山东省高密市银鹰文昌中学九年级数学下册《5.8 二次函数的应用》学案
- 格式:doc
- 大小:226.00 KB
- 文档页数:4
课题:二次函数总编号:NO.20课型:复习课授课人:王德文单位:山东省高密市银鹰文昌中学一、复习要点(1)能结合实例说出二次函数的意义。
(2)能写出实际问题中的二次函数的关系式,会画出它的图象,说出它的性质。
(3)掌握二次函数的平移规律。
(4)会通过配方法确定抛物线的开口方向、对称轴和顶点坐标和最值。
(5)会用待定系数法灵活求出二次函数关系式。
(6)熟悉二次函数与一元二次方程及方程组的关系。
(7)会用二次函数的有关知识解决实际生活中的问题。
二、需要注意的问题在学习二次函数时,要注重数形结合的思想方法。
在二次函数图象的平移变化中,在用待定系数法求二次函数关系式的过程中,在利用二次函数图象求解方程与方程组时,都体现了数形结合的思想。
三、课前自我构建:完成以下复习内容:1、二次函数的定义:_____________________________________2、二次函数的图象与性质:二次函数的图象是一条__________。
以下从它们的顶点,对称轴、开口方向,增减性及最值方面记住各自的性质:(1)二次函数y=ax2的性质:顶点坐标为__________(2)二次函数y=a(x-h)2+k的性质:顶点坐标为__________(3)二次函数y=ax2+bx+c的性质:顶点坐标为__________3.对于二次函数y=a(x-x1)(x-x2),它的图象的对称轴是___________,其中的x1 x2表示的意义是______________________________________。
4.对于二次函数y=ax2+bx+c的符号问题:a的符号看_____________;c的符号看________________;b的符号看________________,b2-4ac的符号看_________________________;a+b+c看_____________________;a-b+c看_____________________________。
九年级数学《二次函数的应用(一)》优秀教案通过前面的学习,学生已经掌握了二次函数的三种表示方式和性质。
学生已经经历了由实际问题转化为数学问题的过程,对解决这类问题有了一定处理经验。
二、教学目标知识目标:能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题中的最大(小)值.能力目标:1.通过分析和表示不同背景下实际问题中变量之间的二次函数关系,培养学生的分析判断能力.2.通过运用二次函数的知识解决实际问题,培养学生的数学应用能力.情感态度与价值观:1.经历探究长方形和窗户透光最大面积问题的过程,获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值.2.能够对解决问题的基本策略进行反思,形成个人解决问题的风格.3.进一步体会数学与人类社会的密切联系,了解数学的价值,增进对数学的理解和学习的信心,具有初步的创新精神和实践能力.三、教学重点1.经历探究长方形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学知识的应用价值.2.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题.四、教学难点能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能运用二次函数的有关知识解决最大面积的问题.五、教学过程一、创设情境,引入新课探究一:如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上,AN=40m,AM=30m,(1)如果设矩形的一边AB=xm,那么AD边的长度如何表示?(2)设矩形的面积ym2,当x取何值时,y的最大?最大值是多少?《二次函数的应用(一)》教学设计设计目的:对于这个问题,教师将其作为例题,不论是对问题本身的分析,还是具体的解法过程,都将作出细致、规范的讲解和示范。
具体的过程如下:分析:(1)要求AD边的长度,即求BC边的长度,而BC是△EBC 中的一边,因此可以用三角形相似求出BC.由△EBC∽△EAF,得《二次函数的应用(一)》教学设计即《二次函数的应用(一)》教学设计.所以AD=BC=《二次函数的应用(一)》教学设计(40-x).(2)要求面积y的最大值,即求函数y=AB·AD=x·《二次函数的应用(一)》教学设计(40-x)的最大值,就转化为数学问题了.y=-《二次函数的应用(一)》教学设计(x-20)2+300.当x=20时,y最大=300.即当x取20m时,y的值最大,最大值是300m2.探究二:如果把矩形改为如下图所示的位置,其顶点A和顶点D分别在两直角边上,BC在斜边上.其他条件不变,那么矩形的最大面积是多少?《二次函数的应用(一)》教学设计设计目的:通过两种情况的分析,训练学生的发散思维能力,关键是教会学生方法,也是这类问题的难点所在,即怎样设未知数,怎样转化为我们熟悉的数学问题.在此基础上对变式三进行探究,进而总结此类题型,得出解决问题的一般方法.二、例题讲解某建筑物的窗户如下图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m.当x 等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?(结果精确到0.01m2)《二次函数的应用(一)》教学设计分析:x为半圆的半径,也是矩形的较长边,因此x与半圆面积和矩形面积都有关系.要求透过窗户的光线最多,也就是求矩形和半圆的面积之和最大。
《6.4 二次函数的应用(1)》讲学案学习目标:1、体会二次函数是一类最优化问题的数学模型,了解数学的应用价值。
2、掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值。
学习重点:应用二次函数最值解决实际问题中的最大利润。
学习难点:能够正确地应用二次函数最值解决实际问题中的最大利润.特别是把握好自变量的取值范围对最值的影响。
学习过程:一、情景导学:1、问题:某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多?问题1、总利润=×,单件利润=—。
2、在这个问题中有那些变量?其中哪些是自变量?哪些是因变量?3、根据前面的分析我们若设每个降价x元,总利润为y元,此时y与x之间的函数关系式是,化为一般式。
这里y是x的函数。
现在求最大利润,实质就是求此二次函数的最值,你会求吗?试试看。
二例题1.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)每件衬衫降低多少元时,商场平均每天盈利最多?2.某公司生产的A种产品,它的成本是2元,售价是3元,年销售量为10万件.为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x(10万元)时,产品的年销售量将是原销售量的y倍,且y是x(10万元)0 1 2 …y 1 1.51.8…(1)求y与x(2)如果把利润看作是销售总额减去成本和广告费,试写出年利润S(10万元)与广告费x(10万元)函数表达式;(3)如果投入的广告费为10万元~30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?三、练一练1、某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.⑴利用函数表达式描述橙子的总产量与增种橙子树的棵数之间的关系.⑵在上述问题中,种多少棵橙子树,可以使果园橙子的总产量最多?⑶增种多少棵橙子,可以使橙子的总产量在60400个以上?四、拓展训练:某商场经营一批进价为2元一件的小商品,在市场营销中发现此商品的日销售单价x元与日销售量yx 3 5 9 11y 18146 2①根据表中提供的数据描出实数对(x,y)的对应点;②猜测并确定日销售量y件与日销售单价x元之间的函数表达式,并画出图象.(2)设经营此商品的日销售利润(不考虑其他因素)为P元,根据日销售规律:①试求出日销售利润P元与日销售单价x元之间的函数表达式,并求出日销售单价x为多少元时,才能获得最大日销售利润?试问日销售利润P是否存在最小值?若有,试求出;若无,请说明理由.②在给定的直角坐标系乙中,画出日销售利润P 元与日销售单价x元之间的函数图象的简图,观察图象,写出x与P的取值范围.§6.4二次函数的运用(1)分层作业1.A.某类产品按质量共分为10个档次,生产最低档次产品每件利润为8元,如果每提高一个档次每件利润增加2元.用同样的工时,最低档次产品每天可生产60件,每提高一个档次将少生产3件,求生产何种档次的产品利润最大?2.A.将进货为40元的某种商品按50元一个售出时,能卖出500个.已知这时商品每涨价一元,其销售数就要减少20个.为了获得最大利益,售价应定为多少?3.C.某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40元~70元之间.市场调查发现,若每箱以50元销售,平均每天可销售90箱;价格每降低1元,平均每天多销售3箱;价格每升高1元,平均每天少销售3箱.(1)写出平均每天销售量y(箱)与每箱售价x(元)之间的函数表达式(注明范围);(2)求出商场平均每天销售这种年奶的利润W(元)与每箱牛奶的售价x(元)之间的二次函数表达式;(每箱利润=售价-进价)(3)求出(2)中二次函数图象的顶点坐标,并求出当x=40,70时W的值,在直角坐标系中画出函数图象的草图;(4)由函数图象可以看出,当牛奶售价为多少时,平均每天的利润最大?最大利润是多少?。
5.8二次函数的应用导学案学习目标:1、能根据实际问题列出函数关系式,确定函数自变量x的取值范围2、建立二次函数的数学模型解决实际问题,培养学生分析问题、解决问题的能力学习重点、难点:1、重点:根据实际问题建立二次函数的数学模型,并确定二次函数自变量的范围2、难点:根据实际问题建立二次函数的数学模型,并确定二次函数自变量的范围课前延伸1.通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标。
(1)y=6x2+12x; (2)y=-4x2+8x-102. 以上两个函数,哪个函数有最大值,哪个函数有最小值?说出两个函数的最大值、最小值分别是多少?课内探究一、自主学习要用总长为20m的铁栏杆,一面靠墙,围成一个矩形的花圃,怎样围法才能使围成的花圃的面积最大?二、合作与探究展示:1、某商店将每件进价8元的某种商品按每件10元售出,一天可销出约100件,该店想通过降低售价,增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加约10件。
将这种商品的售价降低多少时,能使销售利润最大?2.用6m长的铝合金型材做一个形状如图所示的矩形窗框。
应做成长、宽各为多少时,才能使做成的窗框的透光面积最大?最大透光面积是多少?三、检测与反馈:练习第1、2、3题四、课堂小结:1.通过本节课的学习,你学到了什么知识?存在哪些困惑?2.谈谈你的收获和体会。
五、布置作业:P47 1、2课后提升1.如图(1)所示,要建一个长方形的养鸡场,鸡场的一边靠墙,如果用50m 长的篱笆围成中间有一道篱笆的养鸡场,没靠墙的篱笆长度为xm。
(1)要使鸡场的面积最大,鸡场的长应为多少米?(2)如果中间有n(n是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?(3)比较(1)、(2)的结果,你能得到什么结论?2.如图(2),已知平行四边形ABCD的周长为8cm,∠B=30°,若边长AB=x(cm)。
九年级数学《二次函数的应用》函数实际运用教案教学目标:1. 了解二次函数的基本概念和特性;2. 掌握二次函数的应用,尤其是函数的图像和实际问题的联系;3. 培养学生分析和解决实际问题的能力。
教学准备:1. 教材:九年级数学教材第X章;2. 教具:黑板、彩色粉笔、教学PPT、作业本。
教学过程:一、引入活动1. 导入话题:请学生们回顾上节课学习的内容,简要询问二次函数的定义和基本形式。
2. 引入主题:将本节课的主题以问题的形式呈现给学生:“二次函数在现实生活中有哪些应用呢?”二、知识讲解1. 讲解二次函数的图像:通过展示PPT上的图像,引导学生观察二次函数图像的特点,并介绍顶点、对称轴、开口方向等概念。
2. 讲解二次函数的实际应用:从实际生活中选择几个典型的例子,如抛物线的运动轨迹、塔的高度与时间的关系等,解释二次函数在这些问题中的应用。
三、案例分析1. 案例一:小明从楼顶向上抛一颗球,球的运动轨迹可以用二次函数表示。
给定抛物线的顶点坐标和距离地面的最大高度,请让学生通过公式推导和计算,确定球的运动轨迹方程。
2. 案例二:某商场为了促销,准备通过调整售价和销量之间的关系来提高利润。
请学生根据售价和销量的数据,建立二次函数模型,并通过求解最值问题,确定最佳销售策略。
四、讨论与总结1. 学生交流:请学生们以小组为单位,根据自己感兴趣的实际问题,讨论并找出相关的二次函数应用案例。
每个小组选择一个案例进行介绍,并给出解决问题的策略。
2. 整体总结:引导学生总结本节课所学的知识点和方法,强调二次函数在实际生活中的广泛应用。
五、拓展练习1. 练习一:请学生们完成教材上与二次函数应用相关的练习题,巩固所学知识。
2. 练习二:设计一道与实际生活相关的二次函数问题,并要求学生用二次函数的方法解答。
六、作业布置1. 布置笔记作业:请学生们对本节课的要点进行整理,写一份学习笔记,明确二次函数应用的基本概念和方法。
2. 布置实践作业:要求学生们在日常生活中寻找并记录二次函数应用的实例,包括图像、方程和实际问题的解决过程。
初中数学青岛版九年级下册高效课堂资料5.8 二次函数的应用(一)教学目标:1:能利用二次函数的图像和性质解决实际问题。
2:能利用二次函数的图像和性质求最大值或最小值重点:利用二次函数的图像和性质解决实际问题。
难点:根据问题情境,建立数学模型课前预习1:二次函数的三种表现形式:一般式;顶点式:;交点式:。
2如何确定二次函数y=ax2+bx+c(a≠0)的最大(小)值(1)若a>0,当x= 时,y最小值=若a<0,当x= 时,y最大值=(2)二次函数y=ax2+bx+c(a≠0)配方得y=a(x-h)2+k(a≠0)的形式:顶点坐标为()若a>0,当x= 时,y最小值=若a<0,当x= 时,y最大值=3:填空(1)二次函数y=-3(x+4)2+1的图象开口当x= 时,y取最值。
(2)某广告公司要设计一个周长为20米的矩形广告牌,当矩形的一边长为何值时广告牌的面积最大?分析:设矩形的面积为s米2,长为x米,则宽为米,依题意得S=S是x的函数,怎样求该函数的最大值?该函数的最大值就是最大值解:思考:当题目中要求有关图形的最大面积时,应当怎样解决该类问题?课内探究一:自主探究:(一)修建有一条边靠墙的矩形菜园,不靠墙的三边的长度之和为60米。
应该怎样设计才使菜园的面积最大?最大面积是多少?(二)如图:ABCD是一块边长为2米的正方形铁板,在边AB上选取一点M,分别以AM和BM为边截取两块相邻的正方形板料。
当AM的长为何值时,截取的板料面积最小?小结:解函数应用题的一般步骤有哪些?二、灵活应用:星光中学课外活动小组准备围建一个矩形生物苗圃园,其中一面靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米,如图,是这个苗圃园垂直于墙的一边的长为x米(1)若平行于墙的一边长为y米,直接写出y与x之间的函数关系式及其自变量x的取值范围;(2)垂直于墙的一边长为多少米时,这个苗圃园的面积最大?并求出这个最大值;课堂小结:总结你的收获:一路下来,我们学习了很多知识,也有了很多想法。
《5.8二次函数的应用》学案
学习目标:
1、经历“问题情境—建立模型—求解验证”的过程,感受建模思想和数学的应用价值。
2、会用二次函数图像的性质,确定二次函数的最值,并能解决实际中的最值问题。
课前预习
1、已知二次函数y=2(x-2)2+1,当x= 时,y 取最 值为
2、二次函数y=-3 (x+4)2+1的图像开口 ,当x= 时,y 取最 值
课中探究
例1:如图,在ABC ∆中,90B ∠=,12mm AB =,24mm BC =,动点P 从点A 开始沿边AB 向B 以2mm /s 的速度移动(不与点B 重合),动点Q 从点B 开始沿边BC 向C 以4mm /s 的速度移动(不与点C 重合).如果P 、Q 分别从A 、B 同时出发,那么 经过多少秒,四边形APQC 的面积最小
巩固练习:如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)铁片备用,当截取的矩形面积最大时,矩形两边长x 、y 应分别为( ) A .x =10,y =14 B .x =14,y =
10 C .x =12,y =15 D .x =15,y =12
例2:如图,一位篮球运动员在离篮圈水平距离4m 处跳起投篮,球沿一条抛物运行,当球运行的水平距离为2.5m 时,达到最大高度3.5m,然后准备落入篮框内。
已知篮圈中心离地面高度为3.05m.
(1) 建立图中所示的直角坐标系,求抛物线所对应的函数关系式;
(2) 若该运动员身高1.8m,这次跳投时,球在他头顶上方0.25m 处出手.问:球出手
时,他跳离地面多高?
巩固练习:(2007•枣庄)小敏在某次投篮中,球的运动路线
是抛物线y=- x2+3.5的一部分(如图),若命中篮圈中心,
则他与篮底的距离L 是( )
例3:(2010河北省)某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y (元/件)与月销量x (件)的函数关系式为y =100
1 x +150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w 内(元)(利润 = 销售额-成本-广告费).
若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a 元/件(a 为常数,10≤a ≤40),当月销量为x (件)时,每月还需缴纳1001x 2 元的附加费,设月利润为w 外(元)(利润 = 销售额-成本-附加费).
(1)当x = 1000时,y = 元/件,w 内 = 元;
(2)分别求出w 内,w 外与x 间的函数关系式(不必写x 的取值范围);
(3)当x 为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在
国内销售月利润的最大值相同,求a 的值;
(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内
还是在国外销售才能使所获月利润较大?
巩固练习:在2006年青岛崂山北宅樱桃节前夕,•某果品批发公司为指导今年的樱桃销售,对往年的市场销售情况进行了调查统计,得到如下数据:
克)
(1)在如图的直角坐标系内,作出各组有序数对
(x,y)所对应的点.连接各点并观察所得的图形,判断y
与x之间的函数关系,并求出y与x之间的函数关系式;
(2)若樱桃进价为13元/千克,试求销售利润P(元)与
销售价x(元/千克)之间的函数关系式,并求出当x取何
值时,P的值最大?
例4:某商人开始时,将进价为每件8元的某种商品按每件10元出售,每天可销出100件。
他想用提高售价的方法来增加利润。
经试验,发现这种商品每件每提价1元,每天的销售量就会减少10件。
(1)写出每天所得的利润y(元)与售价x(元/件)之间的函数关系式;
(2)每件售价定为多少元,才能是一天所得的利润最大?
课堂检测
(2010湖北省荆门市)某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时平均每天销售量是500件,而销售价每降低1元,平均每天就可以多售出100件
(1)假定每件商品降价x 元,商店每天销售这种小商品的利润是y 元,请写出y 与x 间的函数关系式,并注明x 的取值范围.
(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?(注:销售利润=销售收入-购进成本)
课后延伸
(2010河南)在平面直角坐标系中,已知抛物线经过A )0,4(-,B )4,0(-,C )0,2(三点.
(1)求抛物线的解析式;
(2)若点M 为第三象限内抛物线上一动点,点M 的横坐
标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,
并求出S 的最大值.
(3)若点P 是抛物线上的动点,点Q 是直线x y -=上
的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点
的四边形为平行四边形,直接写出相应的点Q 的坐标.。