第一篇第二章三极管及其电路分析
- 格式:ppt
- 大小:685.50 KB
- 文档页数:49
三极管基本放大电路解析三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。
分成NPN和PNP两种。
我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。
下面的分析仅对于NPN型硅三极管。
如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。
这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。
三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。
如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。
如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I可以算得,这电阻上电压就会发生很大的变化。
我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。
三极管在实际的放大电路中使用时,还需要加合适的偏置电路。
这有几个原因。
首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。
当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。
但实际中要放大的信号往往远比0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。
如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。
本文主要介绍三极管的计算,包括电压增益A 、输入电阻i R 、输出电阻o R ;包括三极管的三种组态:共集、共基、共射的计算。
本文力图让读者在细读完本文后能对三极管的相关计算熟练掌握。
本人刚读研一,考研是考的模电,有一年三极管使用经验。
望以一种怀疑的态度看本文。
本文与其他课本讲述的不同之处,介绍一种直观的方法,而不是画出小信号等效模型的方法来进行各种计算,而且这种方法不需要记忆各种公式,完全直观的看就可以得出结果。
方法的关键在于对BJT 的模型的简化和理解。
三极管的等效模型如图,高频模式的很多参数被忽略,实践上当频率不是特别高时这种模型的精度是足够了的。
图1三极管及其小信号等效模型从模型中可以看出,be 之间是电阻be r ;bc 之间是断开的;ce 之间是电流控制电流源,控制关系如图所示,b c i i ,其中 是常数,由管子决定,b i 为be 之间的电流,也就是流过be r 的电流,它们的电流方向是应特别值得注意的。
图中同样可以得到这个重要关系式:b c b e i i i i 1。
总结一下,简化模型中要用到的几点:(1)be 间电阻是be r ;(2)bc 间开路;(3)ce 间为受控电流源b c i i ;(4)b i 即be i ,c i 即ce i ,注意它们的方向关系;(5) b c b e i i i i 1,一定要主要方向。
另外还需要知道的就是电路的交流通路。
求交流通路也是直观的看,并不画出来。
求交流通路的要点:(1)DD V 是直流电源,没有交流成分,所以是交流地,所以分析交流通路时,接电源和接地是一个效果。
(2)电容短路,除非特别说明,所有电容对交流短路。
(3)信号中的直流成分被忽略,只考虑交流部分。
例如:cebcbi图2三极管基本电路图3图2中电路的交流通路分析如下:C2短路,c R 接地,则c R 和L R 并联接地。
1b R 接电源相当于接地,则1b R 和2b R 并联接地。
三极管放大电路详细分析一、原理1.共射放大电路:共射放大电路的输入信号加在基极上,输出信号从集电极上取出。
在共射放大电路中,基极和集电极之间呈负反馈,使放大电路的输入电阻变大,输出电阻变小。
共射放大电路具有电流放大性能好、电压放大倍数大、输入输出相位差小等特点,常用于对输入电流要求较高的场合。
2.共基放大电路:共基放大电路的输入信号加在发射极上,输出信号从集电极上取出。
在共基放大电路中,发射极与集电极之间呈负反馈,使得输出电阻变小,电流放大倍数增大。
共基放大电路的特点是电压放大率小,但电流放大率较高,具有宽频带、高频特性好的优点,适用于高频放大器。
3.共集放大电路:共集放大电路的输入信号加在栅极上,输出信号从源极上取出。
在共集放大电路中,源极与漏极之间呈负反馈,使放大电路的电压特性和输入输出特性更好。
共集放大电路具有输入电阻大,输出电阻小,电压放大倍数小的特点,常被应用于信号源驱动等场合。
二、特点1.放大性能好:三极管放大电路具有较好的电流放大倍数和电压放大倍数,能够将微弱的输入信号放大为较大的输出信号。
2.宽频带特性:三极管放大电路具有较好的频率响应特性,能够放大高频信号。
3.可控性强:通过改变三极管的偏置电流和工作点,可以调整放大电路的放大倍数和工作状态。
4.可靠性高:三极管具有耐压能力强、温度稳定、寿命较长等优点,可以在恶劣环境下稳定工作。
三、设计步骤1.确定放大电路的类型:根据需要的放大倍数和频率范围选择合适的三极管放大电路类型。
2.计算电阻值:根据三极管的参数和工作要求,计算出各个电阻的取值,以使得放大电路能够工作在合适的工作点。
3.搭建电路:根据设计的电阻值和三极管的引脚接法,搭建放大电路,注意保持电路的稳定性和可靠性。
4.测试和调整:通过信号发生器输入信号,使用示波器和万用表等测试工具,检测并调整放大电路的工作状态,使其达到设计要求。
四、应用三极管放大电路广泛应用于各种电子设备中,包括音频放大器、射频放大器、功率放大器、电子对抗设备等。
第二章三极管及放大电路基础教学重点1.了解三极管的外形特征、伏安特性和主要参数。
2.在实践中能正确使用三极管。
3.理解放大的概念、放大电路主要性能指标、放大电路的基本构成和基本分析方法。
4.掌握共发射极放大电路的组成、工作原理,并能估算电路的静态工作点、放大倍数、输入和输出电阻等性能指标。
5.能搭建分压式放大电路,并调整静态工作点。
教学难点1.三极管的工作原理。
2.放大、动态和静态以及等效电路等概念的建立。
3.电路能否放大的判断。
学时分配2.1三极管2.1.1三极管的结构与符号 通过实物认识常见的三极管三极管有三个电极,分别从三极管内部引出,其结构示意如图所示。
按两个PN 结组合方式的不同,三极管可分为PNP 型、NPN 型两类,其结构示意、电路符号和文字符号如图所示。
PNP 型 NPN 型有箭头的电极是发射极,箭头方向表示发射结正向偏置时的电流方向,由此可以判断管子是PNP 型还是NPN 型。
基区 发射区e基极 ceVTe基极 cecVT《电子技术基础与技能》配套多媒体CAI 课件 电子教案三极管都可以用锗或硅两种材料制作,所以三极管又可分为锗三极管和硅三极管。
2.1.2三极管中的电流分配和放大作用动画:三极管电流放大作用的示意做一做:三极管中电流的分配和放大作用观察分析实验参考数据:1)三极管各极电流分配关系:I E = I B + I C ,I E ≈ I C ≫I B2)基极电流和集电极电流之比基本为常量,该常量称为共发射极直流放大系数β,定义为:BCI I =β 3)基极电流有微小的变化量Δi B ,集电极电流就会产生较大的变化量Δi C ,且电流变化量之比也基本为常量,该常量称为共发射交流放大系数β,定义为:BCΔi i ∆=β1.三极管的电流放大作用,实质上是用较小的基极电流信号控制较大的集电极电流信号,实现“以小控大”的作用。
2.三极管电流放大作用的实现需要外部提供直流偏置,即必须保证三极管发射结加正向电压(正偏),集电结加反向电压(反偏)。