-f (1-x )x =-1, ∴li mx →0 f (1-x )-f (1)-x =-1,∴f ′(1)=-1. 6.(2010年高考大纲全国卷Ⅱ)若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-1 解析:选A.y ′=li mΔx →0(x +Δx )2+a (x +Δx )+b -(x 2+ax +b )Δx=li mΔx →0(2x +a )Δx +(Δx )2Δx =2x +a ,因为曲线y =x 2+ax +b 在点(0,b )处的切线l 的方程是x -y +1=0,所以切线l 的斜率k =1=y ′|x =0,且点(0,b )在切线l 上,于是有⎩⎪⎨⎪⎧0+a =10-b +1=0,解得⎩⎪⎨⎪⎧a =1b =1.二、填空题7.若曲线y =2x 2-4x +P 与直线y =1相切,则P =________. 解析:设切点坐标为(x 0,1),则f ′(x 0)=4x 0-4=0, ∴x 0=1.即切点坐标为(1,1). ∴2-4+P =1,即P =3. 答案:38.已知函数y =ax 2+b 在点(1,3)处的切线斜率为2,则ba =________.解析:li mΔx →0 a (1+Δx )2-aΔx =li mΔx →0(a ·Δx +2a )=2a =2,∴a =1,又3=a ×12+b ,∴b =2,即ba=2.答案:29.已知曲线y =12x 2-2上一点P (1,-32),则过点P 的切线的倾斜角为________.解析:∵y =12x 2-2,∴y ′=li mΔx →012(x +Δx )2-2-(12x 2-2)Δx=li m Δx →0 12(Δx )2+x ·Δx Δx =li m Δx →0(x +12Δx )=x .∴y ′|x =1=1.∴点P (1,-32)处的切线的斜率为1,则切线的倾斜角为45°.答案:45° 三、解答题10.求过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线. 解:曲线y =3x 2-4x +2在M (1,1)的斜率k =y ′|x =1=li m Δx →0 3(1+Δx )2-4(1+Δx )+2-3+4-2Δx =li mΔx →0(3Δx +2)=2.∴过点P (-1,2)直线的斜率为2, 由点斜式得y -2=2(x +1), 即2x -y +4=0.所以所求直线方程为2x -y +4=0.11.已知抛物线y =x 2+4与直线y =x +10.求: (1)它们的交点;(2)抛物线在交点处的切线方程.解:(1)由⎩⎪⎨⎪⎧y =x 2+4,y =x +10,解得⎩⎪⎨⎪⎧x =-2y =8或⎩⎪⎨⎪⎧x =3y =13.∴抛物线与直线的交点坐标为(-2,8)或(3,13). (2)∵y =x 2+4,∴y ′=lim Δx →0(x +Δx )2+4-(x 2+4)Δx=lim Δx →0 (Δx )2+2x ·ΔxΔx =lim Δx →0(Δx +2x )=2x .∴y ′|x =-2=-4,y ′|x =3=6,即在点(-2,8)处的切线斜率为-4,在点(3,13)处的切线斜率为6. ∴在点(-2,8)处的切线方程为4x +y =0; 在点(3,13)处的切线方程为6x -y -5=0.12.设函数f (x )=x 3+ax 2-9x -1(a <0),若曲线y =f (x )的斜率最小的切线与直线12x +y =6平行,求a 的值.解:∵Δy =f (x 0+Δx )-f (x 0)=(x 0+Δx )3+a (x 0+Δx )2-9(x 0+Δx )-1-(x 30+ax 20-9x 0-1)=(3x 20+2ax 0-9)Δx +(3x 0+a )(Δx )2+(Δx )3,∴Δy Δx=3x 20+2ax 0-9+(3x 0+a )Δx +(Δx )2. 当Δx 无限趋近于零时, ΔyΔx无限趋近于3x 20+2ax 0-9. 即f ′(x 0)=3x 20+2ax 0-9∴f ′(x 0)=3(x 0+a 3)2-9-a 23.当x 0=-a 3时,f ′(x 0)取最小值-9-a 23.∵斜率最小的切线与12x +y =6平行, ∴该切线斜率为-12.∴-9-a 23=-12.解得a =±3.又a <0, ∴a =-3.1.函数y =x 3cos x 的导数是( ) A .3x 2cos x +x 3sin x B .3x 2cos x -x 3sin x C .3x 2cos x D .-x 3sin x解析:选B.y ′=(x 3cos x )′=3x 2cos x +x 3(-sin x )=3x 2cos x -x 3sin x ,故选B. 2.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( ) A.193 B.163 C.133 D.103解析:选D.∵f ′(x )=3ax 2+6x ,∴f ′(-1)=3a -6=4.∴a =103.3.曲线y =x ln x 在x =1处的切线方程为________. 解析:∵y =x ln x ,∴y ′=ln x +1,则切线斜率k =y ′|x =1=1. ∴切线方程为y =x -1. 答案:y =x -14.求下列函数的导数:(1)y =3x 2+x cos x ;(2)y =x1+x;(3)y =lg x -e x ;(4)y =sin2x -cos2x .解:(1)y ′=6x +cos x -x sin x .(2)y ′=1+x -x (1+x )2=1(1+x )2. (3)y ′=(lg x )′-(e x )′=1x ln10-e x .(4)法一:y ′=(sin2x -cos2x )′=(sin2x )′-(cos2x )′=2cos2x +2sin2x=22sin(2x +π4).法二:∵y =2sin(2x -π4),∴y ′=2cos(2x -π4) ·2=22sin(2x +π4).一、选择题1.下列求导运算正确的是( )A.⎝⎛⎭⎫x +1x ′=1+1x2 B .(log 2x )′=1x ln 2C .(3x )′=3x ·log 3eD .(x 2cos x )′=-2x sin x解析:选B.⎝⎛⎭⎫x +1x ′=1-1x2,(3x )′=3x ln3, (x 2cos x )′=2x cos x -x 2sin x .2.曲线y =x 3-3x 2+1在点(1,-1)处的切线方程为( )A .y =3x -4B .y =-3x +2C .y =-4x +3D .y =4x -5解析:选B.由y ′=3x 2-6x 在点(1,-1)的值为-3,故切线方程为y +1=-3(x -1).即y =-3x +2.3.(2011年高考湖南卷)曲线y =sin x sin x +cos x -12在点M (π4,0)处的切线的斜率为( )A .-12 B.12C .-22 D.22解析:选B.y ′=cos x (sin x +cos x )-(cos x -sin x )sin x (sin x +cos x )2=1(sin x +cos x )2.故y ′|x =π4=12, ∴曲线在点M (π4,0)处的切线的斜率为12.4.函数y =x 2cos2x 的导数为( ) A .y ′=2x cos2x -x 2sin2x B .y ′=2x cos2x -2x 2sin2x C .y ′=x 2cos2x -2x sin2x D .y ′=2x cos2x +2x 2sin2x 解析:选B.y ′=(x 2cos2x )′ =(x 2)′·cos2x +x 2·(cos2x )′=2x cos2x -2x 2sin2x .5.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)=( ) A .-1 B .-2 C .2 D .0解析:选B.由题意知f ′(x )=4ax 3+2bx ,若f ′(1)=2,即f ′(1)=4a +2b =2,从题中可知f ′(x )为奇函数,故f ′(-1)=-f ′(1)=-4a -2b =-2,故选B.6.若函数f (x )=12f ′(-1)x 2-2x +3,则f ′(-1)的值为( )A .0B .-1C .1D .2解析:选B.∵f (x )=12f ′(-1)x 2-2x +3,∴f ′(x )=f ′(-1)x -2.∴f ′(-1)=f ′(-1)×(-1)-2. ∴f ′(-1)=-1. 二、填空题 7.令f (x )=x 2·e x ,则f ′(x )等于________. 解析:f ′(x )=(x 2)′·e x +x 2·(e x )′=2x ·e x +x 2·e x =e x (2x +x 2). 答案:e x (2x +x 2)8.设f (x )=ax 2-b sin x ,且f ′(0)=1,f ′(π3)=12,则a =________,b =________.解析:∵f ′(x )=2ax -b cos x , ∴f ′(0)=-b =1,得b =-1,f ′(π3)=23πa +12=12,得a =0.答案:0 -19.若函数f (x )=e xx 在x =c 处的导数值与函数值互为相反数,则c 的值为________.解析:∵f (x )=e x x ,∴f (c )=e cc ,又f ′(x )=e x ·x -e x x 2=e x (x -1)x 2,∴f ′(c )=e c (c -1)c 2.依题意知f (c )+f ′(c )=0,∴e c c +e c(c -1)c 2=0,∴2c -1=0得c =12.答案:12三、解答题10.求下列函数的导数: (1)f (x )=ln(8x );(2)f (x )=(x +1)(1x-1);(3)y =5log 2(2x +1).解:(1)因为f (x )=ln(8x )=ln8+ln x ,所以f ′(x )=(ln8)′+(ln x )′=1x .(2)因为f (x )=(x +1)(1x-1)=1-x +1x-1=-x +1x =1-xx,所以f ′(x )=-1·x -(1-x )·12xx=-12x(1+1x ).(3)设y =5log 2u ,u =2x +1,则y ′=5(log 2u )′(2x +1)′=10u ln2=10(2x +1)ln2.11.设f (x )=a ·e x +b ln x ,且f ′(1)=e ,f ′(-1)=1e.求a ,b 的值.解:由f (x )=a ·e x+b ln x ,∴f ′(x )=a ·e x +bx , 根据题意有⎩⎪⎨⎪⎧f ′(1)=a e +b =e f ′(-1)=a e -b =1e解得⎩⎪⎨⎪⎧a =1b =0,所以a ,b 的值分别是1,0.12.已知f ′(x )是一次函数,x 2f ′(x )-(2x -1)f (x )=1.求f (x )的解析式. 解:由f ′(x )为一次函数可知f (x )为二次函数. 设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b .把f (x ),f ′(x )代入方程x 2f ′(x )-(2x -1)f (x )=1得: x 2(2ax +b )-(2x -1)(ax 2+bx +c )=1, 即(a -b )x 2+(b -2c )x +c -1=0.要使方程对任意x 恒成立,则需有a =b ,b =2c ,c -1=0, 解得a =2,b =2,c =1,所以f(x)=2x2+2x+1.1.已知f (x )=x 2,则f ′(3)=( ) A .0 B .2x C .6 D .9 答案:C2.下列结论正确的是( ) A .若y =cos x ,则y ′=sin x B .若y =sin x ,则y ′=-cos xC .若y =1x ,则y ′=-1x2D .若y =x ,则y ′=x2答案:C3.若y =10x ,则y ′|x =1=________.解析:∵y ′=10x ln10,∴y ′|x =1=10ln10. 答案:10ln104.质点的运动方程是s =1t5,求质点在t =2时的瞬时速度.解:∵s =1t 5,∴s ′=(1t5)′=(t -5)′=-5t -6.∴s ′|t =2=-5×2-6=-564,即质点在t =2时的瞬时速度是-564.一、选择题1.y =x 2的斜率等于2的切线方程为( ) A .2x -y +1=0 B .2x -y +1=0或2x -y -1=0 C .2x -y -1=0 D .2x -y =0解析:选C.设切点为(x 0,y 0),y ′=2x .y ′|x =x 0=2x 0=2,x 0=1,y 0=1,∴切线方程为y -1=2(x -1),即2x -y -1=0,故选C.2.过曲线y =1x 上一点P 的切线的斜率为-4,则点P 的坐标为( )A .(12,2)B .(12,2)或(-12,-2)C .(-12,-2)D .(12,-2)解析:选B.y ′=(1x )′=-1x 2=-4,x =±12,故选B.3.已知f (x )=x a,则f ′(-1)=-4,则a 的值等于( ) A .4 B .-4 C .5 D .-5解析:选A.f ′(x )=ax a -1,f ′(-1)=a (-1)a -1=-4,a =4.故选A. 4.给出下列结论:①(cos x )′=sin x ;②(sin π3)′=cos π3;③若y =1x 2,则y ′=-1x ;④(-1x )′=12x x.其中正确的个数是( ) A .0 B .1 C .2 D .3解析:选B.因为(cos x )′=-sin x ,所以①错误;sin π3=32,而(32)′=0,所以②错误;(1x2)′=(x -2)′=-2x -3,所以③错误; (-1x )′=(-x -12)′=12x -32=12x x,所以④正确,故选B.5.正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( )A .[0,π4]∪[3π4,π) B .[0,π)C .[π4,3π4]D .[0,π4]∪[π2,3π4]解析:选A.设切点P 的坐标为(x 0,y 0),切线的倾斜角为α. ∵y ′=cos x ,∴tan α=y ′|x =x 0=cos x 0. ∵-1≤cos x 0≤1,∴-1≤tan α≤1.又0≤α<π,∴α∈[0,π4]∪[3π4,π).6.已知命题p :函数y =f (x )的导函数是常数函数;命题q :函数y =f (x )是一次函数.则命题p 是命题q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:选B.常数函数的导数也是常数函数.故由p 不能得q ,而由q 能得出p . 二、填空题7.设函数f (x )=log a x ,f ′(1)=-1,则a =________________________________________________________________________.解析:∵f ′(x )=1x ln a ,∴f ′(1)=1ln a =-1.∴ln a =-1,a =1e.答案:1e8.已知f (x )=x 2,g (x )=x 3,若f ′(x )-g ′(x )=-1,则x =________. 解析:f ′(x )=2x ,g ′(x )=3x 2,∴2x -3x 2=-1,解得x =1或-13.答案:1或-139.已知直线y =kx 是曲线y =ln x 的切线,则k 的值等于________.解析:因为y ′=(ln x )′=1x ,设切点为(x 0,y 0),则切线方程为y -y 0=1x 0(x -x 0),即y =1x 0x +ln x 0-1.由ln x 0-1=0,得x 0=e.∴k =1e.答案:1e三、解答题10.求下列函数的导数:(1)f (x )=log 2x ;(2)f (x )=2-x .解:(1)f ′(x )=(log2x )′=1x ln 2=2x ln2. (2)∵2-x =(12)x ,∴f ′(x )=[(12)x ]′=(12)x ln 12=-(12)x ln2.11.求与曲线y =3x 2在点P (8,4)处的切线垂直于点P 的直线方程. 解:∵y =3x 2,∴y ′=(3x 2)′=(x 23)′=23x -13,∴y ′|x =8=23×8-13=13.即在点P (8,4)的切线的斜率为13.∴适合题意的切线的斜率为-3.从而适合题意的直线方程为y -4=-3(x -8), 即3x +y -28=0.12.设f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N ,试求f 2012(x ). 解:f 1(x )=(sin x )′=cos x , f 2(x )=(cos x )′=-sin x , f 3(x )=(-sin x )′=-cos x , f 4(x )=(-cos x )′=sin x , f 5(x )=(sin x )′=f 1(x ), f 6(x )=f 2(x ),…,f n +4(x )=f n (x ),可知周期为4, ∴f 2012(x )=f 0(x )=sin x .1.命题甲:对任意x ∈(a ,b ),有f ′(x )>0;命题乙:f (x )在(a ,b )内是单调递增的.则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A.f (x )=x 3在(-1,1)内是单调递增的,但f ′(x )=3x 2≥0(-1<x <1),故甲是乙的充分不必要条件,选A. 2.(2011年高考辽宁卷)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( ) A .(-1,1) B .(-1,+∞) C .(-∞,-1) D .(-∞,+∞)解析:选B.设m (x )=f (x )-(2x +4),则m ′(x )=f ′(x )-2>0,∴m (x )在R 上是增函数.∵m (-1)=f (-1)-(-2+4)=0,∴m (x )>0的解集为{x |x >-1},即f (x )>2x +4的解集为(-1,+∞).3.函数y =3x -x 3在(-1,1)内的单调性是____________. 解析:y ′=3-3x 2,令y ′<0得x >1或x <-1, 令y ′>0得-1<x <1.∴原函数在(-1,1)上是单调递增函数. 答案:单调递增4.求下列函数的单调区间. (1)y =x -ln x ;(2)y =12x.解:(1)函数的定义域为(0,+∞).其导数为y ′=1-1x .令1-1x >0,解得x >1;再令1-1x<0,解得0<x <1.因此,函数的单调增区间为(1,+∞), 函数的单调减区间为(0,1).(2)函数的定义域为(-∞,0)∪(0,+∞).y ′=-12x 2,所以当x ≠0时,y ′=-12x2<0,而当x =0时,函数无意义,所以y =12x 在(-∞,0),(0,+∞)内都是减函数,即y =12x 的单调减区间是(-∞,0),(0,+∞).一、选择题1.函数f (x )=(x -3)e x 的单调递增区间是( ) A .(-∞,2) B .(0,3) C .(1,4) D .(2,+∞)解析:选D.f ′(x )=(x -3)′e x +(x -3)(e x)′=(x -2)e x , 令f ′(x )>0,解得x >2,故选D.2.函数y =4x 2+1x 的单调递增区间是( )A .(0,+∞)B .(-∞,1)C .(12,+∞)D .(1,+∞)解析:选C.∵y ′=8x -1x 2=8x 3-1x 2>0,∴x >12.即函数的单调递增区间为(12,+∞).3.若在区间(a ,b )内,f ′(x )>0,且f (a )≥0,则在(a ,b )内有( ) A .f (x )>0 B .f (x )<0 C .f (x )=0 D .不能确定解析:选A.因f ′(x )>0,所以f (x )在(a ,b )上是增函数,所以f (x )>f (a )≥0. 4.下列函数中,在区间(-1,1)上是减函数的是( ) A .y =2-3x 2 B .y =ln xC .y =1x -2D .y =sin x解析:选C.对于函数y =1x -2,其导数y ′=-1(x -2)2<0,且函数在区间(-1,1)上有意义,所以函数y =1x -2在区间(-1,1)上是减函数,其余选项都不符合要求,故选C.5.函数y =x cos x -sin x 在下面哪个区间内是增函数( ) A.⎝⎛⎭⎫π2,3π2 B.()π,2π C.⎝⎛⎭⎫3π3,5π2D.()2π,3π 解析:选B.y ′=cos x -x sin x -cos x =-x sin x ,若y =f (x )在某区间内是增函数,只需在此区间内y ′恒大于或等于0即可.∴只有选项B 符合题意,当x ∈(π,2π)时,y ′≥0恒成立.6.函数y =ax 3-x 在R 上是减函数,则( )A .a ≥13B .a =1C .a =2D .a ≤0解析:选D.因为y ′=3ax 2-1,函数y =ax 3-x 在(-∞,+∞)上是减函数, 所以y ′=3ax 2-1≤0恒成立, 即3ax 2≤1恒成立.当x =0时,3ax 2≤1恒成立,此时a ∈R ;当x ≠0时,若a ≤13x2恒成立,则a ≤0.综上可得a ≤0. 二、填空题7.y =x 2e x 的单调递增区间是________. 解析:∵y =x 2e x ,∴y ′=2x e x +x 2e x =e x x (2+x )>0⇒x <-2或x >0. ∴递增区间为(-∞,-2)和(0,+∞). 答案:(-∞,-2),(0,+∞)8.若函数f (x )=x 3+bx 2+cx +d 的单调减区间为[-1,2],则b =________,c =________. 解析:∵y ′=3x 2+2bx +c ,由题意知[-1,2]是不等式3x 2+2bx +c <0的解集,∴-1,2是方程3x 2+2bx +c =0的根,由根与系数的关系得b =-32,c =-6.答案:-32-69.若函数y =-43x 3+ax 有三个单调区间,则a 的取值范围是________.解析:∵y ′=-4x 2+a ,且y 有三个单调区间, ∴方程y ′=-4x 2+a =0有两个不等的实根, ∴Δ=02-4×(-4)×a >0, ∴a >0.答案:(0,+∞) 三、解答题10.求下列函数的单调区间.(1)f (x )=x 3+3x ;(2)f (x )=sin x (1+cos x )(0≤x ≤2π).解:(1)函数的定义域为(-∞,0)∪(0,+∞),f ′(x )=3x 2-3x 2=3(x 2-1x2),由f ′(x )>0,解得x <-1或x >1, 由f ′(x )<0,解得-1<x <1且x ≠0,∴f (x )的递增区间为(-∞,-1),(1,+∞), 递减区间为(-1,0),(0,1).(2)f ′(x )=cos x (1+cos x )+sin x (-sin x ) =2cos 2x +cos x -1=(2cos x -1)(cos x +1). ∵0≤x ≤2π,∴由f ′(x )=0得x 1=π3,x 2=π,x 3=53π,↗ ↘↘ ↗ ∴f (x )=sin x (1+cos x )(0≤x ≤2π)的单调递增区间为[0,π3],[53π,2π],单调递减区间为[π3,53π].11.已知函数f (x )=x 2·e x -1+ax 3+bx 2,且x =-2和x =1是f ′(x )=0的两根. (1)a ,b 的值;(2)f (x )的单调区间.解:(1)∵f ′(x )=e x -1(2x +x 2)+3ax 2+2bx=x e x -1(x +2)+x (3ax +2b ),又x =-2和x =1为f ′(x )=0的两根, ∴f ′(-2)=f ′(1)=0,故有⎩⎪⎨⎪⎧-6a +2b =03+3a +2b =0,解方程组得a =-13,b =-1.(2)∵a =-13,b =-1,∴f ′(x )=x (x +2)(e x -1-1),令f ′(x )=0得x 1=-2,x 2=0,x 3=1, 当x ∈(-2,0)∪(1,+∞)时,f ′(x )>0; 当x ∈(-∞,-2)∪(0,1)时,f ′(x )<0,∴f (x )的单调递增区间为(-2,0)和(1,+∞),单调递减区间为(-∞,-2)和(0,1).12.已知函数f (x )=ax -ax-2ln x (a ≥0),若函数f (x )在其定义域内为单调函数,求a 的取值范围.解:f ′(x )=a +a x2-2x ,要使函数f (x )在定义域(0,+∞)内为单调函数, 只需f ′(x )在(0,+∞)内恒大于0或恒小于0.当a =0时,f ′(x )=-2x<0在(0,+∞)内恒成立;当a >0时,要使f ′(x )=a (1x -1a )2+a -1a ≥0恒成立,∴a -1a ≥0,解得a ≥1.综上,a 的取值范围为a ≥1或a =0.1.设x0为可导函数f(x)的极值点,则下列说法正确的是()A.必有f′(x0)=0B.f′(x0)不存在C.f′(x0)=0或f′(x0)不存在D.f′(x0)存在但可能不为0答案:A2.函数f(x)=x3+ax2+3x-9,已知f(x)在x=-3时取得极值,则a=()A.2B.3C.4 D.5解析:选D.f′(x)=3x2+2ax+3,∵f(x)在x=-3处取得极值,∴f′(-3)=0,即27-6a+3=0∴a=5.3.y=x3-6x+a的极大值为________.解析:y′=3x2-6=0,得x=±2.当x<-2或x>2时,y′>0;当-2<x<2时,y′<0.∴函数在x=-2时,取得极大值a+4 2.答案:a+4 24.求函数f(x)=x+1x的极值.解:函数的定义域是(-∞,0)∪(0,+∞),f′(x)=1-1x2=(x+1)(x-1)x2,令f′(x)=0,得x1=-1,x2=1.当↗极大值y极小值=f(1)=2.一、选择题1.“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取极值”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.对于f(x)=x3,f′(x)=3x2,f′(0)=0,不能推出f(x)在x=0处取极值,反之成立.故选B.2.下列函数存在极值的是()A.y=1x B.y=x-exC.y=x3+x2+2x-3 D.y=x3解析:选B.A中f′(x)=-1x2,令f′(x)=0无解,∴A中函数无极值.B中f′(x)=1-ex,令f ′(x )=0可得x =0.当x <0时,f ′(x )>0,当x >0时, f ′(x )<0.∴y =f (x )在x =0处取极大值,f (0)=-1. C 中f ′(x )=3x 2+2x +2,Δ=4-24=-20<0. ∴y =f (x )无极值.D 也无极值.故选B.3.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内的极小值点有( )A .1个B .2个C .3个D .4个解析:选A.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如题图所示,函数f (x )在开区间(a ,b )内有极小值点即函数由减函数变为增函数的点,其导数值为由负到正的点,只有1个.4.函数f (x )=-13x 3+12x 2+2x 取极小值时,x 的值是( )A .2B .2,-1C .-1D .-3 解析:选C.f ′(x )=-x 2+x +2=-(x -2)·(x +1),∵在x =-1的附近左侧f ′(x )<0,右侧f ′(x )>0, ∴x =-1时取极小值.5.已知函数y =x -ln(1+x 2),则y 的极值情况是( ) A .有极小值 B .有极大值 C .既有极大值又有极小值 D .无极值解析:选D.f ′(x )=1-2x1+x 2=(x -1)21+x 2≥0,∴函数f (x )在定义域R 上为增函数,故选D. 6.已知函数f (x )=x 3-ax 2-bx +a 2在x =1处有极值10,则a 、b 的值为( ) A .a =-4,b =11B .a =-4,b =1或a =-4,b =11C .a =-1,b =5D .以上都不正确解析:选A.f ′(x )=3x 2-2ax -b ,∵在x =1处f ′(x )有极值,∴f ′(1)=0,即3-2a -b =0.①又f (1)=1-a -b +a 2=10,即a 2-a -b -9=0.② 由①②得a 2+a -12=0,∴a =3或a =-4. ∴⎩⎪⎨⎪⎧ a =3,b =-3,或⎩⎪⎨⎪⎧ a =-4,b =11.当⎩⎪⎨⎪⎧a =3b =-3时,f ′(x )=3x 2-6x +3=3(x -1)2≥0,故f (x )在R 上单调递增,不可能在x =1处取得极值,所以⎩⎪⎨⎪⎧a =3b =-3舍去.二、填空题7.函数f (x )=x 3-6x 2-15x +2的极大值是________,极小值是________. 解析:f ′(x )=3x 2-12x -15=3(x -5)(x +1), 在(-∞,-1),(5,+∞)上f ′(x )>0,在(-1,5)上 f ′(x )<0,∴f (x )极大值=f (-1)=10,f (x )极小值 =f (5)=-98. 答案:10 -988.设a ∈R ,若函数y =e x +ax ,x ∈R ,有大于零的极值点,则a 的取值范围为________. 解析:y ′=e x +a ,由y ′=0得x =ln(-a ). 由题意知ln(-a )>0,∴a <-1. 答案:(-∞,-1)9.若函数y =-x 3+6x 2+m 的极大值等于13,则实数m 等于________.解析:y ′=-3x 2+12x ,由y ′=0,得x =0或x =4,容易得出当x =4时函数取得极大值,所以-43+6×42+m =13,解得m =-19. 答案:-19 三、解答题10.求下列函数的极值.(1)f (x )=x 3-22(x -1)2;(2)f (x )=x 2e -x .解:(1)函数的定义域为(-∞,1)∪(1,+∞).∵f ′(x )=(x -2)2(x +1)2(x -1)3,令f ′(x )=0, 得x 1=-1,x 2=2.↗ ↘ ↗ ↗ 并且极大值为f (-1)=-38.(2)函数的定义域为R ,f ′(x )=2x e -x +x 2·(1ex )′=2x e -x -x 2e -x=x (2-x )e -x ,令f ′(x )=0,得x =0或x =2.当x ↘ ↗ ↘且为f (2)=4e -2.11.已知f (x )=x 3+12mx 2-2m 2x -4(m 为常数,且m >0)有极大值-52,求m 的值.解:∵f ′(x )=3x 2+mx -2m 2=(x +m )(3x -2m ),令f ′(x )=0,则x =-m 或x =23m .↗ ↘ ↗∴f (x )极大值=f (-m )=-m 3+12m 3+2m 3-4=-52,∴m =1.12.(2010年高考安徽卷)设函数f (x )=sin x -cos x +x +1,0<x <2π, 求函数f (x )的单调区间与极值.解:由f (x )=sin x -cos x +x +1,0<x <2π, 知f ′(x )=cos x +sin x +1,于是f ′(x )=1+2sin(x +π4).令f ′(x )=0,从而sin(x +π4)=-22, 得x =π,或x =3π2.当x ↗ ↘ ↗ 因此,由上表知f (x )的单调递增区间是(0,π)与(3π2,2π),单调递减区间是(π,3π2),极小值为f (3π2)=3π2,极大值为f (π)=π+2.1.函数y =f (x )在[a ,b ]上( ) A .极大值一定比极小值大 B .极大值一定是最大值 C .最大值一定是极大值 D .最大值一定大于极小值解析:选D.由函数的最值与极值的概念可知,y =f (x )在[a ,b ]上的最大值一定大于极小值.2.函数f (x )=x 3-3x (|x |<1)( ) A .有最大值,但无最小值 B .有最大值,也有最小值 C .无最大值,但有最小值 D .既无最大值,也无最小值解析:选D.f ′(x )=3x 2-3=3(x +1)(x -1),当x ∈(-1,1)时,f ′(x )<0,所以f (x )在(-1,1)上是单调递减函数,无最大值和最小值,故选D.3.函数y =4x 2(x -2)在x ∈[-2,2]上的最小值为________,最大值为________.解析:由y ′=12x 2-16x =0,得x =0或x =43.当x =0时,y =0;当x =43时,y =-12827;当x =-2时,y =-64;当x =2时,y =0. 比较可知y max =0,y min =-64. 答案:-64 04.已知函数f (x )=13x 3-4x +4.求:(1)函数的极值;(2)函数在区间[-3,4]上的最大值和最小值. 解:(1)f ′(x )=x 2-4,解方程x 2-4=0, 得x 1=-2,x 2=2.当↗ ↘ ↗ 从上表可看出,当x =-2时,函数有极大值,且极大值为283;而当x =2时,函数有极小值,且极小值为-43.(2)f (-3)=13×(-3)3-4×(-3)+4=7,f (4)=13×43-4×4+4=283,与极值比较,得函数在区间[-3,4]上的最大值是283,最小值是-43.一、选择题1.函数f (x )=-x 2+4x +7,在x ∈[3,5]上的最大值和最小值分别是( ) A .f (2),f (3) B .f (3),f (5)C .f (2),f (5)D .f (5),f (3) 解析:选B.∵f ′(x )=-2x +4, ∴当x ∈[3,5]时,f ′(x )<0, 故f (x )在[3,5]上单调递减,故f (x )的最大值和最小值分别是f (3),f (5).2.f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是( ) A .-2 B .0 C .2 D .4解析:选C.f ′(x )=3x 2-6x =3x (x -2),令f ′(x )=0可得x =0或x =2(舍去), 当-1≤x <0时,f ′(x )>0,当0<x ≤1时,f ′(x )<0. 所以当x =0时,f (x )取得最大值为2.3.函数y =ln xx的最大值为( )A .e -1 B .eC .e 2 D.103解析:选A.令y ′=(ln x )′x -ln x ·x ′x 2=1-ln xx 2=0.解得x =e.当x >e 时,y ′<0;当x <e时,y ′>0.y 极大值=f (e)=1e ,在定义域内只有一个极值,所以y max =1e.4.函数y =x -sin x ,x ∈⎣⎡⎦⎤π2,π的最大值是( )A .π-1 B.π2-1C .πD .π+1解析:选C.因为y ′=1-cos x ,当x ∈⎣⎡⎦⎤π2,π时,y ′>0,则函数y 在区间⎣⎡⎦⎤π2,π上为增函数,所以y 的最大值为y max =π-sin π=π,故选C.5.函数f (x )=x 3-3x 2-9x +k 在区间[-4,4]上的最大值为10,则其最小值为( ) A .-10 B .-71 C .-15 D .-22解析:选B.f ′(x )=3x 2-6x -9=3(x -3)(x +1). 由f ′(x )=0得x =3,-1.又f (-4)=k -76,f (3)=k -27, f (-1)=k +5,f (4)=k -20.由f (x )max =k +5=10,得k =5, ∴f (x )min =k -76=-71.6.已知函数y =-x 2-2x +3在区间[a,2]上的最大值为154,则a 等于( )A .-32 B.12C .-12 D.12或-32解析:选C.当a ≤-1时,最大值为4,不符合题意,当-1<a <2时,f (x )在[a,2]上是减函数,f (a )最大,-a 2-2a +3=154,解得a =-12或a =-32(舍去).二、填空题7.函数y =x e x 的最小值为________. 解析:令y ′=(x +1)e x =0,得x =-1. 当x <-1时,y ′<0;当x >-1时,y ′>0.∴y min =f (-1)=-1e.答案:-1e8.已知f (x )=-x 2+mx +1在区间[-2,-1]上的最大值就是函数f (x )的极大值,则m 的取值范围是________.解析:f ′(x )=m -2x ,令f ′(x )=0,得x =m2.由题设得m2∈[-2,-1],故m ∈[-4,-2].答案:[-4,-2]9.函数f (x )=ax 4-4ax 2+b (a >0,1≤x ≤2)的最大值为3,最小值为-5,则a =________,b =________.解析:y ′=4ax 3-8ax =4ax (x 2-2)=0, x 1=0,x 2=2,x 3=-2,又f (1)=a -4a +b =b -3a ,f (2)=16a -16a +b =b , f (2)=b -4a ,f (0)=b ,f (-2)=b -4a . ∴⎩⎪⎨⎪⎧b -4a =-5,b =3,∴a =2. 答案:2 3 三、解答题10.已知函数f (x )=x 3+ax 2+2,x =2是f (x )的一个极值点,求: (1)实数a 的值;(2)f (x )在区间[-1,3]上的最大值和最小值. 解:(1)∵f (x )在x =2处有极值,∴f ′(2)=0. ∵f ′(x )=3x 2+2ax ,∴3×4+4a =0,∴a =-3. (2)由(1)知a =-3,∴f (x )=x 3-3x 2+2,f ′(x )=3x 2-6x . 令f ′(x )=0,得x 1=0,x 2=2.当↗ ↘ ↗11.(2011年高考安徽卷)设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围.解:对f (x )求导得f ′(x )=e x 1+ax 2-2ax (1+ax 2)2.① (1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0,解得x 1=3,x 2=1.结合①,可知↗ ↘ ↗所以x 1=32是极小值点,x 2=12是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0,知1+ax 2-2ax ≥0在R 上恒成立,即Δ=4a 2-4a =4a (a -1)≤0,由此并结合a >0,知0<a ≤1. 所以a 的取值范围为{a |0<a ≤1}. 12.已知函数f (x )=x 3-ax 2+3x .(1)若f (x )在x ∈[1,+∞)上是增函数,求实数a 的取值范围;(2)若x =3是f (x )的极值点,求f (x )在x ∈[1,a ]上的最大值和最小值. 解:(1)令f ′(x )=3x 2-2ax +3>0,∴a <⎣⎡⎦⎤32(x +1x )min =3(当x =1时取最小值). ∵x ≥1,∴a <3,a =3时亦符合题意, ∴a ≤3.(2)f ′(3)=0,即27-6a +3=0,∴a =5,f (x )=x 3-5x 2+3x ,f ′(x )=3x 2-10x +3.令f ′(x )=0,得x 1=3,x 2=13(舍去).当1<x <3时,f ′(x )<0,当3<x <5时,f ′(x )>0, 即当x =3时,f (x )的极小值f (3)=-9. 又f (1)=-1,f (5)=15,∴f (x )在[1,5]上的最小值是f (3)=-9, 最大值是f (5)=15.1.炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x 小时,原油温度(单位:℃)为f (x )=13x 3-x 2+8(0≤x ≤5),那么,原油温度的瞬时变化率的最小值是( )A .8 B.203C .-1D .-8解析:选C.原油温度的瞬时变化率为f ′(x )=x 2-2x =(x -1)2-1(0≤x ≤5),所以当x =1时,原油温度的瞬时变化率取得最小值-1.2.某产品的销售收入y 1(万元)是产量x (千台)的函数:y 1=17x 2(x >0);生产成本y 2(万元)是产量x (千台)的函数:y 2=2x 3-x 2(x >0),为使利润最大,则应生产( ) A .6千台 B .7千台 C .8千台 D .9千台解析:选A.设利润为y (万元),则y =y 1-y 2=17x 2-(2x 3-x 2)=-2x 3+18x 2(x >0),∴y ′=-6x 2+36x =-6x ·(x -6).令y ′=0,解得x =0或x =6,经检验知x =6既是函数的极大值点又是函数的最大值点.故选A.3.把长60 cm 的铁丝围成矩形,当长为________cm ,宽为________cm 时,矩形面积最大. 解析:设长为x cm ,则宽为(30-x ) cm , 所以面积S =x (30-x )=-x 2+30x . 由S ′=-2x +30=0,得x =15. 答案:15 154.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层,每层2000平方米的楼房.经测算,如果将楼房建为x (x ≥10)层,则每平方米的平均建筑费用为560+48x (单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积)解:设楼房每平方米的平均综合费用为f (x )元,则f (x )=(560+48x )+2160×100002000x=560+48x +10800x (x ≥10,x ∈N *)f ′(x )=48-10800x2.令f ′(x )=0,得x =15. 当x >15时,f ′(x )>0; 当10≤x <15时,f ′(x )<0.因此,当x =15时,f (x )取最小值f (15)=2000(元).故为了使楼房每平方米的平均综合费用最少,该楼房应建为15层.一、选择题1.一点沿直线运动,如果由始点起经过t 秒运动的距离为s =14t 4-53t 3+2t 2,那么速度为零的时刻是( ) A .1秒末 B .0秒 C .4秒末 D .0,1,4秒末解析:选D.∵s ′=t 3-5t 2+4t ,令s ′=0,得t 1=0,t 2=1,t 3=4,此时的函数值最大,故选D.2.用边长为48 cm 的正方形铁皮做一个无盖的铁盒,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成一个铁盒,所做的铁盒容积最大时,在四角截去的正方形的边长为( ) A .6 cm B .8 cm C .10 cm D .12 cm解析:选 B.设截去小正方形的边长为x cm ,铁盒的容积为V cm 3.所以V =x (48-2x )2(0<x <24),V ′=12(x -8)(x -24).令V ′=0,则x =8∈(0,24).3.某工厂要围建一个面积为512平方米的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁,当砌壁所用的材料最省时,堆料场的长和宽分别为( ) A .32米,16米 B .30米,15米 C .40米,20米 D .36米,18米解析:选A.要求材料最省就是要求新砌的墙壁总长度最短,如图所示,设场地宽为x 米,则长为512x 米,因此新墙总长度L =2x +512x(x >0),则L ′=2-512x2.令L ′=0,得x =±16. ∵x >0,∴x =16.当x =16时,L 极小值=L min =64,∴堆料场的长为51216=32(米).4.(2010年高考山东卷)已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为( )A .13万件B .11万件C .9万件D .7万件解析:选C.因为y ′=-x 2+81,所以当x >9时,y ′<0;当x ∈(0,9)时,y ′>0,所以函数y =-13x 3+81x -234在(9,+∞)上单调递减,在(0,9)上单调递增,所以x =9是函数的极大值点,又因为函数在(0,+∞)上只有一个极大值点,所以函数在x =9处取得最大值. 5.某公司生产一种产品,固定成本为20000元,每生产一单位的产品,成本增加100元,若总收入R 与年产量x (0≤x ≤390)的关系是R (x )=-x 3900+400x,0≤x ≤390,则当总利润最大时,每年生产的产品单位数是( ) A .150 B .200 C .250 D .300解析:选D.由题意可得总利润P (x )=-x 3900+300x -20000,0≤x ≤390.由P ′(x )=0,得x=300.当0≤x <300时,P ′(x )>0,当300<x ≤390时,P ′(x )<0,所以当x =300时,P (x )最大.6.若一球的半径为r ,则内接于球的圆柱的侧面积最大为( ) A .2πr 2 B .πr 2C .4πr 2 D.12πr 2解析:。
姓名,年级:时间:选修2-2 学期综合测评(二)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分)1.下列说法正确的是( )A.2>2i B.2>(3i)2C.2+3i<3+3i D.2+2i>2+i答案B解析本题主要考查复数的性质.不全为实数的两个复数不能比较大小,故排除A,C,D;而B中(3i)2=-9<2,故选B.2.用反证法证明命题“若直线AB,CD是异面直线,则直线AC,BD也是异面直线”的过程分为三步:①则A,B,C,D四点共面,所以AB,CD共面,这与AB,CD是异面直线矛盾;②所以假设错误,即直线AC,BD也是异面直线;③假设直线AC,BD是共面直线.则正确的顺序为( )A.①→②→③ B.③→①→②C.①→③→② D.②→③→①答案B解析本题主要考查反证法的步骤.反证法的步骤是:反设→归谬→结论.结合本题,知选B。
3.用反证法证明“若a+b+c〈3,则a,b,c中至少有一个小于1”时,应( )A.假设a,b,c至少有一个大于1B.假设a,b,c都大于1C.假设a,b,c至少有两个大于1D.假设a,b,c都不小于1答案D解析假设a,b,c中至少有一个小于1不成立,即a,b,c都不小于1,故选D。
4.用数学归纳法证明12+22+...+(n-1)2+n2+(n-1)2+ (22)12=错误!时,从n=k到n=k+1时,等式左边应添加的式子是( )A.(k-1)2+2k2B.(k+1)2+k2C.(k+1)2 D.错误!(k+1)[2(k+1)2+1]答案B解析n=k时,左边=12+22+…+(k-1)2+k2+(k-1)2+…+22+12,n=k+1时,左边=12+22+…+(k-1)2+k2+(k+1)2+k2+(k-1)2+…+22+12,∴从n=k到n=k+1,左边应添加的式子为(k+1)2+k2.5.定义在R上的可导函数f(x),已知y=e f′(x)的图象如图所示,则y=f(x)的增区间是( )A.(-∞,1)B.(-∞,2)C.(0,1)D.(1,2)答案B解析由题中图象知e f′(x)≥1,即f′(x)≥0时,x≤2,∴y=f(x)的增区间为(-∞,2).6.已知x〉0,不等式x+错误!≥2,x+错误!≥3,x+错误!≥4,…,可推广为x+错误!≥n+1,则a的值为( )A.n2 B.n n C.2n D.22n-2答案B解析由x+错误!≥2,x+错误!=x+错误!≥3,x+错误!=x+错误!≥4,…,可推广为x+错误!≥n+1,故a=n n.7.如图,抛物线y=-x2+2x+1与直线y=1形成一个闭合图形(图中的阴影部分),则该闭合图形的面积是( )A.1 B.错误!C。
2.2.1综合法和分析法A组1.要证明<2,最合理的方法是()A.综合法B.分析法C.综合分析法D.以上都不用答案:B2.在△ABC中,若sin A sin B<cos A cos B,则△ABC一定是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形解析:由sin A sin B<cos A cos B得cos A cos B-sin A sin B>0,即cos(A+B)>0,-cos C>0,cos C<0,从而角C必为钝角,△ABC一定为钝角三角形.答案:C3.使不等式>1+成立的正整数a的最大值是()A.13B.12C.11D.10解析:由-1得a<(-1)2.而(-1)2=3+8+1+2-2-2=12+4-2-4≈12.68.因此使不等式成立的正整数a的最大值为12.答案:B4.已知直线l,m,平面α,β,且l⊥α,m⊂β,给出下列四个命题:①若α∥β,则l⊥m;②若l⊥m,则α∥β;③若α⊥β,则l⊥m;④若l∥m,则α⊥β.其中正确的命题的个数是()A.2B.3C.4D.5解析:若l⊥α,m⊂β,α∥β,则l⊥β,所以l⊥m,①正确;若l⊥α,m⊂β,l⊥m,α与β可能相交,②不正确;若l⊥α,m⊂β,α⊥β,l与m可能平行、相交或异面,③不正确;若l⊥α,m⊂β,l∥m,则m⊥α,所以α⊥β,④正确.答案:A5.已知a>0,b>0,m=lg,n=lg,则m与n的大小关系为()A.m>nB.m=nC.m<nD.不能确定解析:由a>0,b>0,得>0,所以a+b+2>a+b,所以()2>()2,所以,所以lg>lg,即m>n,故选A.答案:A6.平面内有四边形ABCD和点O,,则四边形ABCD为.解析:因为,所以,所以,故四边形ABCD为平行四边形.答案:平行四边形7.若lg x+lg y=2lg(x-2y),则lo=.解析:由条件知lg xy=lg(x-2y)2,所以xy=(x-2y)2,即x2-5xy+4y2=0,即-5+4=0,所以=4或=1.又x>2y,故=4,所以lo=lo4=4.答案:48.△ABC的三个内角A,B,C成等差数列,求证:.证明:要证,只需证=3.即证=1,即c(b+c)+a(a+b)=(a+b)(b+c),只需证c2+a2=ac+b2.∵△ABC的三个内角A,B,C成等差数列,∴B=60°.由余弦定理,有b2=c2+a2-2ca cos 60°,即b2=c2+a2-ac,∴c2+a2=ac+b2.命题得证.9.如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EF∥AC,AB=,CE=EF=1.(1)求证:AF∥平面BDE;(2)求证:CF⊥平面BDE.证明:(1)设AC,BD的交点为G,连接EG,因为AB=,且四边形ABCD为正方形,所以AC=2,AG=AC=1.又EF∥AG,且EF=1,所以AG EF.所以四边形AGEF为平行四边形.所以AF∥EG.因为EG⊂平面BDE,AF⊄平面BDE,所以AF∥平面BDE.(2)连接FG.因为EF∥CG,EF=CG=1,且CE=1,所以四边形CEFG为菱形,所以CF⊥EG.因为四边形ABCD为正方形,所以BD⊥AC.又平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,所以BD⊥平面ACEF,所以CF⊥BD.又BD∩EG=G,所以CF⊥平面BDE.B组1.A,B为△ABC的内角,A>B是sin A>sin B的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:若A>B,则a>b,又,所以sin A>sin B.若sin A>sin B,则由正弦定理得a>b,所以A>B.答案:C2.设函数f(x)是定义在R上的以3为周期的奇函数,若f(1)>1,f(2)=,则a的取值范围是()A.a<B.a<,且a≠-1C.a>或a<-1D.-1<a<解析:∵f(x)以3为周期,∴f(2)=f(-1).又f(x)是R上的奇函数,∴f(-1)=-f(1),则f(2)=f(-1)=-f(1).再由f(1)>1,可得f(2)<-1,即<-1,解得-1<a<.答案:D3.已知a,b,c,d为正实数,且,则()A.B.C.D.以上均可能解析:先取特值检验,∵,可取a=1,b=3,c=1,d=2,则,满足.∴B,C不正确.要证,∵a,b,c,d为正实数,∴只需证a(b+d)<b(a+c),即证ad<bc.只需证.而成立,∴.同理可证.故A正确,D不正确.答案:A4.若不等式(-1)n a<2+对任意正整数n恒成立,则实数a的取值范围是. 解析:当n为偶数时,a<2-,而2-≥2-,故a<.当n为奇数时,a>-2-,而-2-<-2,故a≥-2.综上可得-2≤a<.答案:5.在锐角△ABC中,已知3b=2a sin B,且cos B=cos C,求证:△ABC是等边三角形.证明:∵△ABC为锐角三角形,∴A,B,C∈,由正弦定理及条件,可得3sin B=2sin A sin B.∵B∈,∴sin B≠0.∴3=2sin A.∴sin A=.∵A∈,∴A=.又cos B=cos C,且B,C∈,∴B=C.又B+C=,∴A=B=C=.从而△ABC是等边三角形.6.已知a>0,求证:≥a+-2.证明:要证≥a+-2,只需证+2≥a+.因为a>0,只需证.即证a2++4+4≥a2+2++2+2,从而只需证2,故只需证4≥2,即证a2+≥2,而上述不等式显然成立,故原不等式成立.7.设数列{a n}的前n项和为S n,已知a1=1,=a n+1-n2-n-,n∈N*.(1)求a2的值;(2)求数列{a n}的通项公式;(3)证明:对一切正整数n,有+…+.(1)解:当n=1时,=2a1=a2--1-=2,解得a2=4.(2)解:2S n=na n+1-n3-n2-n.①当n≥2时,2S n-1=(n-1)a n-(n-1)3-(n-1)2-(n-1).②①-②,得2a n=na n+1-(n-1)a n-n2-n.整理得na n+1=(n+1)a n+n(n+1),即+1,=1,当n=1时,=2-1=1.所以数列是以1为首项,1为公差的等差数列.所以=n,即a n=n2.所以数列{a n}的通项公式为a n=n2,n∈N*. (3)证明:因为(n≥2),所以+…++…+<1++…+=1+.。
章末检测(二)时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.根据偶函数定义可推得“函数f (x )=x 2在R 上是偶函数”的推理过程是( ) A .归纳推理 B .类比推理 C .演绎推理D .非以上答案解析:根据演绎推理的定义知,推理过程是演绎推理,故选C. 答案:C2.下面四个推理不是合情推理的是( ) A .由圆的性质类比推出球的有关性质B .由直角三角形、等腰三角形、等边三角形的内角和都是180°,归纳出所有三角形的内角和都是180°C .某次考试张军的成绩是100分,由此推出全班同学的成绩都是100分D .蛇、海龟、蜥蜴是用肺呼吸的,蛇、海龟、蜥蜴是爬行动物,所以所有的爬行动物都是用肺呼吸的解析:A 是类比推理,B 、D 是归纳推理,C 不是合情推理. 答案:C3.用三段论证明命题:“任何实数的平方大于0,因为a 是实数,所以a 2>0”,你认为这个推理( )A .大前提错误B .小前提错误C .推理形式错误D .是正确的解析:这个三段论推理的大前提是“任何实数的平方大于0”,小前提是“a 是实数”,结论是“a 2>0”.显然结论错误,原因是大前提错误.答案:A4.设n 为正整数,f (n )=1+12+13+…+1n,计算得f (2)=32,f (4)>2,f (6)>52,f (8)>3,f (10)>72,观察上述结果,可推测出一般结论为( )A .f (2n )=n +22B .f (2n )>n +22C .f (2n )≥n +22D .f (n )>n2解析:观察所给不等式,不等式左边是f (2n ),右边是n +22,故选B.答案:B5.已知数列{a n }的前n 项和为S n ,且a 1=1,S n =n 2a n (n ∈N *),计算S 1,S 2,S 3,S 4,…,可归纳猜想出S n 的表达式为( )A.2n n +1B.3n -1n +1C.2n +1n +2D.2n n +2解析:由a 1=1,得a 1+a 2=22a 2,∴a 2=13,S 2=43;又1+13+a 3=32a 3,∴a 3=16,S 3=32=64;又1+13+16+a 4=16a 4,得a 4=110,S 4=85;……由S 1=22=2×11+1,S 2=43=2×22+1,S 3=64=2×33+1,S 4=85=2×44+1,…,可以猜想S n =2nn +1.答案:A6.如果两个数之和为正数,则这两个数( ) A .一个是正数,一个是负数 B .两个都是正数 C .至少有一个是正数 D .两个都是负数解析:这两个数中至少有一个数是正数,否则,若这两个数都不是正数,则它们的和一定是非正数,这与“两个数之和为正数”相矛盾.答案:C7.已知n 为正偶数,用数学归纳法证明1-12+13-14+…+1n -1=2⎝⎛⎭⎫1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2为偶数)时命题为真,则还需要用归纳假设再证( )A .n =k +1时等式成立B .n =k +2时等式成立C .n =2k +2时等式成立D .n =2(k +2)时等式成立解析:因为假设n =k (k ≥2为偶数),故下一个偶数为k +2,故选B. 答案:B8.用数学归纳法证明12+22+…+(n -1)2+n 2+(n -1)2+…+22+12=n 2(n 2+1)3时,从n =k 到n =k +1时,等式左边应添加的式子是( )A .(k -1)2+2k 2B .(k +1)2+k 2C .(k +1)2D.13(k +1)[2(k +1)2+1] 解析:当n =k 时,左边=12+22+…+(k -1)2+k 2+(k -1)2…+22+12,当n =k +1时,左边=12+22+…+(k -1)2+k 2+(k +1)2+k 2+(k -1)2+…+22+12,∴从n =k 到n =k +1,左边应添加的式子为(k +1)2+k 2. 答案:B9.如图所示,椭圆中心在坐标原点,F 为左焦点,当FB →⊥AB →时,其离心率为5-12,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e 等于( )A.5+12B.5-12C.5-1D.5+1解析:如图所示,设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),则F (-c,0),B (0,b ),A (a,0).∴FB →=(c ,b ),AB →=(-a ,b ). 又∵FB →⊥AB →,∴FB →·AB →=b 2-ac =0. ∴c 2-a 2-ac =0.∴e 2-e -1=0.∴e =1+52或e =1-52(舍去),故应选A.答案:A10.用数学归纳法证明不等式1n +1+1n +2+…+1n +n >1324的过程中,由n =k 到n =k +1时,不等式左边的变化情况为( )A .增加12(k +1)B .增加12k +1+12(k +1)C .增加1(k +1)+(k +1),减少1k +1D .增加12(k +1),减少1k +1解析:当n =k 时,不等式的左边=1k +1+1k +2+…+1k +k ,当n =k +1时,不等式的左边=1k +2+1k +3+…+1(k +1)+(k +1),所以1k +2+1k +3+…+1(k +1)+(k +1)-(1k +1+1k +2+…+1k +k )=1(k +1)+(k +1)-1k +1,所以由n =k 到n =k +1时,不等式的左边增加1(k +1)+(k +1),减少1k +1.答案:C11.将石子摆成如图的梯形形状,称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列{a n }的第2 012项与5的差,即a 2 012-5=( )A .2 018×2 012B .2 018×2 011C .1 009×2 012D .1 009×2 011解析:由已知的图形我们可以得出图形的编号与图中石子的个数之间的关系为:n =1时,a 1=2+3=12×(2+3)×2;n =2时,a 2=2+3+4=12×(2+4)×3……由此我们可以推断:a n =2+3+…+(n +2)=12×[2+(n +2)]×(n +1)∴a 2 012-5=12×[2+(2 012+2)]×(2 012+1)-5=1 008×2 013-5=1 009×2 011,故选D.答案:D12.语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好.”现有若干同学,他们之间没有一个人比另一个成绩好,并且没有任意两个人语文成绩一样,数学成绩也一样的.问满足条件的最多有多少学生( )A .2B .3C .4D .5解析:假设A 、B 两个同学的数学成绩一样,由题意知他们语文成绩不一样,这样他们的语文成绩总有人比另一个人高,语文成绩高的同学比另一个同学“成绩好”,与已知条件“他们之中没有一个比另一个成绩好”相矛盾.因此,没有任意两个同学数学成绩是相同的.同理,没有任意两个同学语文成绩是相同的.因为语文、数学两学科成绩各有3种,因而同学数量最大为3.即 3位同学成绩分别为(优秀,不合格)、(合格,合格)、(不合格,优秀)时满足条件.答案:B二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上) 13.已知x ,y ∈R ,且x +y <2,则x ,y 中至多有一个大于1,在用反证法证明时,假设应为________.解析:“至多有一个大于1”包括“都不大于1和有且仅有一个大于1”,故其对立面为“x ,y 都大于1”.答案:x ,y 都大于114.已知f (x )=xe x ,定义f 1(x )=f ′(x ),f 2(x )=[f 1(x )]′,…,f n +1(x )=[f n (x )]′,n ∈N.经计算f 1(x )=1-x e x ,f 2(x )=x -2e x ,f 3(x )=3-xe x ,…,照此规律,则f n (x )=________.解析:观察各个式子,发现分母都是e x ,分子依次是-(x -1),(x -2),-(x -3),(x -4),…,括号前是(-1)n ,括号里是x -n , 故f n (x )=(-1)n (x -n )e x .答案:(-1)n (x -n )e x15.设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有:设等比数列{b n }的前n 项积为T n ,则T 4,________,________,T 16T 12成等比数列.解析:由于等差数列与等比数列具有类比性,且等差数列与和差有关,等比数列与积商有关,因此当等差数列依次每4项之和仍成等差数列时,类比到等比数列为依次每4项的积的商成等比数列.即T 4,T 8T 4,T 12T 8,T 16T 12成等比数列.答案:T 8T 4 T 12T 816.在平面上,我们用一直线去截正方形的一个角,那么截下的一个直角三角形,按如图所标边长,由勾股定理有c 2=a 2+b 2.设想正方形换成正方体,把截线换成如图截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O -LMN ,如果用S 1、S 2、S 3表示三个侧面面积,S 表示截面面积,那么类比得到的结论是________.解析:类比如下:正方形⇔正方体;截下直角三角形⇔截下三侧面两两垂直的三棱锥;直角三角形斜边平方⇔三棱锥底面面积的平方;直角三角形两直角边平方和⇔三棱锥三个侧面面积的平方和,结论S 2=S 21+S 22+S 23.证明如下:如图,作OE ⊥平面LMN ,垂足为E ,连接LE 并延长交MN 于F ,连接NE ,ME ,OF .∵LO ⊥OM ,LO ⊥ON ,∴LO ⊥平面MON , ∵MN ⊂平面MON ,∴LO ⊥MN ,∵OE ⊥MN ,∴MN ⊥平面OFL ,∴S △OMN =12MN ·OF ,S △MNE =12MN ·FE ,S △MNL =12MN ·LF ,OF 2=FE ·FL ,∴S 2△OMN =(12MN ·OF )2= (12MN ·FE )·(12MN ·FL )=S △MNE ·S △MNL ,同理S 2△OML =S △MLE ·S △MNL ,S 2△ONL =S △NLE ·S △MNL ,∴S 2△OMN +S 2△OML +S 2△ONL =(S △MNE +S △MLE +S △NLE )·S △MNL =S 2△MNL ,即S 21+S 22+S 23=S 2.答案:S 2=S 21+S 22+S 23三、解答题(本大题共6小题,共74分,必要的解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)设a ,b ∈(0,+∞),且a ≠b ,求证:a 3+b 3>a 2b +ab 2. 证明:要证a 3+b 3>a 2b +ab 2成立, 即需证(a +b )(a 2-ab +b 2)>ab (a +b )成立. 又因a +b >0,故只需证a 2-ab +b 2>ab 成立, 即需证a 2-2ab +b 2>0成立, 即需证(a -b )2>0成立.而依题设a ≠b ,则(a -b )2>0显然成立. 由此命题得证.18.(本小题满分12分)用综合法或分析法证明: (1)如果a ,b >0,则lg a +b 2≥lg a +lg b2;(2)已知m >0,a ,b ∈R ,求证:⎝ ⎛⎭⎪⎫a +mb 1+m 2≤a 2+mb 21+m . 证明:(1)当a ,b >0时,有a +b2≥ab , ∴lga +b 2≥lg ab ,∴lg a +b 2≥12lg ab =lg a +lg b2. (2) ∵m >0,∴1+m >0.所以要证原不等式成立, 只需证(a +mb )2≤(1+m )(a 2+mb 2), 即证m (a 2-2ab +b 2)≥0,即证(a -b )2≥0,而(a -b )2≥0显然成立,故原不等式得证. 19. (本小题满分12分)已知函数f (x )=a x +x -2x +1(a >1).(1)证明:函数f (x )在(-1,+∞)上为增函数; (2)用反证法证明方程f (x )=0没有负数根.证明:(1)任取x 1、x 2∈(-1,+∞),不妨设x 1<x 2,则x 2-x 1>0,ax 2-x 1>1且ax 1>0, ∴ax 2-ax 1=ax 1(ax 2-x 1-1)>0,又∵x 1+1>0,x 2+1>0, ∴x 2-2x 2+1-x 1-2x 1+1=(x 2-2)(x 1+1)-(x 1-2)(x 2+1)(x 1+1)(x 2+1)=3(x 2-x 1)(x 1+1)(x 2+1), 于是f (x 2)-f (x 1)=ax 2-ax 1+x 2-2x 2+1-x 1-2x 1+1>0,故函数f (x )在(-1,+∞)上为增函数. (2)设存在x 0<0(x 0≠-1)满足f (x 0)=0,则ax 0=-x 0-2x 0+1,且0<ax 0<1.∴0<-x 0-2x 0+1<1,即12<x 0<2,与假设x 0<0矛盾.故方程f (x )=0没有负数根.20.(本小题满分12分)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin 213°+cos 217°-sin 13°cos 17°; ②sin 215°+cos 215°-sin 15°cos 15°; ③sin 218°+cos 212°-sin 18°cos 12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos 48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 解析:(1)选择②式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34.21.(本小题满分13分) 设数列a 1,a 2,…,a n ,…中的每一项都不为0.证明{a n }为等差数列的充分必要条件是:对任何n ∈N *,都有1a 1a 2+1a 2a 3+…+1a n a n +1=na 1a n +1.证明:先证必要性.设数列{a n }的公差为d .若d =0,则所述等式显然成立.若d ≠0,则1a 1a 2+1a 2a 3+…+1a n a n +1=1d ⎝ ⎛⎭⎪⎫a 2-a 1a 1a 2+a 3-a 2a 2a 3+…+a n +1-a n a n a n +1 =1d ⎣⎡⎦⎤⎝⎛⎭⎫1a 1-1a 2+⎝⎛⎭⎫1a 2-1a 3+…+⎝⎛⎭⎫1a n -1a n +1=1d ⎝⎛⎭⎫1a 1-1a n +1=a n +1-a 1da 1a n +1=na 1a n +1. 再证充分性. (直接证法)依题意有1a 1a 2+1a 2a 3+…+1a n a n +1=n a 1a n +1,① 1a 1a 2+1a 2a 3+…+1a n a n +1+1a n +1a n +2=n +1a 1a n +2.② ②-①得1a n +1a n +2=n +1a 1a n +2-n a 1a n +1,在上式两端同乘a 1a n +1a n +2,得a 1=(n +1)a n +1-na n +2.③ 同理可得a 1=na n -(n -1)a n +1(n ≥2),④ ③-④得2na n +1=n (a n +2+a n ), 即a n +2-a n +1=a n +1-a n ,⑤又由①当n =2时,得等式1a 1a 2+1a 2a 3=2a 1a 3,两端同乘a 1a 2a 3,即得a 1+a 3=2a 2,知a 3-a 2=a 2-a 1,故⑤对任意n ∈N *均成立.所以{a n }是等差数列.22.(本小题满分13分)(2014·高考北京卷)对于数对序列P :(a 1,b 1),(a 2,b 2),…,(a n ,b n ),记T 1(P )=a 1+b 1,T k (P )=b k +max{T k -1(P ),a 1+a 2+…+a k }(2≤k ≤n ),其中max{T k -1(P ),a 1+a 2+…+a k }表示T k -1(P )和a 1+a 2+…+a k 两个数中最大的数.(1)对于数对序列P :(2,5),(4,1),求T 1(P ),T 2(P )的值;(2)记m 为a ,b ,c ,d 四个数中最小的数,对于由两个数对(a ,b ),(c ,d )组成的数对序列P :(a ,b ),(c ,d )和P ′:(c ,d ),(a ,b ),试分别对m =a 和m =d 两种情况比较T 2(P )和T2 (P′)的大小;(3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值.(只需写出结论).解析:(1)T1(P)=2+5=7,T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8.(2)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b}.当m=a时,T2(P′)=max{c+d+b,c+a+b}=c+d+b.因为a+b+d≤c+b+d,且a+c+d≤c+b+d,所以T2(P)≤T2(P′).当m=d时,T2(P′)=max{c+d+b,c+a+b}=c+a+b.因为a+b+d≤c+a+b,且a+c+d≤c+a+b,所以T2(P)≤T2(P′).所以无论m=a还是m=d,T2(P)≤T2(P′)都成立.(3)数对序列P:(4,6),(11,11),(16,11),(11,8),(5,2)的T5(P)值最小,T1(P)=10,T2(P)=26,T3(P)=42,T4(P)=50,T5(P)=52.。
姓名,年级:时间:阶段质量检测(二)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.用反证法证明命题:“已知a,b为实数,则方程x2+ax+b=0至少有一个实根"时,要做的假设是()A.方程x2+ax+b=0没有实根B.方程x2+ax+b=0至多有一个实根C.方程x2+ax+b=0至多有两个实根D.方程x2+ax+b=0恰好有两个实根解析:选A 反证法的步骤第一步是假设命题反面成立,而“方程x2+ax+b=0至少有一个实根”的反面是“方程x2+ax+b=0没有实根”,故选A.2.观察下列各等式:22-4+66-4=2,55-4+33-4=2,错误!+错误!=2,错误!+错误!=2,依照以上各式成立的规律,得到一般性的等式为( )A.错误!+错误!=2 B.错误!+错误!=2C.错误!+错误!=2 D.错误!+错误!=2解析:选A 观察分子中2+6=5+3=7+1=10+(-2)=8.3.观察下面图形的规律,在其右下角的空格内画上合适的图形为( )A.■B.△C.□D.○解析:选A 由每一行中图形的形状及黑色图形的个数,则知A正确.4.观察下列各式:3错误!=22×3错误!,3错误!=32×3错误!,3错误!=42×3错误!,……,若3错误!=92×3错误!,则m=()A.80 B.81 C.728 D.729解析:选C 3错误!=22×3错误!=22×3错误!,3错误!=32×3错误!=32×3错误!,3错误!=42×3错误!=42×3错误!,…,所以3错误!=n2×3错误!,所以3错误!=92×3错误!=92×3错误!,所以m=93-1=729-1=728,故选C。
第二章测试(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若实数a ,b 满足b >a >0,且a +b =1,则下列四个数最大的是( )A .a 2+b 2B .2ab C.12 D .a答案 A2.下面用“三段论”形式写出的演练推理:因为指数函数y =a x(a >0,且a ≠1)在(0,+∞)上是增函数,y =(12)x是指数函数,所以y =(12)x在(0,+∞)上是增函数.该结论显然是错误的,其原因是( ) A .大前提错误 B .小前提错误 C .推理形式错误D .以上都可能解析 大前提是:指数函数y =a x (a >0,且a ≠1)在(0,+∞)上是增函数,这是错误的.答案 A3.设a ,b ,c 都是非零实数,则关于a ,bc ,ac ,-b 四个数,有以下说法:①四个数可能都是正数;②四个数可能都是负数;③四个数中既有正数又有负数.则说法中正确的个数有( ) A .0 B .1 C .2D .3解析 可用反证法推出①,②不正确,因此③正确. 答案 B4.下面使用类比推理正确的是( )A .“若a ·3=b ·3,则a =b ”类比推出“若a ·0=b ·0,则a =b ”B .“(a +b )·c =ac +bc ”类比推出“(a ·b )·c =ac ·bc ”C .“(a +b )·c =ac +bc ”类比推出“a +b c =a c +b c (c ≠0)”D .“(ab )n =a n b n ”类比推出“(a +b )n =a n +b n ” 解析 由类比出的结果应正确知选C. 答案 C5.在证明命题“对于任意角θ,cos 4θ-sin 4θ=cos2θ”的过程:cos 4θ-sin 4θ=(cos 2θ+sin 2θ)(cos 2θ-sin 2θ)=cos 2θ-sin 2θ=cos2θ中应用了( )A .分析法B .综合法C .分析法和综合法综合使用D .间接证法答案 B6.已知f (x )=sin(x +1)π3-3cos(x +1)π3,则f (1)+f (2)+f (3)+…+f (2011)=( )A .2 3 B. 3 C .- 3D .0解析 ∵f (x )=2[12sin(x +1)π3-32cos(x +1)π3]=2sin π3x ,∴周期T =6,且f (1)+f (2)+…+f (6)=2(32+32+0-32-32+0)=0,∴f (2011)=f (6×335+1)=f (1)=2sin π3= 3.答案 B7.用数学归纳法证明1+12+13+…+12n -1<n (n ∈N *,且n >1),由n =k (k >1)不等式成立,推证n =k +1时,左边应增加的项数为( )A .2k -1B .2k +1C .2k -1D .2k解析 当n =k +1时,左边=1+12+13+…+12k -1+12k +12k +1+…+12k +1-1,所以增加的项数为(2k +1-1)-2k +1=2k +1-2k =2k . 答案 D8.若数列{a n }是等比数列,则数列{a n +a n +1}( ) A .一定是等比数列 B .一定是等差数列C .可能是等比数列也可能是等差数列D .一定不是等比数列解析 设等比数列{a n }的公比为q ,则 a n +a n +1=a n (1+q ).∴当q ≠-1时,{a n +a n +1}一定是等比数列; 当q =-1时,a n +a n +1=0,此时为等差数列. 答案 C9.如果a ,b 为非零实数,则不等式1a >1b 成立的充要条件是( ) A .a >b 且ab <0 B .a <b 且ab >0 C .a >b ,ab <0或ab >0D .a 2b -ab 2<0解析 ∵ab ≠0,∴1a >1b ⇔1a -1b >0⇔b -a ab >0⇔(b -a )ab >0⇔ab 2-a 2b >0⇔a 2b -ab 2<0.答案 D10.由①正方形的对角线相等;②平行四边形的对角线相等;③正方形是平行四边形,根据“三段论”推理出一个结论,则这个结论是( )A .平行四边形的对角线相等B .正方形的对角线相等C .正方形是平行四边形D .以上都不是解析 大前提②,小前提③,结论①. 答案 B 11.观察下表:1 2 3 4……第一行 2 3 4 5……第二行 3 4 5 6……第三行4 5 6 7……第四行 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮第一列 第二列 第三列 第四列根据数表所反映的规律,第n 行第n 列交叉点上的数应为( ) A .2n -1 B .2n +1 C .n 2-1D .n 2解析 观察数表可知,第n 行第n 列交叉点上的数依次为1,3,5,7,…,2n -1.答案 A12.对于任意的两个实数对(a ,b )和(c ,d ),规定:(a ,b )=(c ,d )当且仅当a =c ,b =d ;运算“⊗”为:(a ,b )⊗(c ,d )=(ac -bd ,bc +ad );运算“⊕”为:(a ,b )⊕(c ,d )=(a +c ,b +d ).设p ,q ∈R ,若(1,2)⊗(p ,q )=(5,0),则(1,2)⊕(p ,q )等于( )A .(4,0)B .(2,0)C .(0,2)D .(0,-4)解析 由(1,2)⊗(p ,q )=(5,0),得⎩⎪⎨⎪⎧ p -2q =5,2p +q =0⇒⎩⎪⎨⎪⎧p =1,q =-2.所以(1,2)⊕(p ,q )=(1,2)⊕(1,-2)=(2,0). 答案 B二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知a >0,b >0,m =lg a +b 2,n =lg a +b2,则m ,n 的大小关系是________.解析 ab >0⇒ab >0⇒a +b +2ab >a +b ⇒(a +b )2>(a +b )2⇒a +b >a +b ⇒a +b 2>a +b 2⇒lg a +b 2>lg a +b2.答案 m >n14.在正三角形中,设它的内切圆的半径为r ,容易求得正三角形的周长C (r )=63r ,面积S (r )=33r 2,发现S ′(r )=C (r ).这是平面几何中的一个重要发现.请用类比推理的方法猜测对空间正四面体存在的类似结论为________.解析 设正四面体的棱长为a ,内切球的半径为r ,利用等积变形易求得正四面体的高h =4r .由棱长a ,高h 和底面三角形外接圆的半径构成直角三角形,得a 2=(4r )2+⎝ ⎛⎭⎪⎫33a 2,解得a =26r .于是正四面体的表面积S (r )=4×12×(26r )2×sin60°=243r 2,体积V (r )=13×12×(26r )2×sin60°×4r =83r 3,所以V ′(r )=243r 2=S (r ).答案 V ′(r )=S (r ) 15.观察下列等式: 12=1 12-22=-3 12-22+32=6 12-22+32-42=-10 …照此规律,第n 个等式为________________.解析 分n 为奇数、偶数两种情况.第n 个等式的左边为12-22+32-…+(-1)n -1n 2.当n 为偶数时,分组求和(12-22)+(32-42)+…+[(n -1)2-n 2]=-[3+7+…+(2n -1)]=-n (n +1)2.当n 为奇数时,(12-22)+(32-42)+…+[(n -1)2-n 2]+n 2=-n (n -1)2+n 2=n (n +1)2.综上,第n 个等式:12-22+32-…+(-1)n -1n 2= (-1)n +12n (n +1).答案 12-22+32-…+(-1)n -1n 2=(-1)n +12n (n +1)16.对于平面几何中的命题“如果两个角的两边分别对应垂直,那么这两个角相等或互补”,在立体几何中,类比上述命题,可以得到命题:“_________________________________________”.答案 如果两个二面角的两个半平面分别对应垂直,那么这两个二面角相等或互补三、解答题(本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知0<a <1,求证:1a +41-a ≥9.证法1 (分析法) ∵0<a <1,∴1-a >0, ∴要证1a +41-a ≥9,只需证1-a +4a ≥9a (1-a ), 即证1+3a ≥9a (1-a ), 即证9a 2-6a +1≥0, 即证(3a -1)2≥0, 上式显然成立.∴原命题成立. 证法2 (综合法) ∵(3a -1)2≥0, 即9a 2-6a +1≥0, ∴1+3a ≥9a (1-a ). ∵0<a <1, ∴1+3a a (1-a )≥9, 即1-a +4a a (1-a )≥9, 即1a +41-a ≥9.证法3 (反证法) 假设1a +41-a <9,即1a +41-a -9<0,即1-a +4a -9a (1-a )a (1-a )<0,即9a 2-6a +1a (1-a )<0,即(3a -1)2a (1-a )<0, 而0<a <1,∴a (1-a )>0,∴(3a -1)2<0,与(3a -1)2≥0相矛盾, ∴原命题成立.18.(12分)下列推理是否正确?若不正确,指出错误之处. (1) 求证:四边形的内角和等于360°.证明:设四边形ABCD 是矩形,则它的四个角都是直角,有∠A +∠B +∠C +∠D =90°+90°+90°+90°=360°,所以四边形的内角和为360°.(2) 已知2和3都是无理数,试证:2+3也是无理数. 证明:依题设2和3都是无理数,而无理数与无理数之和是无理数,所以2+3必是无理数.(3) 已知实数m 满足不等式(2m +1)(m +2)<0,用反证法证明:关于x 的方程x 2+2x +5-m 2=0无实根.证明:假设方程x 2+2x +5-m 2=0有实根.由已知实数m 满足不等式(2m +1)(m +2)<0,解得-2<m <-12,而关于x 的方程x 2+2x +5-m 2=0的判别式Δ=4(m 2-4),∵-2<m <-12,∴14<m 2<4,∴Δ<0,即关于x 的方程x 2+2x +5-m 2=0无实根.解 (1) 犯了偷换论题的错误,在证明过程中,把论题中的四边形改为矩形.(2) 使用的论据是“无理数与无理数的和是无理数”,这个论据是假的,因为两个无理数的和不一定是无理数,因此原题的真实性仍无法判定.(3)利用反证法进行证明时,要把假设作为条件进行推理,得出矛盾,本题在证明过程中并没有用到假设的结论,也没有推出矛盾,所以不是反证法.19.(12分)已知数列{a n }和{b n }是公比不相等的两个等比数列,c n =a n +b n .求证:数列{c n }不是等比数列.证明 假设{c n }是等比数列,则c 1,c 2,c 3成等比数列.设{a n },{b n }的公比分别为p 和q ,且p ≠q ,则a 2=a 1p ,a 3=a 1p 2,b 2=b 1q ,b 3=b 1q 2.∵c 1,c 2,c 3成等比数列,∴c 22=c 1·c 3, 即(a 2+b 2)2=(a 1+b 1)(a 3+b 3). ∴(a 1p +b 1q )2=(a 1+b 1)(a 1p 2+b 1q 2). ∴2a 1b 1pq =a 1b 1p 2+a 1b 1q 2. ∴2pq =p 2+q 2,∴(p -q )2=0. ∴p =q 与已知p ≠q 矛盾. ∴数列{c n }不是等比数列. 20.(12分)证明:若a >0,则 a 2+1a 2-2≥a +1a -2.证明 ∵a >0,要证 a 2+1a 2-2≥a +1a -2,只需证 a 2+1a 2+2≥a +1a +2, 只需证(a 2+1a 2+2)2≥(a +1a +2)2,即证a 2+1a 2+4+4 a 2+1a 2≥a 2+1a 2+4+22(a +1a ),即证a 2+1a 2≥22(a +1a ),即证a 2+1a 2≥12(a 2+1a 2+2), 即证a 2+1a 2≥2,即证(a -1a )2≥0, 该不等式显然成立.∴ a 2+1a 2-2≥a +1a -2.21.(12分)如图,DC ⊥平面ABC ,EB ∥DC ,AC =BC =EB =2DC=2,∠ACB =120°,P ,Q 分别为AE ,AB 的中点.(1)证明:PQ ∥平面ACD ;(2)求AD 与平面ABE 所成角的正弦值.解 (1)证明:∵P ,Q 分别为AE ,AB 的中点,∴PQ ∥EB ,又DC ∥EB .∴PQ ∥DC ,而PQ ⊄平面ACD ,DC ⊂平面ACD ,∴PQ ∥平面ACD .(2)如图,连接CQ ,DP ,∵Q 为AB 的中点,且AC =BC ,∴CQ ⊥AB .∵DC ⊥平面ABC ,EB ∥DC ,∴EB ⊥平面ABC .∴CQ ⊥EB ,故CQ ⊥平面ABE .由(1)知,PQ ∥DC ,又PQ =12EB =DC ,∴四边形CQPD 为平行四边形.∴DP ⊥平面ABE .故∠DAP 为AD 与平面ABE 所成角.在Rt △DAP 中,AD =5,DP =1,∴sin ∠DAP =55.因此AD 与平面ABE 所成角的正弦值为55.22.(12分)已知f (x )=bx +1(ax +1)2(x ≠-1a ,a >0),且f (1)=log 162,f (-2)=1.(1)求函数f (x )的表达式;(2)已知数列{x n }的项满足x n =(1-f (1))(1-f (2))…(1-f (n )),试求x 1,x 2,x 3,x 4;(3)猜想{x n }的通项公式,并用数学归纳法证明.解 (1) 把f (1)=log 162=14,f (-2)=1,代入函数表达式得⎩⎪⎨⎪⎧b +1(a +1)2=14,-2b +1(1-2a )2=1, 即⎩⎪⎨⎪⎧4b +4=a 2+2a +1,-2b +1=4a 2-4a +1, 解得⎩⎪⎨⎪⎧ a =1,b =0,(舍去a =-13<0),∴f (x )=1(x +1)2(x ≠-1). (2) x 1=1-f (1)=1-14=34,x 2=(1-f (1))(1-f (2))=34×(1-19)=23,x 3=23(1-f (3))=23×(1-116)=58,x 4=58×(1-125)=35.(3) 由(2)知,x 1=34,x 2=23=46,x 3=58,x 4=35=610,…,由此可以猜想x n =n +22n +2. 证明:①当n =1时,∵x 1=34,而1+22(1+1)=34,∴猜想成立. ②假设当n =k (k ∈N *)时,x n =n +22(n +1)成立, 即x k =k +22(k +1),则n =k +1时, x k +1=(1-f (1))(1-f (2))…(1-f (k ))·(1-f (k +1))=x k ·(1-f (k +1))=k +22(k +1)·[1-1(k +1+1)2] =k +22(k +1)·(k +1)(k +3)(k +2)2=12·k +3k +2=(k +1)+22[(k +1)+1].∴当n=k+1时,猜想也成立,根据①②可知,对一切n∈N*,猜想x n=n+22(n+1)都成立.。
章末检测(二)时间:分钟满分:分一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的).根据偶函数定义可推得“函数()=在上是偶函数”的推理过程是( ).类比推理.归纳推理.非以上答案.演绎推理解析:根据演绎推理的定义知,推理过程是演绎推理,故选.答案:.下面四个推理不是合情推理的是( ).由圆的性质类比推出球的有关性质.由直角三角形、等腰三角形、等边三角形的内角和都是°,归纳出所有三角形的内角和都是°.某次考试张军的成绩是分,由此推出全班同学的成绩都是分.蛇、海龟、蜥蜴是用肺呼吸的,蛇、海龟、蜥蜴是爬行动物,所以所有的爬行动物都是用肺呼吸的解析:是类比推理,、是归纳推理,不是合情推理.答案:.用三段论证明命题:“任何实数的平方大于,因为是实数,所以>”,你认为这个推理( ).小前提错误.大前提错误.是正确的.推理形式错误解析:这个三段论推理的大前提是“任何实数的平方大于”,小前提是“是实数”,结论是“>”.显然结论错误,原因是大前提错误.答案:.设为正整数,()=+++…+,计算得()=,()>,()>,()>,()>,观察上述结果,可推测出一般结论为( ).()>.()=.()>.()≥解析:观察所给不等式,不等式左边是(),右边是,故选.答案:.已知数列{}的前项和为,且=,=(∈*),计算,,,,…,可归纳猜想出的表达式为( )解析:由=,得+=,∴=,=;又++=,∴=,==;又+++=,得=,=;……由==,==,==,==,…,可以猜想=.答案:.如果两个数之和为正数,则这两个数( ).一个是正数,一个是负数.两个都是正数.至少有一个是正数.两个都是负数解析:这两个数中至少有一个数是正数,否则,若这两个数都不是正数,则它们的和一定是非正数,这与“两个数之和为正数”相矛盾.答案:.已知为正偶数,用数学归纳法证明-+-+…+=时,若已假设=(≥为偶数)时命题为真,则还需要用归纳假设再证( ).=+时等式成立.=+时等式成立.=+时等式成立.=(+)时等式成立解析:因为假设=(≥为偶数),故下一个偶数为+,故选.答案:.用数学归纳法证明++…+(-)++(-)+…++=时,从=到=+时,等式左边应添加的式子是( ).(-)+.(+)+.(+)(+)[(+)+]解析:当=时,左边=++…+(-)++(-)…++,当=+时,左边=++…+(-)++(+)++(-)+…++,∴从=到=+,左边应添加的式子为(+)+.答案:.如图所示,椭圆中心在坐标原点,为左焦点,当⊥时,其离心率为,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率等于( )。
1.7.2定积分在物理中的应用教学建议1.教材分析本小节主要是通过举例复习变速直线运动的路程,引导学生解决变力所做的功等一些简单的物理问题.重点是应用定积分解决变速直线运动的路程和变力做功等问题,使学生在解决问题的过程中体验定积分的价值.难点是将物理问题化归为定积分的问题.2.主要问题及教学建议(1)变速直线运动的路程问题.建议教师用提问的方式让学生思考、讨论,使学生进一步从“数形结合”的角度理解定积分的概念并解决问题.(2)变力做功的问题.建议教师引导学生类比求变速直线运动路程的过程,自己推导出变力做功的公式,进一步体验用定积分解决问题的思想方法.备选习题1.已知物体从水平地面做竖直上抛运动的速度—时间曲线如图,求物体:(1)距离水平地面的最大值;(2)从t=0(s)到t=6(s)的位移;(3)从t=0(s)到t=6(s)的路程.解:(1)设速度—时间函数式为v(t)=v0+at,将点(0,40),(6,-20)的坐标分别代入, 得v0=40,a=-10,所以v(t)=40-10t.令v(t)=0⇒40-10t=0⇒t=4,物体从0 s运动到距离水平地面的最大值为s=(40-10t)d t=(40t-5t2)=80(m).(2)由上述可知,物体在0~6 s内的位移为s=(40-10t)d t=(40t-5t2)=60(m).(3)由上述可知,物体在0~6 s内的路程为s=|40-10t|d t=(40-10t)d t-(40-10t)d t=(40t-5t2)-(40t-5t2)=80+20=100(m).2.如图所示,一物体沿斜面在拉力F的作用下由A经B,C运动到D,其中AB=5 m,BC=4 m,CD=3 m,变力F=在AB段运动时F与运动方向成30°角,在BC段运动时F与运动方向成45°角,在CD段F与运动方向相同,求物体由A运动到D所做的功.解:在AB段运动时F在运动方向上的分力F1=F cos 30°.在BC段运动时F在运动方向上的分力F2=F cos 45°.由变力做功公式得W=cos 30°d x+cos 45°d x+20d x=(x+20)d x+(x+20)d x+20d x=+20x=×108+20×3=(N·m).。
人教版高中数学选修2~2 全册章节同步检测试题选修2-2 1.1 第1课时 变化率问题一、选择题1.在平均变化率的定义中,自变量x 在x 0处的增量Δx ( ) A .大于零 B .小于零 C .等于零 D .不等于零[答案] D[解析] Δx 可正,可负,但不为0,故应选D.2.设函数y =f (x ),当自变量x 由x 0变化到x 0+Δx 时,函数的改变量Δy 为( ) A .f (x 0+Δx ) B .f (x 0)+Δx C .f (x 0)·ΔxD .f (x 0+Δx )-f (x 0)[答案] D[解析] 由定义,函数值的改变量Δy =f (x 0+Δx )-f (x 0),故应选D. 3.已知函数f (x )=-x 2+x ,则f (x )从-1到-0.9的平均变化率为( ) A .3B .0.29C .2.09D .2.9[答案] D[解析] f (-1)=-(-1)2+(-1)=-2.f (-0.9)=-(-0.9)2+(-0.9)=-1.71.∴平均变化率为f (-0.9)-f (-1)-0.9-(-1)=-1.71-(-2)0.1=2.9,故应选D.4.已知函数f (x )=x 2+4上两点A ,B ,x A =1,x B =1.3,则直线AB 的斜率为( ) A .2B .2.3C .2.09D .2.1[答案] B[解析] f (1)=5,f (1.3)=5.69. ∴k AB =f (1.3)-f (1)1.3-1=5.69-50.3=2.3,故应选B.5.已知函数f (x )=-x 2+2x ,函数f (x )从2到2+Δx 的平均变化率为( ) A .2-Δx B .-2-Δx C .2+ΔxD .(Δx )2-2·Δx[答案] B[解析] ∵f (2)=-22+2×2=0, ∴f (2+Δx )=-(2+Δx )2+2(2+Δx )=-2Δx -(Δx )2, ∴f (2+Δx )-f (2)2+Δx -2=-2-Δx ,故应选B.6.已知函数y =x 2+1的图象上一点(1,2)及邻近一点(1+Δx,2+Δy ),则Δy Δx等于( )A .2B .2xC .2+ΔxD .2+(Δx )2[答案] C [解析]Δy Δx =f (1+Δx )-f (1)Δx=[(1+Δx )2+1]-2Δx=2+Δx .故应选C.7.质点运动规律S (t )=t 2+3,则从3到3.3内,质点运动的平均速度为( ) A .6.3 B .36.3 C .3.3D .9.3[答案] A[解析] S (3)=12,S (3.3)=13.89, ∴平均速度v =S (3.3)-S (3)3.3-3=1.890.3=6.3,故应选A.8.在x =1附近,取Δx =0.3,在四个函数①y =x 、②y =x 2、③y =x 3、④y =1x中,平均变化率最大的是( )A .④B .③C .②D .①[答案] B[解析] Δx =0.3时,①y =x 在x =1附近的平均变化率k 1=1;②y =x 2在x =1附近的平均变化率k 2=2+Δx =2.3;③y =x 3在x =1附近的平均变化率k 3=3+3Δx +(Δx )2=3.99;④y =1x 在x =1附近的平均变化率k 4=-11+Δx =-1013.∴k 3>k 2>k 1>k 4,故应选B.9.物体做直线运动所经过的路程s 可以表示为时间t 的函数s =s (t ),则物体在时间间隔[t 0,t 0+Δt ]内的平均速度是( )A .v 0B.Δts (t 0+Δt )-s (t 0)C.s (t 0+Δt )-s (t 0)ΔtD.s (t )t[答案] C[解析] 由平均变化率的概念知C 正确,故应选C.10.已知曲线y =14x 2和这条曲线上的一点P ⎝ ⎛⎭⎪⎫1,14,Q 是曲线上点P 附近的一点,则点Q 的坐标为( )A.⎝ ⎛⎭⎪⎫1+Δx ,14(Δx )2B.⎝ ⎛⎭⎪⎫Δx ,14(Δx )2C.⎝ ⎛⎭⎪⎫1+Δx ,14(Δx +1)2D.⎝ ⎛⎭⎪⎫Δx ,14(1+Δx )2[答案] C[解析] 点Q 的横坐标应为1+Δx ,所以其纵坐标为f (1+Δx )=14(Δx +1)2,故应选C.二、填空题11.已知函数y =x 3-2,当x =2时,Δy Δx =________.[答案] (Δx )2+6Δx +12[解析] Δy Δx =(2+Δx )3-2-(23-2)Δx=(Δx )3+6(Δx )2+12ΔxΔx=(Δx )2+6Δx +12.12.在x =2附近,Δx =14时,函数y =1x 的平均变化率为________.[答案] -29[解析] Δy Δx =12+Δx -12Δx =-14+2Δx =-29.13.函数y =x 在x =1附近,当Δx =12时的平均变化率为________.[答案] 6-2[解析]Δy Δx =1+Δx -1Δx =11+Δx +1=6-2. 14.已知曲线y =x 2-1上两点A (2,3),B (2+Δx,3+Δy ),当Δx =1时,割线AB 的斜率是________;当Δx =0.1时,割线AB 的斜率是________.[答案] 5 4.1[解析] 当Δx =1时,割线AB 的斜率Δx Δx 1当Δx =0.1时,割线AB 的斜率 k 2=Δy Δx =(2+0.1)2-1-22+10.1=4.1.三、解答题15.已知函数f (x )=2x +1,g (x )=-2x ,分别计算在区间[-3,-1],[0,5]上函数f (x )及g (x )的平均变化率.[解析] 函数f (x )在[-3,-1]上的平均变化率为f (-1)-f (-3)-1-(-3)=[2×(-1)+1]-[2×(-3)+1]2=2.函数f (x )在[0,5]上的平均变化率为f (5)-f (0)5-0=2.函数g (x )在[-3,-1]上的平均变化率为g (-1)-g (-3)-1-(-3)=-2.函数g (x )在[0,5]上的平均变化率为g (5)-g (0)5-0=-2.16.过曲线f (x )=2x2的图象上两点A (1,2),B (1+Δx,2+Δy )作曲线的割线AB ,求出当Δx =14时割线的斜率.[解析] 割线AB 的斜率k =(2+Δy )-2(1+Δx )-1=ΔyΔx=2(1+Δx )2-2Δx =-2(Δx +2)(1+Δx )2=-7225. 17.求函数y =x 2在x =1、2、3附近的平均变化率,判断哪一点附近平均变化率最大? [解析] 在x =2附近的平均变化率为k 1=f (1+Δx )-f (1)Δx =(1+Δx )2-1Δx=2+Δx ;在x =2附近的平均变化率为k 2=f (2+Δx )-f (2)Δx =(2+Δx )2-22Δx=4+Δx ;在x =3附近的平均变化率为Δx Δx对任意Δx 有,k 1<k 2<k 3, ∴在x =3附近的平均变化率最大.18.(2010·杭州高二检测)路灯距地面8m ,一个身高为1.6m 的人以84m/min 的速度在地面上从路灯在地面上的射影点C 处沿直线离开路灯.(1)求身影的长度y 与人距路灯的距离x 之间的关系式; (2)求人离开路灯的第一个10s 内身影的平均变化率.[解析] (1)如图所示,设人从C 点运动到B 处的路程为x m ,AB 为身影长度,AB 的长度为y m ,由于CD ∥BE ,则AB AC =BE CD , 即yy +x =1.68,所以y =f (x )=14x . (2)84m/min =1.4m/s ,在[0,10]内自变量的增量为x 2-x 1=1.4×10-1.4×0=14, f (x 2)-f (x 1)=14×14-14×0=72.所以f (x 2)-f (x 1)x 2-x 1=7214=14.即人离开路灯的第一个10s 内身影的平均变化率为14.选修2-2 1.1 第2课时 导数的概念一、选择题1.函数在某一点的导数是( )A .在该点的函数值的增量与自变量的增量的比B .一个函数C .一个常数,不是变数D .函数在这一点到它附近一点之间的平均变化率 [答案] C[解析] 由定义,f ′(x 0)是当Δx 无限趋近于0时,ΔyΔx 无限趋近的常数,故应选C.2.如果质点A 按照规律s =3t 2运动,则在t 0=3时的瞬时速度为( ) A .6B .18C .54D .81[答案] B[解析] ∵s (t )=3t 2,t 0=3,∴Δs =s (t 0+Δt )-s (t 0)=3(3+Δt )2-3·32=18Δt +3(Δt )2∴Δs Δt =18+3Δt .当Δt →0时,ΔsΔt →18,故应选B.3.y =x 2在x =1处的导数为( ) A .2x B .2 C .2+Δx D .1[答案] B[解析] ∵f (x )=x 2,x =1,∴Δy =f (1+Δx )2-f (1)=(1+Δx )2-1=2·Δx +(Δx )2∴ΔyΔx=2+Δx 当Δx →0时,ΔyΔx →2∴f ′(1)=2,故应选B.4.一质点做直线运动,若它所经过的路程与时间的关系为s (t )=4t 2-3(s (t )的单位:m ,t 的单位:s),则t =5时的瞬时速度为( )A .37B .38C .39D .40[答案] D[解析] ∵Δs Δt =4(5+Δt )2-3-4×52+3Δt =40+4Δt ,∴s ′(5)=li m Δt →0 ΔsΔt =li m Δt →0 (40+4Δt )=40.故应选D. 5.已知函数y =f (x ),那么下列说法错误的是( ) A .Δy =f (x 0+Δx )-f (x 0)叫做函数值的增量 B.Δy Δx =f (x 0+Δx )-f (x 0)Δx叫做函数在x 0到x 0+Δx 之间的平均变化率 C .f (x )在x 0处的导数记为y ′ D .f (x )在x 0处的导数记为f ′(x 0) [答案] C[解析] 由导数的定义可知C 错误.故应选C.6.函数f (x )在x =x 0处的导数可表示为y ′|x =x 0,即( ) A .f ′(x 0)=f (x 0+Δx )-f (x 0) B .f ′(x 0)=li m Δx →0[f (x 0+Δx )-f (x 0)] C .f ′(x 0)=f (x 0+Δx )-f (x 0)ΔxD .f ′(x 0)=li m Δx →0 f (x 0+Δx )-f (x 0)Δx[答案] D[解析] 由导数的定义知D 正确.故应选D.7.函数y =ax 2+bx +c (a ≠0,a ,b ,c 为常数)在x =2时的瞬时变化率等于( ) A .4aB .2a +bC .bD .4a +b[答案] D[解析] ∵Δy Δx =a (2+Δx )2+b (2+Δx )+c -4a -2b -c Δx=4a +b +a Δx ,∴y ′|x =2=li m Δx →0 ΔyΔx =li m Δx →0 (4a +b +a ·Δx )=4a +b .故应选D. 8.如果一个函数的瞬时变化率处处为0,则这个函数的图象是( ) A .圆B .抛物线C .椭圆D .直线[答案] D[解析] 当f (x )=b 时,f ′(x )=0,所以f (x )的图象为一条直线,故应选D. 9.一物体作直线运动,其位移s 与时间t 的关系是s =3t -t 2,则物体的初速度为( ) A .0 B .3 C .-2D .3-2t[答案] B[解析] ∵Δs Δt =3(0+Δt )-(0+Δt )2Δt =3-Δt ,∴s ′(0)=li m Δt →0 ΔsΔt=3.故应选B. 10.设f (x )=1x ,则li m x →a f (x )-f (a )x -a 等于( )A .-1aB.2aC .-1a2D.1a2[答案] C[解析] li m x →a f (x )-f (a )x -a =li m x →a 1x -1a x -a=li m x →aa -x (x -a )·xa =-li m x →a 1ax =-1a2.二、填空题11.已知函数y =f (x )在x =x 0处的导数为11,则 li m Δx →0f (x 0-Δx )-f (x 0)Δx =________;li m x →x 0f (x )-f (x 0)2(x 0-x )=________.[答案] -11,-112[解析] li m Δx →0 f (x 0-Δx )-f (x 0)Δx=-li m Δx →0 f (x 0-Δx )-f (x 0)-Δx=-f ′(x 0)=-11;li m x →x 0f (x )-f (x 0)2(x 0-x )=-12li m Δx →0 f (x 0+Δx )-f (x 0)Δx=-12f ′(x 0)=-112.12.函数y =x +1x在x =1处的导数是________.[答案] 0[解析] ∵Δy =⎝ ⎛⎭⎪⎫1+Δx +11+Δx -⎝ ⎛⎭⎪⎫1+11 =Δx -1+1Δx +1=(Δx )2Δx +1,∴Δy Δx =Δx Δx +1.∴y ′|x =1=li m Δx →0 Δx Δx +1=0. 13.已知函数f (x )=ax +4,若f ′(2)=2,则a 等于______. [答案] 2[解析] ∵Δy Δx =a (2+Δx )+4-2a -4Δx =a ,∴f ′(1)=li m Δx →0 ΔyΔx =a .∴a =2. 14.已知f ′(x 0)=li m x →x 0 f (x )-f (x 0)x -x 0,f (3)=2,f ′(3)=-2,则li m x →32x -3f (x )x -3的值是________.[答案] 8[解析] li m x →3 2x -3f (x )x -3=li m x →3 2x -3f (x )+3f (3)-3f (3)x -3 =lim x →32x -3f (3)x -3+li m x →3 3(f (3)-f (x ))x -3.由于f (3)=2,上式可化为li m x →3 2(x -3)x -3-3li m x →3 f (x )-f (3)x -3=2-3×(-2)=8. 三、解答题15.设f (x )=x 2,求f ′(x 0),f ′(-1),f ′(2). [解析] 由导数定义有f ′(x 0) =li m Δx →0f (x 0+Δx )-f (x 0)Δx=li m Δx →0 (x 0+Δx )2-x 20Δx =li m Δx →0 Δx (2x 0+Δx )Δx=2x 0,16.枪弹在枪筒中运动可以看做匀加速运动,如果它的加速度是5.0×105m/s 2,枪弹从枪口射出时所用时间为1.6×10-3s ,求枪弹射出枪口时的瞬时速度.[解析] 位移公式为s =12at 2∵Δs =12a (t 0+Δt )2-12at 20=at 0Δt +12a (Δt )2∴Δs Δt =at 0+12a Δt , ∴li m Δt →0 Δs Δt =li m Δt →0 ⎝ ⎛⎭⎪⎫at 0+12a Δt =at 0, 已知a =5.0×105m/s 2,t 0=1.6×10-3s , ∴at 0=800m/s.所以枪弹射出枪口时的瞬时速度为800m/s.17.在曲线y =f (x )=x 2+3的图象上取一点P (1,4)及附近一点(1+Δx,4+Δy ),求(1)ΔyΔx(2)f ′(1). [解析] (1)Δy Δx =f (1+Δx )-f (1)Δx=(1+Δx )2+3-12-3Δx =2+Δx .(2)f ′(1)=lim Δx →0f (1+Δx )-f (1)Δx=lim Δx →0(2+Δx )=2. 18.函数f (x )=|x |(1+x )在点x 0=0处是否有导数?若有,求出来,若没有,说明理由.[解析] f (x )=⎩⎪⎨⎪⎧x +x 2(x ≥0)-x -x 2(x <0)Δy =f (0+Δx )-f (0)=f (Δx )=⎩⎪⎨⎪⎧Δx +(Δx )2(Δx >0)-Δx -(Δx )2(Δx <0)∴lim x →0+ Δy Δx =lim Δx →0+ (1+Δx )=1, lim Δx →0- Δy Δx =lim Δx →0-(-1-Δx )=-1, ∵lim Δx →0- Δy Δx ≠lim Δx →0+ Δy Δx ,∴Δx →0时,Δy Δx无极限. ∴函数f (x )=|x |(1+x )在点x 0=0处没有导数,即不可导.(x →0+表示x 从大于0的一边无限趋近于0,即x >0且x 趋近于0)选修2-2 1.1 第3课时 导数的几何意义一、选择题1.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( ) A .f ′(x 0)>0B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在[答案] B[解析] 切线x +2y -3=0的斜率k =-12,即f ′(x 0)=-12<0.故应选B.2.曲线y =12x 2-2在点⎝ ⎛⎭⎪⎫1,-32处切线的倾斜角为( )A .1 B.π4C.54πD .-π4[答案] B[解析] ∵y ′=li m Δx →0 [12(x +Δx )2-2]-(12x 2-2)Δx =li m Δx →0 (x +12Δx )=x ∴切线的斜率k =y ′|x =1=1. ∴切线的倾斜角为π4,故应选B.3.在曲线y =x 2上切线的倾斜角为π4的点是( )A .(0,0)B .(2,4)C.⎝ ⎛⎭⎪⎫14,116D.⎝ ⎛⎭⎪⎫12,14 [答案] D[解析] 易求y ′=2x ,设在点P (x 0,x 20)处切线的倾斜角为π4,则2x 0=1,∴x 0=12,∴P ⎝ ⎛⎭⎪⎫12,14.4.曲线y =x 3-3x 2+1在点(1,-1)处的切线方程为( ) A .y =3x -4 B .y =-3x +2 C .y =-4x +3D .y =4x -5[答案] B[解析] y′=3x2-6x,∴y′|x=1=-3.由点斜式有y+1=-3(x-1).即y=-3x+2.5.设f(x)为可导函数,且满足limx→0f(1)-f(1-2x)2x=-1,则过曲线y=f(x)上点(1,f(1))处的切线斜率为( )A.2 B.-1C.1 D.-2[答案] B[解析] limx→0f(1)-f(1-2x)2x=limx→0f(1-2x)-f(1)-2x=-1,即y′|x=1=-1,则y=f(x)在点(1,f(1))处的切线斜率为-1,故选B.6.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( )A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴斜交[答案] B[解析] 由导数的几何意义知B正确,故应选B.7.已知曲线y=f(x)在x=5处的切线方程是y=-x+8,则f(5)及f′(5)分别为( ) A.3,3 B.3,-1C.-1,3 D.-1,-1[答案] B[解析] 由题意易得:f(5)=-5+8=3,f′(5)=-1,故应选B.8.曲线f(x)=x3+x-2在P点处的切线平行于直线y=4x-1,则P点的坐标为( ) A.(1,0)或(-1,-4) B.(0,1)C.(-1,0) D.(1,4)[答案] A[解析] ∵f(x)=x3+x-2,设x P=x0,∴Δy=3x20·Δx+3x0·(Δx)2+(Δx)3+Δx,∴ΔyΔx=3x20+1+3x0(Δx)+(Δx)2,∴f′(x0)=3x20+1,又k=4,∴3x20+1=4,x20=1.∴x0=±1,故P(1,0)或(-1,-4),故应选A.9.设点P 是曲线y =x 3-3x +23上的任意一点,P 点处的切线倾斜角为α,则α的取值范围为( )A.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫23π,πB.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫56π,πC.⎣⎢⎡⎭⎪⎫23π,πD.⎝⎛⎦⎥⎤π2,56π[答案] A[解析] 设P (x 0,y 0),∵f ′(x )=li m Δx →0 (x +Δx )3-3(x +Δx )+23-x 3+3x -23Δx =3x 2-3,∴切线的斜率k =3x 20-3, ∴tan α=3x 20-3≥- 3.∴α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫23π,π.故应选A.10.(2010·福州高二期末)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处切线倾斜角的取值范围为[0,π4],则点P 横坐标的取值范围为( ) A .[-1,-12]B .[-1,0]C .[0,1]D .[12,1][答案] A[解析] 考查导数的几何意义.∵y ′=2x +2,且切线倾斜角θ∈[0,π4],∴切线的斜率k 满足0≤k ≤1,即0≤2x +2≤1, ∴-1≤x ≤-12.二、填空题11.已知函数f (x )=x 2+3,则f (x )在(2,f (2))处的切线方程为________. [答案] 4x -y -1=0[解析] ∵f (x )=x 2+3,x 0=2∴f (2)=7,Δy =f (2+Δx )-f (2)=4·Δx +(Δx )2∴Δy Δx=4+Δx .∴li m Δx →0 Δy Δx =4.即f ′(2)=4.又切线过(2,7)点,所以f (x )在(2,f (2))处的切线方程为y -7=4(x -2) 即4x -y -1=0.12.若函数f (x )=x -1x,则它与x 轴交点处的切线的方程为________.[答案] y =2(x -1)或y =2(x +1)[解析] 由f (x )=x -1x=0得x =±1,即与x 轴交点坐标为(1,0)或(-1,0).∵f ′(x )=li m Δx →0 (x +Δx )-1x +Δx -x +1xΔx=li m Δx →0⎣⎢⎡⎦⎥⎤1+1x (x +Δx )=1+1x 2. ∴切线的斜率k =1+11=2.∴切线的方程为y =2(x -1)或y =2(x +1).13.曲线C 在点P (x 0,y 0)处有切线l ,则直线l 与曲线C 的公共点有________个. [答案] 至少一[解析] 由切线的定义,直线l 与曲线在P (x 0,y 0)处相切,但也可能与曲线其他部分有公共点,故虽然相切,但直线与曲线公共点至少一个.14.曲线y =x 3+3x 2+6x -10的切线中,斜率最小的切线方程为________. [答案] 3x -y -11=0[解析] 设切点P (x 0,y 0),则过P (x 0,y 0)的切线斜率为,它是x 0的函数,求出其最小值.设切点为P (x 0,y 0),过点P 的切线斜率k ==3x 20+6x 0+6=3(x 0+1)2+3.当x 0=-1时k 有最小值3,此时P 的坐标为(-1,-14),其切线方程为3x -y -11=0.三、解答题15.求曲线y =1x -x 上一点P ⎝⎛⎭⎪⎫4,-74处的切线方程. [解析] ∴y ′=lim Δx →0⎝ ⎛⎭⎪⎫1x +Δx -1x -(x +Δx -x )Δx=lim Δx →0 -Δx x (x +Δx )-Δx x +Δx +x Δx=lim Δx →0⎝⎛⎭⎪⎫-1x (x +Δx )-1x +Δx +x =-1x 2-12x.∴y ′|x =4=-116-14=-516,∴曲线在点P ⎝⎛⎭⎪⎫4,-74处的切线方程为:y +74=-516(x -4).即5x +16y +8=0.16.已知函数f (x )=x 3-3x 及y =f (x )上一点P (1,-2),过点P 作直线l . (1)求使直线l 和y =f (x )相切且以P 为切点的直线方程;(2)求使直线l 和y =f (x )相切且切点异于点P 的直线方程y =g (x ). [解析] (1)y ′=li m Δx →0 (x +Δx )3-3(x +Δx )-3x 3+3x Δx =3x 2-3. 则过点P 且以P (1,-2)为切点的直线的斜率k 1=f ′(1)=0,∴所求直线方程为y =-2. (2)设切点坐标为(x 0,x 30-3x 0), 则直线l 的斜率k 2=f ′(x 0)=3x 20-3,∴直线l 的方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0) 又直线l 过点P (1,-2),∴-2-(x 30-3x 0)=(3x 20-3)(1-x 0), ∴x 30-3x 0+2=(3x 20-3)(x 0-1), 解得x 0=1(舍去)或x 0=-12.故所求直线斜率k =3x 20-3=-94,于是:y -(-2)=-94(x -1),即y =-94x +14.17.求证:函数y =x +1x图象上的各点处的切线斜率小于1.[解析] y ′=li m Δx →0f (x +Δx )-f (x )Δx=li m Δx →0 ⎝ ⎛⎭⎪⎫x +Δx +1x +Δx -⎝ ⎛⎭⎪⎫x +1x Δx=li m Δx →0 x ·Δx (x +Δx )-Δx(x +Δx )·x ·Δx=li m Δx →0(x +Δx )x -1(x +Δx )x=x 2-1x 2=1-1x2<1,∴y =x +1x图象上的各点处的切线斜率小于1.18.已知直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2.(1)求直线l 2的方程;(2)求由直线l 1、l 2和x 轴所围成的三角形的面积. [解析] (1)y ′|x =1=li m Δx →0 (1+Δx )2+(1+Δx )-2-(12+1-2)Δx =3, 所以l 1的方程为:y =3(x -1),即y =3x -3. 设l 2过曲线y =x 2+x -2上的点B (b ,b 2+b -2), y ′|x =b =li m Δx →0 (b +Δx )2+(b +Δx )-2-(b 2+b -2)Δx=2b +1,所以l 2的方程为:y -(b 2+b -2)=(2b +1)·(x -b ),即y =(2b +1)x -b 2-2.因为l 1⊥l 2,所以3×(2b +1)=-1,所以b =-23,所以l 2的方程为:y =-13x -229.(2)由⎩⎪⎨⎪⎧y =3x -3,y =-13x -229,得⎩⎪⎨⎪⎧x =16,y =-52,即l 1与l 2的交点坐标为⎝ ⎛⎭⎪⎫16,-52.又l 1,l 2与x 轴交点坐标分别为(1,0),⎝ ⎛⎭⎪⎫-223,0.所以所求三角形面积S =12×⎪⎪⎪⎪⎪⎪-52×⎪⎪⎪⎪⎪⎪1+223=12512.选修2-2 1.2 第1课时 几个常用的函数的导数一、选择题1.下列结论不正确的是( ) A .若y =0,则y ′=0 B .若y =5x ,则y ′=5 C .若y =x -1,则y ′=-x -2[答案] D2.若函数f (x )=x ,则f ′(1)等于( ) A .0 B .-12C .2D.12[答案] D[解析] f ′(x )=(x )′=12x ,所以f ′(1)=12×1=12,故应选D.3.抛物线y =14x 2在点(2,1)处的切线方程是( )A .x -y -1=0B .x +y -3=0C .x -y +1=0D .x +y -1=0[答案] A[解析] ∵f (x )=14x 2,∴f ′(2)=li m Δx →0f (2+Δx )-f (2)Δx =li m Δx →0 ⎝ ⎛⎭⎪⎫1+14Δx =1.∴切线方程为y -1=x -2.即x -y -1=0. 4.已知f (x )=x 3,则f ′(2)=( ) A .0 B .3x 2C .8D .12[答案] D[解析] f ′(2)=lim Δx →0 (2+Δx )3-23Δx=lim Δx →0 6Δx 2+12Δx Δx =lim Δx →0 (6Δx +12)=12,故选D. 5.已知f (x )=x α,若f ′(-1)=-2,则α的值等于( ) A .2 B .-2 C .3D .-3[答案] A[解析] 若α=2,则f (x )=x 2,∴f ′(x )=2x ,∴f ′(-1)=2×(-1)=-2适合条件.故应选A. 6.函数y =(x +1)2(x -1)在x =1处的导数等于( ) A .1 B .2 C .3D .4[答案] D[解析] ∵y =x 3+x 2-x -1∴Δy Δx =(1+Δx )3+(1+Δx )2-(1+Δx )-1Δx =4+4Δx +(Δx )2,∴y ′|x =1=li m Δx →0 Δy Δx =li m Δx →0[4+4·Δx +(Δx )2]=4. 故应选D.7.曲线y =x 2在点P 处切线斜率为k ,当k =2时的P 点坐标为( ) A .(-2,-8) B .(-1,-1) C .(1,1)D.⎝ ⎛⎭⎪⎫-12,-18[答案] C[解析] 设点P 的坐标为(x 0,y 0), ∵y =x 2,∴y ′=2x .∴k ==2x 0=2,∴x 0=1,∴y 0=x 20=1,即P (1,1),故应选C. 8.已知f (x )=f ′(1)x 2,则f ′(0)等于( ) A .0 B .1 C .2D .3[答案] A[解析] ∵f (x )=f ′(1)x 2,∴f ′(x )=2f ′(1)x ,∴f ′(0)=2f ′(1)×0=0.故应选A.9.曲线y=3x上的点P(0,0)的切线方程为( )A.y=-x B.x=0 C.y=0 D.不存在[答案] B[解析] ∵y=3 x∴Δy=3x+Δx-3x=x+Δx-x(3x+Δx)2+3x(x+Δx)+(3x)2=Δx(3x+Δx)2+3x(x+Δx)+(3x)2∴ΔyΔx=1(3x+Δx)2+3x(x+Δx)+(3x)2∴曲线在P(0,0)处切线的斜率不存在,∴切线方程为x=0.10.质点作直线运动的方程是s=4t,则质点在t=3时的速度是( )A.14433B.14334C.12334D.13443[答案] A[解析] Δs=4t+Δt-4t=t+Δt-t4t+Δt+4t=t+Δt-t(4t+Δt+4t)(t+Δt+t)=Δt(4t+Δt+4t)(t+Δt+t)∴li m Δt →0 Δs Δt=124t ·2t =144t 3, ∴s ′(3)=14433 .故应选A.二、填空题11.若y =x 表示路程关于时间的函数,则y ′=1可以解释为________. [答案] 某物体做瞬时速度为1的匀速运动[解析] 由导数的物理意义可知:y ′=1可以表示某物体做瞬时速度为1的匀速运动. 12.若曲线y =x 2的某一切线与直线y =4x +6平行,则切点坐标是________. [答案] (2,4)[解析] 设切点坐标为(x 0,x 20),因为y ′=2x ,所以切线的斜率k =2x 0,又切线与y =4x +6平行,所以2x 0=4,解得x 0=2,故切点为(2,4).13.过抛物线y =15x 2上点A ⎝ ⎛⎭⎪⎫2,45的切线的斜率为______________.[答案] 45[解析] ∵y =15x 2,∴y ′=25x∴k =25×2=45.14.(2010·江苏,8)函数y =x 2(x >0)的图像在点(a k ,a 2k )处的切线与x 轴的交点的横坐标为a k +1,其中k ∈N *,若a 1=16,则a 1+a 3+a 5的值是________.[答案] 21[解析] ∵y ′=2x ,∴过点(a k ,a 2k )的切线方程为y -a 2k =2a k (x -a k ),又该切线与x 轴的交点为(a k +1,0),所以a k +1=12a k ,即数列{a k }是等比数列,首项a 1=16,其公比q =12,∴a 3=4,a 5=1,∴a 1+a 3+a 5=21.三、解答题15.过点P (-2,0)作曲线y =x 的切线,求切线方程. [解析] 因为点P 不在曲线y =x 上, 故设切点为Q (x 0,x 0),∵y ′=12x ,∴过点Q 的切线斜率为:12x 0=x 0x 0+2,∴x 0=2,∴切线方程为:y -2=122(x -2),即:x -22y +2=0.16.质点的运动方程为s =1t 2,求质点在第几秒的速度为-264.[解析] ∵s =1t2,∴Δs =1(t +Δt )2-1t2=t 2-(t +Δt )2t 2(t +Δt )2=-2t Δt -(Δt )2t 2(t +Δt )2∴li m Δt →0 Δs Δt =-2t t 2·t 2=-2t 3.∴-2t 3=-264,∴t =4. 即质点在第4秒的速度为-264. 17.已知曲线y =1x.(1)求曲线在点P (1,1)处的切线方程; (2)求曲线过点Q (1,0)处的切线方程; (3)求满足斜率为-13的曲线的切线方程.[解析] ∵y =1x ,∴y ′=-1x2.(1)显然P (1,1)是曲线上的点.所以P 为切点,所求切线斜率为函数y =1x在P (1,1)点导数.即k =f ′(1)=-1.所以曲线在P (1,1)处的切线方程为y -1=-(x -1),即为y =-x +2.(2)显然Q (1,0)不在曲线y =1x上.则可设过该点的切线的切点为A ⎝⎛⎭⎪⎫a ,1a ,那么该切线斜率为k =f ′(a )=-1a2.则切线方程为y -1a =-1a2(x -a ).①将Q (1,0)坐标代入方程:0-1a =-1a2(1-a ).解得a =12,代回方程①整理可得:切线方程为y =-4x +4.(3)设切点坐标为A ⎝ ⎛⎭⎪⎫a ,1a ,则切线斜率为k =-1a 2=-13,解得a =±3,那么A ⎝ ⎛⎭⎪⎫3,33,A ′⎝⎛⎭⎪⎫-3,3-3.代入点斜式方程得y -33=-13(x -3)或y +33=-13(x +3).整理得切线方程为y =-13x +233或y =-13x -233.18.求曲线y =1x与y =x 2在它们交点处的两条切线与x 轴所围成的三角形的面积.[解析] 两曲线方程联立得⎩⎪⎨⎪⎧y =1x,y =x 2,解得⎩⎪⎨⎪⎧x =1y =1.∴y ′=-1x2,∴k 1=-1,k 2=2x |x =1=2,∴两切线方程为x +y -2=0,2x -y -1=0,所围成的图形如上图所示. ∴S =12×1×⎝ ⎛⎭⎪⎫2-12=34.选修2-2 1.2.2 第1课时 基本初等函数的导数公式及导数运算法则一、选择题1.曲线y =13x 3-2在点⎝ ⎛⎭⎪⎫-1,-73处切线的倾斜角为( ) A .30° B .45° C .135°D .60°[答案] B[解析] y ′|x =-1=1,∴倾斜角为45°. 2.设f (x )=13x 2-1x x,则f ′(1)等于( )A .-16B.56 C .-76D.76[答案] B3.若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( ) A .4x -y -3=0 B .x +4y -5=0 C .4x -y +3=0D .x +4y +3=0[答案] A[解析] ∵直线l 的斜率为4,而y ′=4x 3,由y ′=4得x =1而x =1时,y =x 4=1,故直线l 的方程为:y -1=4(x -1)即4x -y -3=0.4.已知f (x )=ax 3+9x 2+6x -7,若f ′(-1)=4,则a 的值等于( ) A.193B.163 C.103D.133[答案] B[解析] ∵f ′(x )=3ax 2+18x +6,∴由f ′(-1)=4得,3a -18+6=4,即a =163.∴选B.5.已知物体的运动方程是s =14t 4-4t 3+16t 2(t 表示时间,s 表示位移),则瞬时速度为0的时刻是( )A .0秒、2秒或4秒B .0秒、2秒或16秒C .2秒、8秒或16秒D .0秒、4秒或8秒[答案] D[解析] 显然瞬时速度v =s ′=t 3-12t 2+32t =t (t 2-12t +32),令v =0可得t =0,4,8.故选D.6.(2010·新课标全国卷文,4)曲线y =x 3-2x +1在点(1,0)处的切线方程为( ) A .y =x -1B .y =-x -1C .y =2x -2D .y =-2x -2[答案] A[解析] 本题考查了导数的几何意义,切线方程的求法,在解题时应首先验证点是否在曲线上,然后通过求导得出切线的斜率,题目定位于简单题.由题可知,点(1,0)在曲线y =x 3-2x +1上,求导可得y ′=3x 2-2,所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得过点(1,0)的曲线y =x 3-2x +1的切线方程为y =x -1,故选A.7.若函数f (x )=e xsin x ,则此函数图象在点(4,f (4))处的切线的倾斜角为( ) A.π2B .0C .钝角D .锐角[答案] C[解析] y ′|x =4=(e x sin x +e x cos x )|x =4=e 4(sin4+cos4)=2e 4sin(4+π4)<0,故倾斜角为钝角,选C.8.曲线y =x sin x 在点⎝ ⎛⎭⎪⎫-π2,π2处的切线与x 轴、直线x =π所围成的三角形的面积为( )A.π22B .π2C .2π2D.12(2+π)2 [答案] A[解析] 曲线y =x sin x 在点⎝ ⎛⎭⎪⎫-π2,π2处的切线方程为y =-x ,所围成的三角形的面积为π22.9.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2011(x )等于( )A .sin xB .-sin xC .cos xD .-cos x[答案] D[解析] f 0(x )=sin x ,f 1(x )=f 0′(x )=(sin x )′=cos x , f 2(x )=f 1′(x )=(cos x )′=-sin x , f 3(x )=f 2′(x )=(-sin x )′=-cos x , f 4(x )=f 3′(x )=(-cos x )′=sin x ,∴4为最小正周期,∴f 2011(x )=f 3(x )=-cos x .故选D.10.f (x )与g (x )是定义在R 上的两个可导函数,若f (x )、g (x )满足f ′(x )=g ′(x ),则f (x )与g (x )满足( )A .f (x )=g (x )B .f (x )-g (x )为常数C .f (x )=g (x )=0D .f (x )+g (x )为常数[答案] B[解析] 令F (x )=f (x )-g (x ),则F ′(x )=f ′(x )-g ′(x )=0,∴F (x )为常数. 二、填空题11.设f (x )=ax 2-b sin x ,且f ′(0)=1,f ′⎝ ⎛⎭⎪⎫π3=12,则a =________,b =________.[答案] 0 -1[解析] f ′(x )=2ax -b cos x ,由条件知 ⎩⎪⎨⎪⎧-b cos0=12π3a -b cos π3=12,∴⎩⎪⎨⎪⎧b =-1a =0.12.设f (x )=x 3-3x 2-9x +1,则不等式f ′(x )<0的解集为________. [答案] (-1,3)[解析] f ′(x )=3x 2-6x -9,由f ′(x )<0得3x 2-6x -9<0,∴x 2-2x -3<0,∴-1<x <3.13.曲线y =cos x 在点P ⎝ ⎛⎭⎪⎫π3,12处的切线的斜率为______.[答案] -32[解析] ∵y ′=(cos x )′=-sin x , ∴切线斜率k =y ′|x =π3=-sin π3=-32.14.已知函数f (x )=ax +b e x图象上在点P (-1,2)处的切线与直线y =-3x 平行,则函数f (x )的解析式是____________.[答案] f (x )=-52x -12e x +1[解析] 由题意可知,f ′(x )|x =-1=-3, ∴a +b e -1=-3,又f (-1)=2,∴-a +b e -1=2,解之得a =-52,b =-12e ,故f (x )=-52x -12e x +1.三、解答题15.求下列函数的导数:(1)y =x (x 2+1x +1x3);(2)y =(x +1)(1x-1);(3)y =sin 4x 4+cos 4x 4;(4)y =1+x 1-x +1-x 1+x .[解析] (1)∵y =x ⎝ ⎛⎭⎪⎫x 2+1x +1x 3=x 3+1+1x2,∴y ′=3x 2-2x3;(3)∵y =sin 4x4+cos 4x4=⎝⎛⎭⎪⎫sin 2x 4+cos 2x 42-2sin 2x 4cos 2x4=1-12sin 2x 2=1-12·1-cos x 2=34+14cos x , ∴y ′=-14sin x ;(4)∵y =1+x 1-x +1-x 1+x =(1+x )21-x +(1-x )21-x=2+2x 1-x =41-x-2, ∴y ′=⎝⎛⎭⎪⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2.16.已知两条曲线y =sin x 、y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.[解析] 由于y =sin x 、y =cos x ,设两条曲线的一个公共点为P (x 0,y 0), ∴两条曲线在P (x 0,y 0)处的斜率分别为若使两条切线互相垂直,必须cos x 0·(-sin x 0)=-1, 即sin x 0·cos x 0=1,也就是sin2x 0=2,这是不可能的, ∴两条曲线不存在公共点,使在这一点处的两条切线互相垂直.17.已知曲线C 1:y =x 2与C 2:y =-(x -2)2.直线l 与C 1、C 2都相切,求直线l 的方程. [解析] 设l 与C 1相切于点P (x 1,x 21),与C 2相切于点Q (x 2,-(x 2-2)2).对于C 1:y ′=2x ,则与C 1相切于点P 的切线方程为y -x 21=2x 1(x -x 1),即y =2x 1x -x 21.①对于C 2:y ′=-2(x -2),与C 2相切于点Q 的切线方程为y +(x 2-2)2=-2(x 2-2)(x -x 2),即y =-2(x 2-2)x +x 22-4.②∵两切线重合,∴2x 1=-2(x 2-2)且-x 21=x 22-4, 解得x 1=0,x 2=2或x 1=2,x 2=0. ∴直线l 的方程为y =0或y =4x -4. 18.求满足下列条件的函数f (x ):(1)f (x )是三次函数,且f (0)=3,f ′(0)=0,f ′(1)=-3,f ′(2)=0; (2)f ′(x )是一次函数,x 2f ′(x )-(2x -1)f (x )=1. [解析] (1)设f (x )=ax 3+bx 2+cx +d (a ≠0) 则f ′(x )=3ax 2+2bx +c由f (0)=3,可知d =3,由f ′(0)=0可知c =0, 由f ′(1)=-3,f ′(2)=0可建立方程组⎩⎪⎨⎪⎧f ′(1)=3a +2b =-3f ′(2)=12a +4b =0,解得⎩⎪⎨⎪⎧a =1b =-3,所以f (x )=x 3-3x 2+3.(2)由f ′(x )是一次函数可知f (x )是二次函数, 则可设f (x )=ax 2+bx +c (a ≠0)f ′(x )=2ax +b ,把f (x )和f ′(x )代入方程,得x 2(2ax +b )-(2x -1)(ax 2+bx +c )=1整理得(a -b )x 2+(b -2c )x +c =1 若想对任意x 方程都成立,则需⎩⎪⎨⎪⎧ a -b =0b -2c =0c =1解得⎩⎪⎨⎪⎧a =2b =2c =1,所以f (x )=2x 2+2x +1.选修2-2 1.2.2 第2课时 基本初等函数的导数公式及导数运算法则一、选择题1.函数y =(x +1)2(x -1)在x =1处的导数等于( ) A .1 B .2 C .3D .4[答案] D[解析] y ′=[(x +1)2]′(x -1)+(x +1)2(x -1)′ =2(x +1)·(x -1)+(x +1)2=3x 2+2x -1, ∴y ′|x =1=4.2.若对任意x ∈R ,f ′(x )=4x 3,f (1)=-1,则f (x )=( ) A .x 4B .x 4-2 C .4x 3-5D .x 4+2[答案] B[解析] ∵f ′(x )=4x 3.∴f (x )=x 4+c ,又f (1)=-1 ∴1+c =-1,∴c =-2,∴f (x )=x 4-2.3.设函数f (x )=x m+ax 的导数为f ′(x )=2x +1,则数列{1f (n )}(n ∈N *)的前n 项和是( )A.n n +1B.n +2n +1 C.nn -1D.n +1n[答案] A[解析] ∵f (x )=x m+ax 的导数为f ′(x )=2x +1, ∴m =2,a =1,∴f (x )=x 2+x , 即f (n )=n 2+n =n (n +1), ∴数列{1f (n )}(n ∈N *)的前n 项和为: S n =11×2+12×3+13×4+…+1n (n +1)=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1, 故选A.4.二次函数y =f (x )的图象过原点,且它的导函数y =f ′(x )的图象是过第一、二、三象限的一条直线,则函数y =f (x )的图象的顶点在( )A .第一象限B .第二象限C .第三象限D .第四象限[答案] C[解析] 由题意可设f (x )=ax 2+bx ,f ′(x )=2ax +b ,由于f ′(x )的图象是过第一、二、三象限的一条直线,故2a >0,b >0,则f (x )=a ⎝ ⎛⎭⎪⎫x +b 2a 2-b 24a, 顶点⎝ ⎛⎭⎪⎫-b2a,-b 24a 在第三象限,故选C.5.函数y =(2+x 3)2的导数为( ) A .6x 5+12x 2B .4+2x 3C .2(2+x 3)2D .2(2+x 3)·3x[答案] A[解析] ∵y =(2+x 3)2=4+4x 3+x 6, ∴y ′=6x 5+12x 2.6.(2010·江西文,4)若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)=( ) A .-1 B .-2 C .2D .0[答案] B[解析] 本题考查函数知识,求导运算及整体代换的思想,f ′(x )=4ax 3+2bx ,f ′(-1)=-4a -2b =-(4a +2b ),f ′(1)=4a +2b ,∴f ′(-1)=-f ′(1)=-2要善于观察,故选B.7.设函数f (x )=(1-2x 3)10,则f ′(1)=( ) A .0B .-1C .-60D .60[答案] D[解析] ∵f ′(x )=10(1-2x 3)9(1-2x 3)′=10(1-2x 3)9·(-6x 2)=-60x 2(1-2x 3)9,∴f ′(1)=60.8.函数y =sin2x -cos2x 的导数是( ) A .22cos ⎝⎛⎭⎪⎫2x -π4B .cos2x -sin2xC .sin2x +cos2xD .22cos ⎝⎛⎭⎪⎫2x +π4 [答案] A[解析] y ′=(sin2x -cos2x )′=(sin2x )′-(cos2x )′ =2cos2x +2sin2x =22cos ⎝⎛⎭⎪⎫2x -π4.9.(2010·高二潍坊检测)已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D.12[答案] A[解析] 由f ′(x )=x 2-3x =12得x =3.10.设函数f (x )是R 上以5为周期的可导偶函数,则曲线y =f (x )在x =5处的切线的斜率为( )A .-15B .0 C.15D .5[答案] B[解析] 由题设可知f (x +5)=f (x ) ∴f ′(x +5)=f ′(x ),∴f ′(5)=f ′(0) 又f (-x )=f (x ),∴f ′(-x )(-1)=f ′(x ) 即f ′(-x )=-f ′(x ),∴f ′(0)=0 故f ′(5)=f ′(0)=0.故应选B. 二、填空题11.若f (x )=x ,φ(x )=1+sin2x ,则f [φ(x )]=_______,φ[f (x )]=________. [答案]2⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫x +π4,1+sin2x[解析] f [φ(x )]=1+sin2x =(sin x +cos x )2=|sin x +cos x |=2⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫x +π4.φ[f (x )]=1+sin2x .12.设函数f (x )=cos(3x +φ)(0<φ<π),若f (x )+f ′(x )是奇函数,则φ=________.[答案]π6[解析] f ′(x )=-3sin(3x +φ),f (x )+f ′(x )=cos(3x +φ)-3sin(3x +φ)=2sin ⎝⎛⎭⎪⎫3x +φ+5π6. 若f (x )+f ′(x )为奇函数,则f (0)+f ′(0)=0, 即0=2sin ⎝ ⎛⎭⎪⎫φ+5π6,∴φ+5π6=k π(k ∈Z ). 又∵φ∈(0,π),∴φ=π6.13.函数y =(1+2x 2)8的导数为________. [答案] 32x (1+2x 2)7[解析] 令u =1+2x 2,则y =u 8,∴y ′x =y ′u ·u ′x =8u 7·4x =8(1+2x 2)7·4x =32x (1+2x 2)7.14.函数y =x 1+x 2的导数为________. [答案] (1+2x 2)1+x21+x2[解析] y ′=(x 1+x 2)′=x ′1+x 2+x (1+x 2)′=1+x 2+x 21+x2=(1+2x 2)1+x21+x2. 三、解答题15.求下列函数的导数:(1)y =x sin 2x ; (2)y =ln(x +1+x 2); (3)y =e x+1e x -1; (4)y =x +cos x x +sin x .[解析] (1)y ′=(x )′sin 2x +x (sin 2x )′ =sin 2x +x ·2sin x ·(sin x )′=sin 2x +x sin2x . (2)y ′=1x +1+x2·(x +1+x 2)′ =1x +1+x2(1+x1+x2)=11+x2.(3)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=-2ex(e x -1)2 .(4)y ′=(x +cos x )′(x +sin x )-(x +cos x )(x +sin x )′(x +sin x )2=(1-sin x )(x +sin x )-(x +cos x )(1+cos x )(x +sin x )2=-x cos x -x sin x +sin x -cos x -1(x +sin x )2. 16.求下列函数的导数:(1)y =cos 2(x 2-x ); (2)y =cos x ·sin3x ; (3)y =x log a (x 2+x -1); (4)y =log 2x -1x +1. [解析] (1)y ′=[cos 2(x 2-x )]′ =2cos(x 2-x )[cos(x 2-x )]′=2cos(x 2-x )[-sin(x 2-x )](x 2-x )′ =2cos(x 2-x )[-sin(x 2-x )](2x -1) =(1-2x )sin2(x 2-x ).(2)y ′=(cos x ·sin3x )′=(cos x )′sin3x +cos x (sin3x )′ =-sin x sin3x +3cos x cos3x =3cos x cos3x -sin x sin3x .(3)y ′=log a (x 2+x -1)+x ·1x 2+x -1log a e(x 2+x -1)′=log a (x 2+x -1)+2x 2+x x 2+x -1log a e.(4)y ′=x +1x -1⎝ ⎛⎭⎪⎫x -1x +1′log 2e =x +1x -1log 2e x +1-x +1(x +1)2=2log 2e x 2-1. 17.设f (x )=2sin x 1+x 2,如果f ′(x )=2(1+x 2)2·g (x ),求g (x ).[解析] ∵f ′(x )=2cos x (1+x 2)-2sin x ·2x(1+x 2)2=2(1+x 2)2[(1+x 2)cos x -2x ·sin x ], 又f ′(x )=2(1+x 2)2·g (x ).∴g (x )=(1+x 2)cos x -2x sin x .18.求下列函数的导数:(其中f (x )是可导函数)(1)y =f ⎝ ⎛⎭⎪⎫1x;(2)y =f (x 2+1).。
第二章测评A(基础过关卷)(时间:90分钟满分:100分)第Ⅰ卷(选择题共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是()A.使用了归纳推理B.使用了类比推理C.使用了“三段论”,但大前提错误D.使用了“三段论”,但小前提错误答案:C2.观察下面图形的规律,在其右下角的空格内画上合适的图形为()A.■B.△C.□D.○解析:由每一行中图形的形状及黑色图形的个数,则知A正确.答案:A3.由“正三角形的内切圆切于三边的中点”,可类比猜想出正四面体的内切球切于四个侧面()A.各正三角形内任一点B.各正三角形的某高线上的点C.各正三角形的中心D.各正三角形外的某点解析:正三角形的边对应正四面体的面,即正三角形所在的正四面体的侧面,所以边的中点对应的就是正四面体各正三角形的中心.答案:C4.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=()A.28B.76C.123D.199解析:记a n+b n=f(n),则f(3)=f(1)+f(2)=1+3=4;f(4)=f(2)+f(3)=3+4=7;f(5)=f(3)+f(4)=11.通过观察不难发现f(n)=f(n-1)+f(n-2)(n∈N*,n≥3),则f(6)=f(4)+f(5)=18;f(7)=f(5)+f(6)=29;f(8)=f(6)+f(7)=47;f(9)=f(7)+f(8)=76;f(10)=f(8)+f(9)=123.所以a10+b10=123.答案:C5.数列{a n}满足a1=,a n+1=1-,则a2 015等于()A.B.-1 C.2 D.3解析:∵a1=,a n+1=1-,∴a2=1-=-1,a3=1-=2,a4=1-,a5=1-=-1,a6=1-=2,∴a n+3k=a n(n∈N*,k∈N*).∴a2 015=a2+3×671=a2=-1.答案:B6.已知f(x+y)=f(x)+f(y),且f(1)=2,则f(1)+f(2)+…+f(n)不能等于()A.f(1)+2f(1)+…+nf(1)B.fC.D.f(1)解析:f(x+y)=f(x)+f(y),令x=y=1,得f(2)=2f(1),令x=1,y=2,f(3)=f(1)+f(2)=3f(1)︙f(n)=nf(1),所以f(1)+f(2)+…+f(n)=(1+2+…+n)f(1)=f(1).所以A,D正确.又f(1)+f(2)+…+f(n)=f(1+2+…+n)=f,所以B也正确.故选C.答案:C7.对于奇数列1,3,5,7,9,…,现在进行如下分组:第一组有1个数{1},第二组有2个数{3,5},第三组有3个数{7,9,11},……,依此类推,则每组内奇数之和S n与其组的编号数n的关系是() A.S n=n2 B.S n=n3C.S n=n4D.S n=n(n+1)解析:∵当n=1时,S1=1;当n=2时,S2=8=23;当n=3时,S3=27=33;∴归纳猜想S n=n3,故选B.答案:B8.在等差数列{a n}中,若a n>0,公差d>0,则有a4a6>a3a7,类比上述性质,在等比数列{b n}中,若b n>0,公比q>1,则b4,b5,b7,b8的一个不等关系是()A.b4+b8>b5+b7B.b4+b8<b5+b7C.b4+b7>b5+b8D.b4+b7<b5+b8解析:b5+b7-b4-b8=b4(q+q3-1-q4)=b4(q-1)(1-q3)=-b4(q-1)2(1+q+q2)=-b4(q-1)2.∵b n>0,q>1,∴-b4(q-1)·<0,∴b4+b8>b5+b7.答案:A9.已知x>0,不等式x+≥2,x+≥3,x+≥4,…,可推广为x+≥n+1,则a的值为()A.2nB.n2C.22n-2D.n n解析:由x+≥2,x+=x+≥3,x+=x+≥4,…,可推广为x+≥n+1,故a=n n.答案:D10.将石子摆成如图的梯形形状.称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2 012项与5的差,即a2 012-5=()A.2 018×2 012B.2 018×2 011C.1 009×2 012D.1 009×2 011解析:由已知可得a2-a1=4a3-a2=5a4-a3=6……a2 012-a2 011=2 014.以上各式相加得a2 012-a1==1 009×2 011.∵a1=5,∴a2 012-5=1 009×2 011.答案:D第Ⅱ卷(非选择题共60分)二、填空题(本大题共5小题,每小题4分,共20分.把答案填在题中的横线上)11.在△ABC中,D为BC的中点,则),将命题类比到三棱锥中得到的命题为.答案:在三棱锥A-BCD中,G为△BCD的重心,则)12.用数学归纳法证明+…+(n>1且n∈N*),第一步要证明的不等式是.解析:∵n>1,∴第一步应证明当n=2时不等式成立,即.答案:13.f(n)=1++…+(n∈N*),经计算得f(2)=,f(4)>2,f(8)>,f(16)>3,f(32)>,推测当n≥2时,有.解析:观测f(n)中n的规律为2k(k=1,2,…),不等式右侧分别为,k=1,2,…,所以f(2n)>(n≥2).答案:f(2n)>(n≥2)14.若定义在区间D上的函数f(x)对于D上的n个值x1,x2,…,x n,总满足[f(x1)+f(x2)+…+f(x n)]≤f,称函数f(x)为D上的凸函数;现已知f(x)=sin x在(0,π)上是凸函数,则△ABC中,sin A+sin B+sin C的最大值是.解析:因为f(x)=sin x在(0,π)上是凸函数(小前提),所以(sin A+sin B+sin C)≤sin(结论),即sin A+sin B+sin C≤3sin.因此,sin A+sin B+sin C的最大值是.答案:15.观察下图:则第行的各数之和等于2 0112.解析:经观察知,图中的第n行的各数构成一个首项为n,公差为1,共(2n-1)项的等差数列,其各项和为:S n=(2n-1)n+=(2n-1)n+(2n-1)(n-1)=(2n-1)2.令(2n-1)2=2 0112,得2n-1=2 011,故n=1 006.答案:1 006三、解答题(本大题共5小题,共40分.解答时应写出文字说明、证明过程或演算步骤)16.(本小题6分)已知a>b>c,且a+b+c=0,求证:.证明:因为a>b>c,且a+b+c=0,所以a>0,c<0.要证明原不等式成立,只需证明a,即证b2-ac<3a2,从而只需证明(a+c)2-ac<3a2,即(a-c)(2a+c)>0,因为a-c>0,2a+c=a+c+a=a-b>0,所以(a-c)(2a+c)>0成立,故原不等式成立.17.(本小题6分)已知实数x,且有a=x2+,b=2-x,c=x2-x+1,求证:a,b,c中至少有一个不小于1.证明:假设a,b,c都小于1,即a<1,b<1,c<1,则a+b+c<3.∵a+b+c=+(2-x)+(x2-x+1)=2x2-2x+=2+3,且x为实数,∴2+3≥3,即a+b+c≥3,这与a+b+c<3矛盾.∴假设不成立,原命题成立.∴a,b,c中至少有一个不小于1.18.(本小题8分)先阅读下列不等式的证法,再解决后面的问题:已知a1,a2∈R,且a1+a2=1,求证:.证明:构造函数f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+.因为对一切x∈R,恒有f(x)≥0,所以Δ=4-8()≤0,从而得.(1)若a1,a2,…,a n∈R,且a1+a2+…+a n=1,请写出上述结论的推广式;(2)参考上述证法,对你推广的结论加以证明.(1)解:若a1,a2,…,a n∈R,a1+a2+…+a n=1,则+…+.(2)证明:构造函数f(x)=(x-a1)2+(x-a2)2+…+(x-a n)2=nx2-2(a1+a2+…+a n)x++…+=nx2-2x++…+.因为对一切x∈R,都有f(x)≥0,所以Δ=4-4n(+…+)≤0,从而证得+…+.19.(本小题10分)已知等差数列{a n}的公差大于0,且a3,a5是方程x2-14x+45=0的两根,数列{b n}的前n项和为S n,且S n=1-b n.(1)求数列{a n},{b n}的通项公式;(2)记c n=a n·b n,求证:c n+1≤c n.(1)解:∵a3,a5是方程x2-14x+45=0的两根,且数列{a n}的公差d>0,∴a3=5,a5=9,公差d==2.∴a n=a5+(n-5)d=2n-1.由题意得,当n=1时,b1=S1=1-,∴b1=.当n≥2时,b n=S n-S n-1=(b n-1-b n),∴b n=b n-1(n≥2).∴数列{b n}是以为首项,为公比的等比数列.∴b n=.(2)证明:由(1)知,c n=a n·b n=,c n+1=,∴c n+1-c n=≤0.∴c n+1≤c n.20.(本小题10分)用数学归纳法证明12+32+52+…+(2n-1)2=n(4n2-1)(n∈N*).证明:(1)当n=1时,左边=12,右边=×1×(4×1-1)=1,左边=右边,等式成立.(2)假设当n=k时,等式成立,即12+32+52+…+(2k-1)2=k(4k2-1),则当n=k+1时,12+32+52+…+(2k-1)2+(2k+1)2=k(4k2-1)+(2k+1)2=k(2k+1)(2k-1)+(2k+1)2=(2k+1)[k(2k-1)+3(2k+1)]=(2k+1)(2k2+5k+3)=(2k+1)(k+1)(2k+3)=(k+1)(4k2+8k+3)=(k+1)[4(k+1)2-1],即当n=k+1时,等式成立.由(1)(2)可知,对一切n∈N*等式成立.。