2015年高考理数二轮复习讲练测 热点05 数列中的最值问题(讲)(解析版)]
- 格式:doc
- 大小:501.00 KB
- 文档页数:10
2015年普通高等学校招生全国统一考试(全国II 卷)理科数学试题解析1. 解析 对于B 集合,由已知得,{}21B x x =-<<,由数轴可得{}1,0A B =-.故选A.评注 常规考题,比较容易.考查不等式解集和集合的交运算,注意A 集合中的元素是数,B 集合是数的范围,用数轴较直观.2. 解析 由复数的运算律将左边直接展开可得.因为24(4)i 4i a a +-=-, 所以240,44a a =-=-,解得0a =.故选B.评注 考察复数的基本运算及复数相等的概念,本题也可在等式两边乘以“i ”, 得2(2i)4a -=-快速求解.3. 解析 由柱形图可以看出,2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份是负相关关系,依题意,需选不正确的.故选D.评注 本题考查统计的基本知识,要注意读懂题意和图表,理解相关性有正相关和负相关. 4. 解析 由题意可设等比数列的公比为q ,则由13521a a a ++=得,2411121a a q a q ++=.又因为13a =,所以4260q q +-=.解得22q =或23q =-(舍去),所以()235713521242a a a a a a q ++=++=⨯=.故选B.评注 等差数列与等比数列的基本概念和性质是考查的重点.本题考查了等比数列的通项公式及一元二次方程的解法,注意最后一步要能将“357a a a ++”写成“222135a q a q a q ++”的形式,再提出“2q ”.5. 解析 由题意可得,2(2)1log 4123f -=+=+=.又由22log 12log 21>=, 故有2222212log log 121log 12log 2log 622(log 12)22226f --=====,所以有2(2)(log 12)369f f -+=+=.故选C.评注 本题是一个涉及指数、对数和分段函数的综合题,考察面很广,但运算难度不大,需要考生熟知基本的概念、性质和运算.6. 解析 由三视图得,在正方体中,截去四面体,如图所示,设正方体棱长为,则,故剩余几何体体积为,所以截去部分体积与剩余部分体积的比值为.故选D.评注 三视图是新课标的增加内容,也是高考的必考知识,主要考察空间想象能力.本题在读懂题意基础上画图,然后进行体积的计算,难度不大.7. 解析 由题意得321143AB k -==--, 27341CB k +==-,所以1AB CB k k =-,所以AB CB ⊥,即ABC △为直角三角形,则外接圆的圆心为AC 的中点(1,2)-,半径为5,所以外接圆方程为22(1)(2)25x y -++=,令0x =,则有2y =±,所以MN =C .评注 直线、圆及距离是基本的命题点.该题几个知识点综合在一起考查学生应用基本知识解决问题的能力.要求中等,体现多想少算的思想.8. 解析 根据程序框图可知,在执行程序过程中,a ,b 的值依次为14a =,18b =;4b =;10a =;6a =;2a =;2b =,到此有2a b ==,程序运行结束,输出a 的值为2,故选B .评注 算法中的程序框图是高考必考内容,也是新课标的新增内容.在命题中,多以框图与其它知识综合,本题就是将古代数学中的“更相减损术”用程序框图来展现. 9. 解析 根据题意,可得图如右,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,则可设球O 的半径为R ,1111ABCD A BC D -111A A B D -a 11133111326A A B D V a a -=⨯=3331566a a a -=51A C 1A此时2311136326O ABC C AOB V V R R R --==⨯⨯==, 故6R =,则球O 的表面积为24π144πS R ==,故选C .评注 立体几何中对球的考查是命题的热点,要求能根据题意和球的特殊性来找基本量.解答中抓住球心及半径,结合圆的特点,用球的体积及表面积来求解. 10. 解析 由已知可得,当P 点在BC 边上运动时,即π04x 剟时,tan PA PB x +; 当P 点在CD 边上运动时,即π3π44x 剎 ,π2x ≠时,PA PB +=;当π2x =时,PA PB +=当P 点在AD 边上运动时,即3ππ4x 剎时,tan PA PB x +. 从点P 的运动过程可以看出,轨迹关于直线π2x =对称,ππ42f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭, 且轨迹非直线型,故由此知选B.评注 本题以几何图形为背景考查了函数图像的识别与作法,特别是体现了分类讨论和数形结合的思想.11. 解析 设双曲线方程为22221(0,0)x y a b a b-=>>,如图所示,由2AB BM a ==,120ABM ︒∠=,则过点M 作MN x ⊥轴,垂足为N ,在Rt BMN △中,BN a =,MN =, 故点M的坐标为(2)M a ,代入双曲线方程可得2222431,a a a b-=所以2222a b c a ==-,即有222c a =,所以ce a==D . 评注 在圆锥曲线的考查中,双曲线经常以选择或填空题的形式出现.一般抓住其定义和性质便可以求解.本题中要充分利用顶角为120︒的等腰三角形的性质来求解.12. 解析 由题意,设函数()()f x g x x =,则''2()()()xf x f x g x x-=,因为当0x >时,'()()0xf x f x -<,故当0x >时,'()0g x <,所以()g x 在(0,)+∞单调递减;又因为函数()()f x x ∈R 是奇函数,故函数()g x 是偶函数,所以()g x 在(,0)-∞上单调递增,且有(1)(1)0g g -==.当01x <<时,()0g x >,则()0f x >;当1x <-时,()0g x <,则()0f x >. 综上所述,使得()0f x >成立的x 的取值范围是(,1)(0,1)-∞-,故选A .评注 本题用导数来研究函数的性质,注意构造函数()g x ,然后用其对称性和奇偶性对单调性的影响,必要时可以用图像来辅助说明.13. 解析 根据向量平行的条件,因为向量λ+a b 与2+a b 平行,所以()2=k λ++a b a b ,则有12,k k λ=⎧⎨=⎩,解得1212k λ⎧=⎪⎪⎨⎪=⎪⎩,所以12λ=.评注 本题考查了平面向量平行的充要条件,内容单一,计算简单,知识也比较明确.在向量的考查中,平行与垂直、数量积是命题的热点.14. 解析 根据题意,画出可行域,如图所示,将目标函数z x y =+变形为y x z =-+,当z 取到最大值时,直线y x z =-+的纵截距最大,故将直线尽可能地向上平移到点1(1,)2C 处,则z x y =+有最大值32.评注 线性规划的考查是历年考查的重点,主要体现了不等式组在生活中的应用,并融合了数形结合这一重要的数学思想方法.本题立意简单,能用通性通法直接求解,也可先求出交点,代入检验.15. 解析 由题意知,4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x 的奇数次幂分别为4ax ,34ax ,x ,36x ,5x 这五项,其系数之和为441+6+1=32a a ++,解得3a =.评注 二项式定理的考查主要体现在展开式的项及系数上.本题要注意是两项积,展开列举可求.16. 解析 根据题意,由数列的项与前n 项和关系得,11n n n a S S ++=-, 由已知得111n n n n n a S S S S +++=-=⋅,由题意知,0n S ≠,则有1111n nS S +=--, 故数列1n S ⎧⎫⎨⎬⎩⎭是以1-为首项,1-为公差的等差数列, 则11(1)nS n n =---=-,所以1n S n =-.评注 数列的项与前n 项和之间存在着固定关系1n n n S S a --=.本题隐含0n S ≠,可用反证法说明.然后两边同除1n n S S +⋅即可得等差数列的形式,然后进一步求解.17. 分析 (1)用正弦定理求面积的方法写出面积,然后根据已知条件中面积为2倍关系、角相等进行代换;(2)由(1)的结论得高相同,面积比等于边长比,再由余弦定理建立等式来求解.解析 (1)根据题意可得右图,由正弦定理得,1sin ,2ABD S AB AD BAD =⋅∠△ 1sin ,2ADCS AC AD CAD =⋅∠△又因为2ABD ADC S S =△△, ,BAD CAD ∠=∠ 所以得2AB AC =. 由正弦定理得sin 1sin 2B AC C AB ==. (2)由题意知,21ABD ADC S BD S DC ==△△,所以2BD DC =.又因为2DC =,所以BD = 在ABD △和ADC △中,由余弦定理得,2222cos AB AD BD AD BD ADB =+-⋅∠,2222cos AC AD DC AD DC ADC =+-⋅∠.故222222326AB AC AD BD DC +=++=.由(Ⅰ)知2AB AC =,所以1AC =.即所求为BD =1AC =.评注 考查了解三角形的相关知识,应用了正弦定理和余弦定理.注意三角形面积的计算方法的应用.18. 分析(1)根据题意直接列出茎叶图,写出结论即可;(2)根据事件的互斥及独立,用列举法写出符合条件的事件个数,计算概率即可.解析 (1)由题意知,两地区用户满意度评分的茎叶图如下.A 地区B 地区45 6 7 8 96 8 1 3 6 4 32 4 5 5 6 4 23 34 6 9 6 8 8 6 4 3 3 2 1 9 2 8 65 11 37 5 5 2ACD B通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散. (2)记1A C 为事件:“A 地区用户的满意度等级为满意或非常满意”;记2A C 为事件:“A 地区用户的满意度等级为非常满意”; 记1B C 为事件:“B 地区用户的满意度等级为不满意”; 记2B C 为事件:“B 地区用户的满意度等级为满意”.则可得1A C 与1B C 相互独立,2A C 与2B C 相互独立,1B C 与2B C 互斥, 则可得1122B A B A C C C C C =.所以1122()()B A B A P C P C C C C =1122()()B A B A P C C P C C =+1122()()()()B A B A P C P C P C P C =+.由题意及所给数据可得1A C ,2A C ,1B C ,2B C 发生的频率分别为1620,420,1020,820. 故可得1()A P C 16=20,2()=A P C 420,1()=B P C 1020,2()B P C 8=20,故101684()=+0.4820202020P C ⨯⨯=.即C 的概率为0.48. 评注 对数据的阅读、理解和分析是数学的一项重要任务.在解题中,关键在于对众多数据的理解分析,并用统计与概率的思想方法进行分析求解.19. 分析(1)根据题意要求,直接在图中作图即可;(2)空间中角的问题,若方便建立空间直角坐标系,则用空间向量法来解. 将几何问题算法化,用代数计算的方法解决几何问题. 解析 (1)根据题意,交线围成的正方形EHGF 如图(1)所示: (2)如图(2)所示,过点E 作EM AB ⊥,垂足为M ,则14A M A E ==,18EM AA ==,因为EHGF 为正方形,所以10EH EF BC ===.于是有6MH ==,所以10AH =.以D 为坐标原点,1,,DA DC DD 的方向为x 轴,y 轴,z 轴的正方向,建立如图(2)所示的空间直角坐标系D xyz -,则(10,0,0)A ,(10,10,0)H ,(10,4,8)E ,(0,4,8)F , 则(10,0,0)FE =,(0,6,8)HE =-.设(,,)x y z =n 是平面EHGF 的法向量,则有0,0,FE HE ⎧⋅=⎪⎨⋅=⎪⎩n n 即100,680,x y z =⎧⎨-+=⎩所以可取(0,4,3)=n .又(10,4,8)AF =-,故45cos ,AF AF AF⋅<>==⋅n n n . 所以直线AF 与平面EHGF图(1) 图(2)评注 立体几何的命题主要是考查学生的空间观念和空间想象能力.并结合对空间关系、空间角的计算,特别是应用空间坐标和向量这一工具来进行求解,并注意与推理论证相结合. 20. 分析(1)求解斜率的有关问题时,要注意斜率是否存在,然后用斜率的求解方法及直线与圆锥曲线的关系来进行求解.(2)存在性探究问题的解答不妨设存在,然后进行计算求解.注意分类讨论思想的应用和计算的正确性.解析 (1)根据题意,因为直线不平行于坐标轴,则斜率k 必然存在,故设直线l 为y kx b=+(0,0)k b ≠≠,则11(,)A x y ,22(,)B x y ,(,)M M M x y .将y kx b =+代入2229x y m +=得,2222(9)20k x kbx b m +++-=,故12229M x x kb x k +==-+,299M M by kx b k =+=+. 于是直线OM 的斜率9M OM M y k x k==-,即9OM k k ⋅=-. 所以直线OM 的斜率与l 的斜率的乘积为定值. (2)不妨设四边形OAPB 能为平行四边形.AB 1C 1D 1A 1BCDE FGH因为直线l 过点(,)3mm ,所以l 不过原点且与C 有两个交点的充要条件是0k >,且3k ≠. 由(1)得OM 的方程为9y x k=-.设点P 的横坐标为P x .由2229,9,y x k x y m ⎧=-⎪⎨⎪+=⎩得2222981P k m x k =+,即P x =. 将点(,)3m m 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M k k m x k -=+. 四边形OAPB 为平行四边形,当且仅当线段AB 与线段OP 互相平分,即2P M x x =.=2(3)23(9)k k mk -⨯+.解得14k =24k = 因为0,3i i k k >≠,1i =,2,所以当l的斜率为44OAPB 为平行四边形.评注 解析几何的考查的方向主要体现在对直线和圆锥曲线方程的计算上,特别是对存在性问题的探究和计算能力的考查,在方法上相对固定,计算难度比较大.21. 分析(1)先对函数进行求导,然后再应用单调性和函数的导数的关系进行求解; (2)注意构造新函数的思想及恒成立问题的解决方法,理解最值的含义. 解析(1)证明:因为()2e mxf x x mx =+-,则求导得,()'e2mxf x m x m =+-()e 12mx m x =-+.若0m …,则当(),0x ∈-∞时,e 10mx-…,()'0f x <;当()0,x ∈+∞时,e10mx-…,()'0f x >.若0m <,则当(),0x ∈-∞时,e 10mx->>,()'0f x <;当()0,x ∈+∞时,e10mx-<<,()'0f x >.所以()f x 在(),0-∞上单调递减,在()0,+∞上单调递增.(2)由(1)知,对任意的m ,()f x 在[]1,0-上单调递减,在[]0,1上单调递增, 故()f x 在0x =处取得最小值.所以对于任意的[]12,1,1x x ∈-,()()12e 1f x f x --…的充要条件为()()()()10e 110e 1f f f f ⎧--⎪⎨---⎪⎩……,即e e 1e e 1m m m m -⎧--⎪⎨+-⎪⎩- - ①. 设函数()e e 1tg t t =--+,则()'e 1tg t =-.当0t <时,()'0g t <;当0t >时,()'0g t >. 故()g t 在(),0-∞上单调递减,在()0,+∞上单调递增.又()10g =,()11e 2e<0g --=+-,故当[]1,1t ∈-时,()0g t ….当[]1,1m ∈-时,()()0,0,g m g m -剟,即上式①成立; 当1m >时,由()g t 的单调性,()0g m >>,即有e e 1m m ->-.当1m <-<时,()0,g m ->>,即ee 1mm -+>-.综上所述,m 的取值范围是[]1,1-.评注 函数与导数是高考的必考内容,也是高等数学在初等数学中的一个应用的体现. 导数是数学的基础,用数学分析的思想来体现数学的应用,在命题中特别重视分类讨论思想的应用.22. 分析(1)根据等腰三角形的性质可快速求解;.(2)由(1)的结论可得AD EF ⊥和ABC △及AEF △都是等边三角形,则所求四边形面积为两个三角形面积之差.解析 (1)证明:由于ABC △是等腰三角形,AD BC ⊥,所以AD 是CAB ∠的平分线. 又因为O 分别与AB ,AC 相切于E ,F 两点,所以AE AF =,故AD EF ⊥. 从而//EF BC .(2)由(1)知,AE AF =,AD EF ⊥,故AD 是EF 的垂直平分线.又EF 是O 的弦,所以O 在AD 上.连接OE ,OM ,则O E A E ⊥.由AG 等于O 的半径得2AO OE =,所以30OAE ∠=︒.所以ABC △和AEF △都是等边三角形.因为AE =4AO =,2OE =. 因为2OM OE ==,12DM MN ==所以1OD =.于是5AD =,3AB =. 所以四边形EBCF 的面积为221122⨯-⨯=评注 几何证明选讲的考查主要是有关圆与直线、圆与三角形、圆与多边形的推理与计算,解题中特别要注意特殊图形的性质.23. 分析(1)将参数方程和极坐标方程化为直角坐标方程,联立即可求解;. (2)先确定曲线1C 的极坐标方程()0θαρρ=∈≠R,,进一步求出点A 的极坐标为()2sin ,αα,点B的极坐标为(),αα,由此可得2sin AB αα=-π4sin 43α⎛⎫=- ⎪⎝⎭….解析(1)曲线2C 的直角坐标方程为2220x y y +-=,曲线3C 的直角坐标方程为220x y +-=.联立222220,0,x y y x y ⎧+-=⎪⎨+-=⎪⎩解得0,0,x y =⎧⎨=⎩或32x y ⎧=⎪⎪⎨⎪=⎪⎩. 所以2C 与1C 交点的直角坐标为(0,0)和3)2. (2)曲线1C 的极坐标方程为(,0)θαρρ=∈≠R ,其中0πα<…. 因此A 的极坐标为(2sin ,)αα,B的极坐标为,)αα.所以2sin AB αα=-π4sin()43α=-…. 当5π6α=时,AB 取得最大值,最大值为4. 评注 考查了参数方程、极坐标方程和直角坐标方程的互化,并能求出距离的最值. 24. 分析(1)由a b c d +=+,及ab cd >,可证明22> ,两边开;(2)由第(1)问的结论来证明.在证明中要注意分别证明充分性和必要性.解析(1)证明:因为2a b =++,2c d =++由题设a b c d +=+,ab cd >,得22>,(2)证明:( i)若a b c d -<-,则()()22a b c d -<-, 即()()2244a b ab c d cd +-<+-.因为a b c d +=+,所以ab cd >( ii)>22>,即a b ++c d >++因为a b c d +=+,所以ab cd >,于是()()()()222244a b a b ab c d cd c d -=+-<+-=-,因此a b c d -<-.>a b c d -<-的充要条件.评注 不等式的证明要紧抓不等式的性质,结合其正负性来证明.充要条件的证明体现了数学推理的严谨性,要分充分性和必要性两个方面来证明.。
2015年高考数学数列专题热点复习指导(一)基础题复习导引:数列是定义在正整数集或正整数子集上的函数,函数的图象是平面直角坐标系上的点集。
项an是n的函数,同数Sn也是n的函数,af(n)是复合函数,如下面的第2、3题。
等差、等比中项始终是高考(Q吧)拟题的知识点,如下面的第1、5题。
在数列问题中,从一般到特殊的思想方法,是重要的思路,如第3、5题。
1.若an是等差数列,首项a1>0,a2003+a2004>0,a2003·a20040成立的最大自然n是()A、4005B、4006C、4007D、4008解:∵a2003·a2004 ∴a2003与a2004中必有一个为负。
又a1>0只有 d a2003+a2004=2a1+4005d=a1+a1+4005d=a1+a4006>0 ∴S4006=-(a1+a4006)>0S4007=-(a1+a4007)=-·2a2004 ∴选B注:本题不同于当Sn最大时求n的值,在审题中注意区别。
2.已知两个等差数列an和bn的前n项和分别为An和Bn,且-=-,则使得-为整数的正整数n的个数是()A.2B.3C.4D.5解:∵an,bn为等差数列∴可设An=(7n+45)gn,Bn=(n+3)gnan=An-An-1=14n+38,bn=Bn-Bn-1=2n+2,(n2)-=-=k,k为正整数n=-,n为正整数,719K=8、9、10、11、13∴选D注:若{an}为等差数列,那么Sn=pn2+qn,是常数项为0,关于n的二次函数。
3.已知数列{an}、{bn}都是公差为1的等差数列,其首项分别为a1、b1,且a1+b1=5,a1,b1∈N*。
设cn=-(n∈N*),则数列{cn}的前10项和等于()A.55B.70C.85D.100解:某些数列问题经常用一般到特殊的思考方法。
c1=-=a1+(b1-1)·1c2=-=a1+(b2-1)·1c3=-=a1+(b3-1)·1c2-c1=b2-b1=1,c3-c2=b3-b2=1c1=a1+b1-1=4∴{cn}为c1=4,公差为1的等差数列∴S10=85选C注:-其中bn是项数,在数列中,项an是项数n的函数。
2015年全国统一高考数学试卷(理科)(新课标II)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A∩B=()A.{﹣1,0} B.{0,1} C.{﹣1,0,1} D.{0,1,2}考点:交集及其运算.专题:集合.分析:解一元二次不等式,求出集合B,然后进行交集的运算即可.解析:解:B={x|﹣2<x<1},A={﹣2,﹣1,0,1,2};∴A∩B={﹣1,0}.故选:A.评析:考查列举法、描述法表示集合,解一元二次不等式,以及交集的运算.2.(5分)若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1 B.0C.1D.2考点:复数相等的充要条件.专题:数系的扩充和复数.分析:首先将坐标展开,然后利用复数相等解之.解析:解:因为(2+ai)(a﹣2i)=﹣4i,所以4a+(a2﹣4)i=﹣4i,4a=0,并且a2﹣4=﹣4,所以a=0;故选:B.评析:本题考查了复数的运算以及复数相等的条件,熟记运算法则以及复数相等的条件是关键.3.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关考点:频率分布直方图.专题:概率与统计.分析:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.解析:解:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B2004﹣2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B 正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.故选:D评析:本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.4.(5分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21 B.42 C.63 D.84考点:等比数列的通项公式.专题:计算题;等差数列与等比数列.分析:由已知,a1=3,a1+a3+a5=21,利用等比数列的通项公式可求q,然后在代入等比数列通项公式即可求.解析:解:∵a1=3,a1+a3+a5=21,∴,∴q4+q2+1=7,∴q4+q2﹣6=0,∴q2=2,∴a3+a5+a7==3×(2+4+8)=42.故选:B评析:本题主要考查了等比数列通项公式的应用,属于基础试题.5.(5分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3B.6C.9D.12考点:函数的值.专题:计算题;函数的性质及应用.分析:先求f(﹣2)=1+log2(2+2)=1+2=3,再由对数恒等式,求得f(log212)=6,进而得到所求和.解析:解:函数f(x)=,即有f(﹣2)=1+log2(2+2)=1+2=3,f(log212)==12×=6,则有f(﹣2)+f(log212)=3+6=9.故选C.评析:本题考查分段函数的求值,主要考查对数的运算性质,属于基础题.6.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.解析:解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.评析:本题考查了由三视图判断几何体的形状,求几何体的体积.7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|=()A.2B.8C.4D.10考点:两点间的距离公式.专题:计算题;直线与圆.分析:设圆的方程为x2+y2+Dx+Ey+F=0,代入点的坐标,求出D,E,F,令x=0,即可得出结论.解析:解:设圆的方程为x2+y2+Dx+Ey+F=0,则,∴D=﹣2,E=4,F=﹣20,∴x2+y2﹣2x+4y﹣20=0,令x=0,可得y2+4y﹣20=0,∴y=﹣2±2,∴|MN|=4.故选:C.评析:本题考查圆的方程,考查学生的计算能力,确定圆的方程是关键.8.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4D.14考点:程序框图.专题:算法和程序框图.分析:由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.解析:解:由a=14,b=18,a>b,则b变为18﹣14=4,由a>b,则a变为14﹣4=10,由a>b,则a变为10﹣4=6,由a>b,则a变为6﹣4=2,由a<b,则b变为4﹣2=2,由a=b=2,则输出的a=2.故选:B.评析:本题考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.9.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.解析:解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣AOB ===36,故R=6,则球O的表面积为4πR2=144π,故选C.评析:本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.考点:函数的图象.专题:函数的性质及应用.分析:根据函数图象关系,利用排除法进行求解即可.解析:解:当0≤x≤时,BP=tanx,AP==,此时f(x)=+tanx,0≤x≤,此时单调递增,当P在CD边上运动时,≤x≤且x≠时,PA+PB=,当x=时,PA+PB=2,当P在AD边上运动时,≤x≤π,PA+PB=﹣tanx,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.评析:本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2C.D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:设M在双曲线﹣=1的左支上,由题意可得M的坐标为(﹣2a,a),代入双曲线方程可得a=b,再由离心率公式即可得到所求值.解析:解:设M在双曲线﹣=1的左支上,且MA=AB=2a,∠MAB=120°,则M的坐标为(﹣2a,a),代入双曲线方程可得,﹣=1,可得a=b,c==a,即有e==.故选:D.评析:本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,运用任意角的三角函数的定义求得M的坐标是解题的关键.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)考点:函数的单调性与导数的关系.专题:创新题型;函数的性质及应用;导数的综合应用.分析:由已知当x>0时总有xf′(x)﹣f(x)<0成立,可判断函数g(x)=为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于x•g(x)>0,数形结合解不等式组即可.解析:解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数又∵g(﹣1)==0,∴函数g(x)的图象性质类似如图:数形结合可得,不等式f(x)>0⇔x•g(x)>0⇔或,⇔0<x<1或x<﹣1.故选:A.评析:本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ=.考点:平行向量与共线向量.专题:平面向量及应用.分析:利用向量平行即共线的条件,得到向量λ+与+2之间的关系,利用向量相等解析.解析:解:因为向量,不平行,向量λ+与+2平行,所以λ+=μ(+2),所以,解得;故答案为:.评析:本题考查了向量关系的充要条件:如果两个非0向量共线,那么存在唯一的参数λ,使得14.(5分)若x,y满足约束条件,则z=x+y的最大值为.考点:简单线性规划.专题:不等式的解法及应用.分析:首先画出平面区域,然后将目标函数变形为直线的斜截式,求在y轴的截距最大值.解析:解:不等式组表示的平面区域如图阴影部分,当直线经过D点时,z最大,由得D(1,),所以z=x+y的最大值为1+;故答案为:.评析:本题考查了简单线性规划;一般步骤是:①画出平面区域;②分析目标函数,确定求最值的条件.15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=3.考点:二项式定理的应用.专题:计算题;二项式定理.分析:给展开式中的x分别赋值1,﹣1,可得两个等式,两式相减,再除以2得到答案.解析:解:设f(x)=(a+x)(1+x)4=a0+a1x+a2x2+…+a5x5,令x=1,则a0+a1+a2+…+a5=f(1)=16(a+1),①令x=﹣1,则a0﹣a1+a2﹣…﹣a5=f(﹣1)=0.②①﹣②得,2(a1+a3+a5)=16(a+1),所以2×32=16(a+1),所以a=3.故答案为:3.评析:本题考查解决展开式的系数和问题时,一般先设出展开式,再用赋值法代入特殊值,相加或相减.16.(5分)设S n是数列{a n}的前n项和,且a1=﹣1,a n+1=S n S n+1,则S n=﹣.考点:数列递推式.专题:创新题型;等差数列与等比数列.分析:通过an+1=S n+1﹣S n=S n S n+1,并变形可得数列{}是以首项和公差均为﹣1的等差数列,进而可得结论.解析:解:∵a n+1=S n S n+1,∴a n+1=S n+1﹣S n=S n S n+1,∴=﹣=1,即﹣=﹣1,又a1=﹣1,即==﹣1,∴数列{}是以首项和公差均为﹣1的等差数列,∴=﹣1﹣1(n﹣1)=﹣n,∴S n=﹣,故答案为:﹣.评析:本题考查求数列的通项,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.三、解析题(共5小题,满分60分)17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.考点:正弦定理;三角形中的几何计算.专题:解三角形.分析:(1)如图,过A作AE⊥BC于E,由已知及面积公式可得BD=2DC,由AD平分∠BAC 及正弦定理可得sin∠B=,sin∠C=,从而得解.(2)由(1)可求BD=.过D作DM⊥AB于M,作DN⊥AC于N,由AD平分∠BAC,可求AB=2AC,令AC=x,则AB=2x,利用余弦定理即可解得BD和AC的长.解析:解:(1)如图,过A作AE⊥BC于E,∵==2∴BD=2DC,∵AD平分∠BAC∴∠BAD=∠DAC在△ABD中,=,∴sin∠B=在△ADC中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D作DM⊥AB于M,作DN⊥AC于N,∵AD平分∠BAC,∴DM=DN,∴==2,∴AB=2AC,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD的长为,AC的长为1.评析:本题主要考查了三角形面积公式,正弦定理,余弦定理等知识的应用,属于基本知识的考查.18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的频率,求C的概率.考点:古典概型及其概率计算公式;茎叶图.专题:概率与统计.分析:(Ⅰ)根据茎叶图的画法,以及有关茎叶图的知识,比较即可;(Ⅱ)根据概率的互斥和对立,以及概率的运算公式,计算即可.解析:解:(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意评分的平均值高于B地区用户满意评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散;(Ⅱ)记C A1表示事件“A地区用户满意度等级为满意或非常满意”,记C A2表示事件“A地区用户满意度等级为非常满意”,记C B1表示事件“B地区用户满意度等级为不满意”,记C B2表示事件“B地区用户满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,则C=C A1C B1∪C A2C B2,P(C)=P(C A1C B1)+P(C A2C B2)=P(C A1)P(C B1)+P(C A2)P(C B2),由所给的数据C A1,C A2,C B1,C B2,发生的频率为,,,,所以P(C A1)=,P(C A2)=,P(C B1)=,P(C B2)=,所以P(C)=×+×=0.48.评析:本题考查了茎叶图,概率的互斥与对立,用频率来估计概率,属于中档题.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.考点:直线与平面所成的角.专题:空间角;空间向量及应用.分析:(1)容易知道所围成正方形的边长为10,再结合长方体各边的长度,即可找出正方形的位置,从而画出这个正方形;(2)分别以直线DA,DC,DD1为x,y,z轴,建立空间直角坐标系,考虑用空间向量解决本问,能够确定A,H,E,F几点的坐标.设平面EFGH的法向量为,根据即可求出法向量,坐标可以求出,可设直线AF与平面EFGH所成角为θ,由sinθ=即可求得直线AF与平面α所成角的正弦值.解析:解:(1)交线围成的正方形EFGH如图:(2)作EM⊥AB,垂足为M,则:EH=EF=BC=10,EM=AA1=8;∴,∴AH=10;以边DA,DC,DD1所在直线为x,y,z轴,建立如图所示空间直角坐标系,则:A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8);∴;设为平面EFGH的法向量,则:,取z=3,则;若设直线AF和平面EFGH所成的角为θ,则:sinθ==;∴直线AF与平面α所成角的正弦值为.评析:考查直角三角形边的关系,通过建立空间直角坐标系,利用空间向量解决线面角问题的方法,弄清直线和平面所成角与直线的方向向量和平面法向量所成角的关系,以及向量夹角余弦的坐标公式.20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.考点:直线与圆锥曲线的综合问题;直线的斜率.专题:创新题型;圆锥曲线中的最值与范围问题.分析:(1)联立直线方程和椭圆方程,求出对应的直线斜率即可得到结论.(2)四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,建立方程关系即可得到结论.解析:解:(1)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,则x1+x2=,则x M==,y M=kx M+b=,于是直线OM的斜率k OM==,即k OM•k=﹣9,∴直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.∵直线l过点(,m),∴l不过原点且与C有两个交点的充要条件是k>0,k≠3,由(1)知OM的方程为y=x,设P的横坐标为x P,由得,即x P=,将点(,m)的坐标代入l的方程得b=因此x M=,四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,于是=2×,解得k1=4﹣或k2=4+,∵k i>0,k i≠3,i=1,2,∴当l的斜率为4﹣或4+时,四边形OAPB能为平行四边形.评析:本题主要考查直线和圆锥曲线的相交问题,联立方程组转化为一元二次方程,利用根与系数之间的关系是解决本题的关键.综合性较强,难度较大.21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:创新题型;导数的概念及应用.分析:(1)利用f'(x)≥0说明函数为增函数,利用f'(x)≤0说明函数为减函数.注意参数m的讨论;(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,则恒成立问题转化为最大值和最小值问题.从而求得m的取值范围.解析:解:(1)证明:f'(x)=m(e mx﹣1)+2x.若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f'(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f'(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f'(x)<0;当x∈(0,+∞)时,emx ﹣1<0,f'(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,故f (x)在x=0处取得最小值.所以对于任意x1,x2∈[﹣1,1],|f(x1)﹣f(x2)|≤e﹣1的充要条件是即设函数g(t)=e t﹣t﹣e+1,则g'(t)=e t﹣1.当t<0时,g'(t)<0;当t>0时,g'(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈[﹣1,1]时,g(t)≤0.当m∈[﹣1,1]时,g(m)≤0,g(﹣m)≤0,即合式成立;当m>1时,由g(t)的单调性,g(m)>0,即e﹣m+m>e﹣1.当m<﹣1时,g(﹣m)>0,即e﹣m+m>e﹣1.综上,m的取值范围是[﹣1,1]评析:本题主要考查导数在求单调函数中的应用和恒成立在求参数中的应用.属于难题,高考压轴题.四、选做题.选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.考点:相似三角形的判定.专题:开放型;空间位置关系与距离.分析:(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论;(2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC ﹣S△AEF计算即可.解析:(1)证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF∥BC;(2)解:由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30°,∴△ABC与△AEF都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN=,∴OD=1,∴AD=5,AB=,∴四边形EBCF 的面积为×﹣××=.评析: 本题考查空间中线与线之间的位置关系,考查四边形面积的计算,注意解题方法的积累,属于中档题.选修4-4:坐标系与参数方程23.在直角坐标系xOy 中,曲线C 1:cos sin x t y t αα=⎧⎨=⎩(t 为参数,t ≠ 0),其中0 ≤ α < π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:2sin ρθ=,C 3:23cos ρθ=。
2015高考数学预测专题之数列中的最值问题纵观近几年高考对于数列的的考查,重点放在数列中的最值问题上,主要考查等差数列前n 项和的最值问题、数列的最值问题、数列前n 项和的最值问题及与之相关的不等式证明和取值范围问题.要求学生有较强的转化与化归意识和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段出现这类问题加以类型的总结和方法的探讨.1. 等差数列中的最值问题求等差数列前n 项和的最值问题的方法:①二次函数法:将n S 看成关于n 的二次函数,运用配方法,借助函数的单调性及数形结合思想,使问题得到解决,注意项数n 是正整数这一条件.②通项公式法:求使n a ≥0(n a ≤0)成立的最大n 值,即可求出n S 的最大值(或最小值).③不等式法:借助n S 取最大值时,有1*1(2,)n n n n S S n n N S S -+≥⎧≥∈⎨≥⎩,解此不等式组确定n 的范围,进而确定n 的值和对应n S 的值(即为n S 的最值).例1已知等差数列{}n a 的前n 项和为n S ,47109,a a a ++=14377S S -=,则使n S 取得最小值时n 的值为( )A .4 B.5 C.6 D.7答案:B试题分析:先由题中条件求出首项与公差,写出通项公式,求出为负值的项数,即可求出使n S 取得最小值时n 的值.试题详解:设等差数列{}n a 的公差为d ,由题意得:()()()1111136991413321437722a d a d a d a d a d +++++=⎧⎪⎨⨯⨯⎛⎫+-+= ⎪⎪⎝⎭⎩解方程组得:192a d =-⎧⎨=⎩,所以211n a n =-,令0n a ≤得:112n ≤ 即当5n ≤时,0n a <,即当6n ≥时,0n a >,所以使n S 取得最小值时n 的值为5.故选B.试题点评:等差数列前n 项和的最值问题是高考考查的重点与热点,这类问题求法有:二次函数法、通项公式法、不等式法,要掌握之.2. 数列}{n a 的最值问题求数列}{n a 的最值,主要有两种方法:①从函数角度考虑,利用函数)(x f y =的性质,求数列)(n f a n =的最值;②利用数列离散的特点,考察⎩⎨⎧≥≥-+11k k k k a a a a 或⎩⎨⎧≤≤-+11k k k k a a a a ,然后判断数列}{n a 的最值情况. 例2 已知等差数列{}n a 的前n 项和为n S 且满足0,01817<>S S ,则17172211,,,a S a S a S 中最大的项为( ) A .66a S B .77a S C .88a S D .99a S 答案:D试题分析:利用等差数列的性质及已知条件判断出该数列正负项转换点,判断出前n 项和正负变化情况,从而的出17172211,,,a S a S a S 中最大的项. 试题详解:∵等差数列{a n }中,0,01817<>S S ,即S 17=17a 9>0,S 18=9(a 10+a 9)<0∴a 10+a 9<0,a 9>0,∴a 10<0,∴等差数列{ a n }为递减数列,故可知a 1,a 2,…,a 9为正,a 10,a 11…为负;∴S 1,S 2,…,S 17为正,S 18,S 19,…为负, ∴0,,0,0,0,01717111110102211<<<>>a S a S a S a S a S ,又,,921921a a a S S S >>><<< ∴17172211,,,a S a S a S 中最大的项为99a S 故选D .试题点评:对数列的最值问题,因其是特殊函数,故可以用函数法求最值,要特别别注意定义域为整数,也可以用不等式法求最值.3.数列}{n a 的前n 项和的最值问题求数列}{n a 的前n 项和n S 的最值,主要是两种思路:①研究数列)(n f a n =的项的情况,判断n S 的最值;②直接研究n S 的通项公式,利用函数求最值的方法求n S 的最值.例3 已知数列{}n a 是公比不为1的等比数列,11=a ,且231,,a a a 成等差数列.(Ⅰ)求数列{}n a 的通项;(Ⅱ)若数列{}n a 的前n 项和为n S ,试求n S 的最大值.答案:(Ⅰ)11()2n n a -=-;(Ⅱ)1.试题分析:(Ⅰ)先由条件求出数列{}n a 的公比,即可写出其通项公式;(Ⅱ)写出数列{}n a 的前n 项和公式再利用函数法求最大值.试题详解:(Ⅰ)设{}n a 的公比为q ,因为231,,a a a 成等差数列,所以3122a a a =+,因为11a =,所以221q q =+,因为1q ≠,所以12q =-,...................................3分 所以11()2n n a -=-。
2015年高考全国卷2理科数学试题及答案解析(word精校版)2015年高考全国卷2理科数学试题及答案解析(word 精校版)注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
答卷前,考生务必先将自己的姓名、准考证号码填写在答题卡上。
2.回答第I卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第II卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
(1)已知集合A={-2,-1,0,1,2},B={x|(X-1)(x+2)<0},则A∩B=()){-1,0,1}(D){,0,,1,2}【答案】A【解析】由已知得,故,故选为实数且(2+ai)(a-2i)0 年至2013年我国二氧化硫排放量(单位:万吨)柱形图。
以下结论不正确的是( )(A)逐年比较,2008年减少二氧化硫排放量的效果最显著(C)2006年以来我国二氧化硫年排放量呈减少趋势(D)2006年以来我国二氧化硫年排放量与年份正相关【答案】D【解析】由柱形图得,从,=21,则)63 (D)3 (B 【答案】C,又.(6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为(A(D)【解析】由三视图得,在正方体,则.(7)过三点A(1,3),B(4,2),C(1,-7)的圆交于y轴于M、N(D)10【答案】C(8)右边程序抗土的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。
执行该程序框图,若输入a,b 分别为14,18,则输出的a=A.0B.2C.4D.14【答案】B【解析】程序在执行过程中,的值依次为;;的值为2,故选B.(9)已知A,B是球O的球面上两点,∠AOB=90,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O 的表面积为A.36π B.64πC.144πD.256π【答案】C【解析】如图所示,当点C位于垂直于面的体积最大,设球,故,故选C.10.如图,长方形ABCD的边AB=2,BC=1,O)的图像大致为【答案】B对称,且,且轨迹非线型,故选B.(11)已知A,B为双曲线E的左,右顶点,点M在E上,?ABM 为等腰三角形,且顶角为120°,则E的离心率为(A)√5 (B的导函数,f(-1)=0,当,因为当,故当,所以单调递减;又因为函数是奇函数,故函数是偶函数,所以在时,;当,则的取值范围是,不平行,向量与平行,则实数_________.【答案】【解析】因为与,则满足约束条件,则的最大值为____________.【答案】(15),故,,.(16)设,,则________.【答案】【解析】由已知得,两边同时除以,得,故数列是以为首项,为公差的等差数列,则,所以.三.解答题(17)?ABC中,D是BC上的点,AD平分∠BAC,?ABD是?ADC面积的2倍。
选择题的解法【题型特点概述】高考数学选择题主要考查对基础知识的理解、基本技能的熟练程度、基本计算的准确性、基本方法的正确运用、考虑问题的严谨、解题速度的快捷等方面,注重多个知识点的小型综合,渗透各种数学思想和方法,能充分考查灵活应用基础知识、解决数学问题的能力.选择题是属于“小灵通”题,其解题过程“不讲道理”,所以解答选择题的基本策略是:充分地利用题干和选择支两方面的条件所提供的信息作出判断.先定性后定量,先特殊后推理,先间接后直接,先排除后求解,对于具有多种解题思路的,宜选最简解法等.解题时应仔细审题、深入分析、正确推演、谨防疏漏.初选后认真检验,确保准确.解数学选择题的常用方法,主要分直接法和间接法两大类.直接法是解答选择题最基本、最常用的方法,但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答,因此,我们还要研究解答选择题的一些技巧.总的来说,选择题属小题,解题的原则是:小题巧解,小题不能大做. 方法一 直接法直接法就是从题干给出的条件出发,进行演绎推理,直接得出结论.这种策略多用于一些定性的问题,是解选择题最常用的策略.这类选择题是由计算题、应用题、证明题、判断题改编而成的,可直接从题设的条件出发,利用已知条件、相关公式、公理、定理、法则等通过准确的运算、严谨的推理、合理的验证得出正确的结论,然后与选择支对照,从而作出相应的选择.例1 数列{a n }的前n 项和为S n ,已知a 1=13,且对任意正整数m 、n ,都有a m +n =a m ·a n ,若S n <a 恒成立,则实数a 的最小值为( ) A .12 B .23 C .32D .2思维升华 直接法是解答选择题最常用的基本方法.直接法适用的范围很广,只要运算正确必能得出正确的答案.平时练习中应不断提高用直接法解选择题的能力,准确把握题目的特点.用简便的方法巧解选择题,是建立在扎实掌握“三基”的基础上的,否则一味求快则会快中出错.将函数y =sin 2x (x ∈R )的图象分别向左平移m (m >0)个单位、向右平移n (n >0)个单位所得到的图象都与函数y =sin(2x +π3)(x ∈R )的图象重合,则|m -n |的最小值为( )A .π6B .5π6C .π3D .2π3方法二 特例法特例检验(也称特例法或特殊值法)是用特殊值(或特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,再对各个选项进行检验,从而做出正确的选择.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.特例检验是解答选择题的最佳方法之一,适用于解答“对某一集合的所有元素、某种关系恒成立”,这样以全称判断形式出现的题目,其原理是“结论若在某种特殊情况下不真,则它在一般情况下也不真”,利用“小题小做”或“小题巧做”的解题策略.例2 (1)等差数列{a n }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( ) A .130 B .170 C .210 D .260(2)如图,在棱柱的侧棱A 1A 和B 1B 上各有一动点P 、Q 满足A 1P =BQ ,过P 、Q 、C 三点的截面把棱柱分成两部分,则其体积之比为( )A .3∶1B .2∶1C .4∶1 D.3∶1思维升华 特例法具有简化运算和推理的功效,比较适用于题目中含有字母或具有一般性结论的选择题,但用特例法解选择题时,要注意以下两点: 第一,取特例尽可能简单,有利于计算和推理;第二,若在不同的特殊情况下有两个或两个以上的结论相符,则应选另一特例情况再检验,或改用其他方法求解.已知O 是锐角△ABC 的外接圆圆心,∠A =60°,cos B sin C ·AB →+cos C sin B·AC →=2m ·AO →,则m 的值为( )A .32 B . 2 C .1 D .12方法三 排除法(筛选法)例3 函数y =x sin x 在[-π,π]上的图象是()思维升华 排除法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小选项的范围内找出矛盾,这样逐步筛选,直到得出正确的答案.它与特例法、图解法等结合使用是解选择题的常用方法.函数y =2|x |的定义域为[a ,b ],值域为[1,16],a 变动时,方程b =g (a )表示的图形可以是()方法四 数形结合法(图解法)在处理数学问题时,能够将抽象的数学语言与直观的几何图形有机结合起来,通过对规范图形或示意图形的观察分析,将数的问题(如解方程、解不等式、判断单调性、求取值范围等)与某些图形结合起来,利用图象的直观性,化抽象为直观,化直观为精确,从而使问题得到解决,这种方法称为数形结合法. 例4 函数f (x )=⎝⎛⎭⎫12|x -1|+2cos πx (-2≤x ≤4)的所有零点之和等于( ) A .2 B .4 C .6 D .8思维升华 本题考查函数图象的应用,解题的关键是将零点问题转化为两图象的交点问题,然后画出函数的图象找出零点再来求和.严格地说,图解法并非属于选择题解题思路范畴,但它在解有关选择题时非常简便有效.运用图解法解题一定要对有关函数的图象、方程曲线、几何图形较熟悉.图解法实际上是一种数形结合的解题策略.过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( ) A .33 B .-33 C .±33D .- 3 方法五 估算法由于选择题提供了唯一正确的选择支,解答又无需过程.因此,有些题目,不必进行准确的计算,只需对其数值特点和取值界限作出适当的估计,便能作出正确的判断,这就是估算法.估算法往往可以减少运算量,但是加强了思维的层次. 例5 若A 为不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x ≤2表示的平面区域,则当a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为( ) A .34 B .1 C .74 D .2思维升华 “估算法”的关键是确定结果所在的大致范围,否则“估算”就没有意义.本题的关键在于所求值应该比△AOB 的面积小且大于其面积的一半.已知sin θ=m -3m +5,cos θ=4-2m m +5(π2<θ<π),则tan θ2等于( )A .m -39-mB .m -3|9-m |C .13D .51.解选择题的基本方法有直接法、排除法、特例法、估算法、验证法和数形结合法.但大部分选择题的解法是直接法,在解选择题时要根据题干和选择支两方面的特点灵活运用上述一种或几种方法“巧解”,在“小题小做”、“小题巧做”上做文章,切忌盲目地采用直接法.2.由于选择题供选答案多、信息量大、正误混杂、迷惑性强,稍不留心就会误入“陷阱”,应该从正反两个方向肯定、否定、筛选、验证,既谨慎选择,又大胆跳跃.3.作为平时训练,解完一道题后,还应考虑一下能不能用其他方法进行“巧算”,并注意及时总结,这样才能有效地提高解选择题的能力.例1A 变式训练1 C例2 (1)C (2)B 变式训练2 A 例3 A 变式训练3 B 例4 C 变式训练4 B 例5 C 变式训练5 D。
【状元之路】2015版高考数学二轮复习 数列求和及数列的综合应用专题训练(含解析)一、选择题1.(2014·广东惠州一模)设S n 是等差数列{a n }的前n 项和,a 1=2,a 5=3a 3,则S 9=( ) A .-72 B .-54 C .54D .72解析 a 1=2,a 5=3a 3得a 1+4d =3(a 1+2d ),即d =-a 1=-2,所以S 9=9a 1+9×82d =9×2-9×8=-54,选B.答案 B2.(2014·全国大纲卷)等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A .6 B .5 C .4D .3解析 S 8=lg a 1+lg a 2+…+lg a 8=lg(a 1·a 2·…·a 8)=lg(a 1·a 8)4=lg(a 4·a 5)4=lg(2×5)4=4.答案 C3.(2014·北京卷)设{a n }是公比为q 的等比数列.则“q >1”是“{a n }为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件解析 利用公比与等比数列的单调性的关系进行判断.{a n }为递增数列,则a 1>0时,q >1;a 1<0时,0<q <1.q >1时,若a 1<0,则{a n }为递减数列.故“q >1”是“{a n }为递增数列”的既不充分也不必要条件,故选D.答案 D4.已知数列{a n }的前n 项和为S n ,且S n =n 2+n ,数列{b n }满足b n =1a n a n +1(n ∈N *),T n 是数列{b n }的前n 项和,则T 9等于( )A.919B.1819C.2021D.940解析 ∵数列{a n }的前n 项和为S n ,且S n =n 2+n ,∴n =1时,a 1=2;n ≥2时,a n =S n -S n -1=2n ,∴a n =2n (n ∈N *),∴b n =1a n a n +1=12n 2n +2 =14⎝ ⎛⎭⎪⎫1n -1n +1,T 9=14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫19-110=14×⎝ ⎛⎭⎪⎫1-110=940. 答案 D5.已知数列{a n }的前n 项和S n =n 2-6n ,则{|a n |}的前n 项和T n =( ) A .6n -n 2B .n 2-6n +18C.⎩⎪⎨⎪⎧6n -n 21≤n ≤3n 2-6n +18 n >3D.⎩⎪⎨⎪⎧6n -n 2 1≤n ≤3 n 2-6n n >3解析 由S n =n 2-6n 得{a n }是等差数列,且首项为-5,公差为2.∴a n =-5+(n -1)×2=2n -7.∴n ≤3时,a n <0;n >3时,a n >0.∴T n =⎩⎪⎨⎪⎧6n -n 21≤n ≤3 ,n 2-6n +18 n >3 .答案 C6.已知曲线C :y =1x(x >0)及两点A 1(x 1,0)和A 2(x 2,0),其中x 2>x 1>0.过A 1,A 2分别作x 轴的垂线,交曲线C 于B 1,B 2两点,直线B 1B 2与x 轴交于点A 3(x 3,0),那么( )A .x 1,x 32,x 2成等差数列B .x 1,x 32,x 2成等比数列C .x 1,x 3,x 2成等差数列D .x 1,x 3,x 2成等比数列解析 由题意,B 1,B 2两点的坐标分别为⎝⎛⎭⎪⎫x 1,1x 1,⎝⎛⎭⎪⎫x 2,1x2,所以直线B 1B 2的方程为y =-1x 1x 2(x -x 1)+1x 1,令y =0,得x =x 1+x 2,∴x 3=x 1+x 2,因此,x 1,x 32,x 2成等差数列.答案 A 二、填空题7.若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n =________.解析 n ≥2时,a n =S n -S n -1=23a n +13-23a n -1+13,化简得:a n =-2a n -1,又a 1=S 1=23a 1+13,得a 1=1,故{a n }以1为首项,以-2为公比的等比数列,所以a n =(-2)n -1.答案 (-2)n -18.(2013·辽宁卷)已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=________.解析 ∵a 1,a 3是方程x 2-5x +4=0的两根,且q >1,∴a 1=1,a 3=4,则公比q =2,因此S 6=1× 1-261-2=63.答案 639.(2014·河南一模)已知对于任意的自然数n ,抛物线y =(n 2+n )x 2-(2n +1)x +1与x 轴相交于A n ,B n 两点,则|A 1B 1|+|A 2B 2|+…+|A 2 014B 2 014|=________.解析 令(n 2+n )x 2-(2n +1)x +1=0,则x 1+x 2=2n +1n 2+n ,x 1x 2=1n 2+n,由题意得|A n B n |=|x 2-x 1|,所以|A n B n |= x 1+x 2 2-4x 1x 2=⎝ ⎛⎭⎪⎫2n+1n 2+n 2-4·1n 2+n =1n 2+n =1n -1n +1,因此|A 1B 1|+|A 2B 2|+…+|A 2 014B 2 014|=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫12 014-12 015=1-12 015=2 0142 015.答案2 0142 015三、解答题10.(2014·湖南卷)已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)na n ,求数列{b n }的前2n 项和. 解 (1)当n =1时,a 1=S 1=1; 当n ≥2时,a n =S n -S n -1=n 2+n 2-n -1 2+ n -12=n .故数列{a n }的通项公式为a n =n . (2)由(1)知a n =n ,故b n =2n +(-1)nn . 记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+ (22))+(-1+2-3+4-…+2n ). 记A =21+22+ (22),B =-1+2-3+4-…+2n , 则A =2 1-22n1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n ,故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.11.已知数列{a n }的前n 项和S n =a n +n 2-1,数列{b n }满足3n·b n +1=(n +1)a n +1-na n ,且b 1=3.(1)求a n ,b n ;(2)设T n 为数列{b n }的前n 项和,求T n ,并求满足T n <7时n 的最大值. 解 (1)n ≥2时,S n =a n +n 2-1,S n -1=a n -1+(n -1)2-1, 两式相减,得a n =a n -a n -1+2n -1,∴a n -1=2n -1. ∴a n =2n +1,∴3n·b n +1=(n +1)(2n +3)-n (2n +1)=4n +3, ∴b n +1=4n +33n ,∴当n ≥2时,b n =4n -13n -1,又b 1=3适合上式,∴b n =4n -13n -1.(2)由(1)知,b n =4n -13n -1,∴T n =31+73+1132+…+4n -53n -2+4n -13n -1,①13T n =33+73+113+…+4n -53+4n -13,② ①-②,得23T n =3+43+432+…+43n -1-4n -13n=3+4·13⎝ ⎛⎭⎪⎫1-131-13-4n -13n =5-4n +53n .∴T n =152-4n +52·3n -1.T n -T n +1=4 n +1 +52·3n -4n +52·3n -1=- 4n +33n<0. ∴T n <T n +1,即{T n }为递增数列. 又T 3=599<7,T 4=649>7,∴当T n <7时,n 的最大值为3.B 级——能力提高组1.(2014·上海虹口一模)已知函数f (n )=n 2sin n π2,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 2 014=________.解析 考虑到sinn π2是呈周期性的数列,依次取值1,0,-1,0,…,故在求a 1+a 2+…+a 2 014时要分组求和,又由a n 的定义,知a 1+a 2+a 3+…+a 2 014=(a 1+a 3+…+a 2 013)+(a 2+a 4+…+a 2 014)=[f (1)+f (3)+…+f (2 013)]+[f (2)+f (4)+…+f (2 014)]=[(1-32)+(52-72)+…+(2 0092-2 0112)+2 0132]+[(-32+52)+(-72+92)+…+(-2 0112+2 0132)-2 0152]=-2×(4+12+20+…+4 020)+2 0132+2×(8+16+…+4 024)-2 0152=-2×503× 4+4 0202+2×503× 8+4 024 2-2 0152+2 0132=503×8-2×4 028=-4 032.答案 -4 0322.(2014·上海长宁二模)定义函数f (x )={x ·{x }},其中{x }表示不小于x 的最小整数,如{1.4}=2,{-2.3}=-2.当x ∈(0,n ](n ∈N *)时,函数f (x )的值域为A n ,记集合A n 中元素的个数为a n ,则1a 1+1a 2+…+1a n=________.解析 由题意,a 1=1,当x ∈(n ,n +1]时,{x }=n +1,x ·{x }∈(n 2+n ,n 2+2n +1],{x ·{x }}的取值依次为n 2+n +1,n 2+n +2,…,n 2+2n +1共n +1个,即a n +1=a n +n +1,由此可得a n =1+2+3+…+n =n n +12,1a n=2n n +1 =2⎝ ⎛⎭⎪⎫1n -1n +1,所以1a 1+1a 2+…+1a n =2-2n +1. 答案 2-2n +13.(2014·湖南卷)已知数列{a n }满足a 1=1,|a n +1-a n |=p n,n ∈N *. (1)若{a n }是递增数列,且a 1,2a 2,3a 3成等差数列,求p 的值;(2)若p =12,且{a 2n -1}是递增数列,{a 2n }是递减数列,求数列{a n }的通项公式.解 (1)因为{a n }是递增数列,所以a n +1-a n =|a n +1-a n |=p n. 而a 1=1,因此a 2=p +1,a 3=p 2+p +1. 又a 1,2a 2,3a 3成等差数列,所以4a 2=a 1+3a 3, 因而3p 2-p =0,解得p =13,p =0.当p =0时,a n +1=a n ,这与{a n }是递增数列矛盾. 故p =13.(2)由于{a 2n -1}是递增数列,因而a 2n +1-a 2n -1>0, 于是(a 2n +1-a 2n )+(a 2n -a 2n -1)>0.① 但122n <122n -1,所以|a 2n +1-a 2n |<|a 2n -a 2n -1|.② 由①②知,a 2n -a 2n -1>0,因此 a 2n -a 2n -1=⎝ ⎛⎭⎪⎫122n -1= -1 2n22n -1.③因为{a 2n }是递减数列,同理可得a 2n +1-a 2n <0,故a 2n +1-a 2n =-⎝ ⎛⎭⎪⎫122n = -12n +122n④由③④即知,a n +1-a n = -1n +12n.于是a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+12-122+…+ -1n2n -1=1+12·1-⎝ ⎛⎭⎪⎫-12n -11+12=43+13· -1 n2n -1. 故数列{a n }的通项公式为a n =43+13· -1 n2n -1.。
【状元之路】2015版高考数学二轮复习 函数与导数解答题专题训练(含解析)1.(2014·皖南八校联考)已知函数f (x )=e x (ax 2-2x +2),其中a >0.(1)若曲线y =f (x )在x =2处的切线与直线x +e 2y -1=0垂直,某某数a 的值; (2)讨论f (x )的单调性.解 f ′(x )=e x[ax 2+(2a -2)x ](a >0). (1)由题意得f ′(2)·⎝ ⎛⎭⎪⎫-1e 2=-1,解得a =58. (2)令f ′(x )=0,得x 1=0,x 2=2-2aa.①当0<a <1时,f (x )的增区间为(-∞,0),⎝⎛⎭⎪⎫2-2a a ,+∞,减区间为⎝ ⎛⎭⎪⎫0,2-2a a ;②当a =1时,f (x )在(-∞,+∞)内单调递增;③当a >1时,f (x )的增区间为⎝ ⎛⎭⎪⎫-∞,2-2a a ,(0,+∞),减区间为⎝ ⎛⎭⎪⎫2-2a a ,0.2.(2014·某某二模)已知f (x )=e x (x 3+mx 2-2x +2). (1)假设m =-2,求f (x )的极大值与极小值;(2)是否存在实数m ,使f (x )在[-2,-1]上单调递增?如果存在,某某数m 的取值X 围;如果不存在,请说明理由.解 (1)当m =-2时,f (x )=e x (x 3-2x 2-2x +2)的定义域为(-∞,+∞). ∵f ′(x )=e x (x 3-2x 2-2x +2)+e x (3x 2-4x -2) =x e x(x 2+x -6)=(x +3)x (x -2)e x,∴当x ∈(-∞,-3)或x ∈(0,2)时,f ′(x )<0; 当x ∈(-3,0)或x ∈(2,+∞)时,f ′(x )>0;f ′(-3)=f ′(0)=f ′(2)=0,∴f (x )在(-∞,-3)上单调递减,在(-3,0)上单调递增,在(0,2)上单调递减,在(2,+∞)上单调递增,∴当x =-3或x =2时,f (x )取得极小值; 当x =0时,f (x )取得极大值,∴f (x )极小值=f (-3)=-37e -3,f (x )极小值=f (2)=-2e 2,f (x )极大值=f (0)=2. (2)f ′(x )=e x(x 3+mx 2-2x +2)+e x (3x 2+2mx -2)=x e x [x 2+(m +3)x +2m -2]. ∵f (x )在[-2,-1]上单调递增, ∴当x ∈[-2,-1]时,f ′(x )≥0. 又当x ∈[-2,-1]时,x e x<0,∴当x ∈[-2,-1]时,x 2+(m +3)x +2m -2≤0,∴⎩⎪⎨⎪⎧-22-2m +3+2m -2≤0,-12-m +3+2m -2≤0,解得m ≤4,∴当m ∈(-∞,4]时,f (x )在[-2,-1]上单调递增. 3.(文)(2014·某某四校联考)已知函数f (x )=ax 2+x -x ln x . (1)若a =0,求函数f (x )的单调区间;(2)若f (1)=2,且在定义域内f (x )≥bx 2+2x 恒成立,某某数b 的取值X 围. 解 (1)当a =0时,f (x )=x -x ln x ,函数定义域为(0,+∞).f ′(x )=-ln x ,由-ln x =0,得x =1.当x ∈(0,1)时,f ′(x )>0,f (x )在(0,1)上是增函数; 当x ∈(1,+∞)时,f ′(x )<0,f (x )在(1,+∞)上是减函数. (2)由f (1)=2,得a +1=2, ∴a =1,∴f (x )=x 2+x -x ln x , 由f (x )≥bx 2+2x , 得(1-b )x -1≥ln x . ∵x >0,∴b ≤1-1x -ln xx恒成立.令g (x )=1-1x -ln x x ,可得g ′(x )=ln xx2,∴g (x )在(0,1)上单调递减,在(1,+∞)上单调递增, ∴g (x )min =g (1)=0, ∴b 的取值X 围是(-∞,0]. 3.(理)(文)4.(2014·某某调研)已知f (x )是二次函数,不等式f (x )<0的解集是(0,5),且f (x )在点(1,f (1))处的切线与直线6x +y +1=0平行.(1)求f (x )的解析式;(2)是否存在t ∈N *,使得方程f (x )+37x=0在区间(t ,t +1)内有两个不相等的实数根?若存在,求出t 的值;若不存在,说明理由.解 (1)∵f (x )是二次函数, 不等式f (x )<0的解集是(0,5),∴可设f (x )=ax (x -5),a >0. ∴f ′(x )=2ax -5a .∵函数f (x )在点(1,f (1))处的切线与直线6x +y +1=0平行, ∴f ′(1)=-6.∴2a -5a =-6,解得a =2. ∴f (x )=2x (x -5)=2x 2-10x .(2)由(1)知,方程f (x )+37x=0等价于方程2x 3-10x 2+37=0.设h (x )=2x 3-10x 2+37,则h ′(x )=6x 2-20x =2x (3x -10).当x ∈⎝ ⎛⎭⎪⎫0,103时,h ′(x )<0,函数h (x )在⎝⎛⎭⎪⎫0,103上单调递减;当x ∈⎝⎛⎭⎪⎫103,+∞时,h ′(x )>0,函数h (x )在⎝ ⎛⎭⎪⎫103,+∞上单调递增.∵h (3)=1>0,h ⎝ ⎛⎭⎪⎫103=-127<0,h (4)=5>0,∴方程h (x )=0在区间⎝ ⎛⎭⎪⎫3,103,⎝ ⎛⎭⎪⎫103,4内各有一个实数根,在区间(0,3),(4,+∞)内没有实数根.∴存在唯一的正整数t =3,使得方程f (x )+37x=0在区间(t ,t +1)内有且只有两个不相等的实数根.4.(理)(文)5.(2014·某某五校联考)已知函数f (x )=x ln x . (1)求函数f (x )的单调区间;(2)证明:对任意的t >0,存在唯一的实数m 使t =f (m );(3)设(2)中所确定的m 关于t 的函数为m =g (t ),证明:当t >e 时,有710<ln g tln t <1.解 (1)∵f (x )=x ln x ,∴f ′(x )=ln x +1(x >0), 令f ′(x )=0,得x =1e.∴当x ∈⎝ ⎛⎭⎪⎫0,1e 时,f ′(x )<0,此时f (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减; 当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,f ′(x )>0,f (x )在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增. (2)当0<x ≤1时,f (x )≤0, 又t >0,令h (x )=f (x )-t ,x ∈[1,+∞),由(1)知h (x )在区间[1,+∞)上为增函数,h (1)=-t <0,h (e t )=t (e t -1)>0,∴存在唯一的实数m ,使t =f (m )成立. (3)∵m =g (t )且由(2)知t =f (m ),t >0, 当t >e 时,若m =g (t )≤e,则由f (m )的单调性有t =f (m )≤f (e)=e ,矛盾, ∴m >e.又ln g t ln t =ln m ln f m =ln m ln m ln m =ln m ln m +ln ln m =u u +ln u ,其中u =ln m ,u >1,要使710<ln g t ln t <1成立,只需0<ln u <37u .令F (u )=ln u -37u ,u >1,F ′(u )=1u -37,当1<u <73时,F ′(u )>0,F (u )单调递增;当u >73时,F ′(u )<0,F (u )单调递减.∴对u >1,F (u )≤F ⎝ ⎛⎭⎪⎫73<0, 即ln u <37u 成立.综上,当t >e 时,710<ln g tln t<1成立.5.(理)(2014·某某考试院抽测)已知a 为给定的正实数,m 为实数,函数f (x )=ax 3-3(m +a )x 2+12mx +1.(1)若f (x )在(0,3)上无极值点,求m 的值;(2)若存在x 0∈(0,3),使得f (x 0)是f (x )在[0,3]上的最值,某某数m 的取值X 围. 解 (1)由题意得f ′(x )=3ax 2-6(m +a )x +12m =3(x -2)(ax -2m ), 由于f (x )在(0,3)上无极值点, 故2ma=2,所以m =a .(2)由于f ′(x )=3(x -2)(ax -2m ),故 ①当2m a ≤0或2ma≥3,即m ≤0或m ≥32a 时,取x 0=2即满足题意. 此时m ≤0或m ≥32a .②当0<2ma<2,即0<m <a 时,列表如下:x 0⎝ ⎛⎭⎪⎫0,2m a 2ma⎝ ⎛⎭⎪⎫2m a ,22 (2,3)3 f ′(x )+ 0 - 0 + f (x )1单调递增极大值单调递减极小值单调递增9m +1故f (2)≤f (0)或f ⎝ ⎛⎭⎪⎫2m a ≥f (3),即-4a +12m +1≤1或-4m 3+12m 2aa2+1≥9m +1, 即3m ≤a 或-m 2m -3a2a 2≥0,即m ≤a 3或m ≤0或m =3a 2.此时0<m ≤a3.③当2<2m a <3,即a <m <3a2时,列表如下:x 0 (0,2) 2 ⎝ ⎛⎭⎪⎫2,2m a2ma⎝ ⎛⎭⎪⎫2m a ,33 f ′(x )+ 0 - 0 + f (x )1单调递增极大值单调递减极小值单调递增9m +1故f ⎝ ⎛⎭⎪⎫2m a≤f (0)或f (2)≥f (3),即-4m 3+12m 2a a2+1≤1或-4a +12m +1≥9m +1, 即-4m 2m -3aa 2≤0或3m ≥4a ,即m =0或m ≥3a 或m ≥4a3.此时4a 3≤m <3a 2.综上所述,实数m 的取值X 围是m ≤a 3或m ≥4a 3.。
数列一、高考要求理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n项.理解等差(比)数列的概念,掌握等差(比)数列的通项公式与前n项和的公式. 并能运用这些知识来解决一些实际问题.了解数学归纳法原理,掌握数学归纳法这一证题方法,掌握“归纳—猜想—证明”这一思想方法.二、热点分析1.数列在历年高考中都占有较重要的地位,一般情况下都是一个客观性试题加一个解答题,分值占整个试卷的10%左右.客观性试题主要考查等差、等比数列的概念、性质、通项公式、前n 项和公式、极限的四则运算法则、无穷递缩等比数列所有项和等内容,对基本的计算技能要求比较高,解答题大多以考查数列内容为主,并涉及到函数、方程、不等式知识的综合性试题,在解题过程中通常用到等价转化,分类讨论等数学思想方法,是属于中高档难度的题目.2.有关数列题的命题趋势(1)数列是特殊的函数,而不等式则是深刻认识函数和数列的重要工具,三者的综合求解题是对基础和能力的双重检验,而三者的求证题所显现出的代数推理是近年来高考命题的新热点(2)数列推理题是新出现的命题热点.以往高考常使用主体几何题来考查逻辑推理能力,近两年在数列题中也加强了推理能力的考查。
(3)加强了数列与极限的综合考查题3.熟练掌握、灵活运用等差、等比数列的性质。
等差、等比数列的有关性质在解决数列问题时应用非常广泛,且十分灵活,主动发现题目中隐含的相关性质,往往使运算简洁优美.如,可以利用等比数列的性质进行转化:从而有,即.4.对客观题,应注意寻求简捷方法解答历年有关数列的客观题,就会发现,除了常规方法外,还可以用更简捷的方法求解.现介绍如下:①借助特殊数列.②灵活运用等差数列、等比数列的有关性质,可更加准确、快速地解题,这种思路在解客观题时表现得更为突出,很多数列客观题都有灵活、简捷的解法5.在数列的学习中加强能力训练数列问题对能力要求较高,特别是运算能力、归纳猜想能力、转化能力、逻辑推理能力更为突出.一般来说,考题中选择、填空题解法灵活多变,而解答题更是考查能力的集中体现,尤其近几年高考加强了数列推理能力的考查,应引起我们足够的重视.因此,在平时要加强对能力的培养。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则A B =( )A .{}1,0A =-B .{}0,1C .{}1,0,1-D .{}0,1,2 【答案】A考点:集合的运算.2.若a 为实数且(2)(2)4ai a i i +-=-,则a =( ) A .1- B .0 C .1 D .2 【答案】B 【解析】试题分析:由已知得24(4)4a a i i +-=-,所以240,44a a =-=-,解得0a =,故选B . 考点:复数的运算.3.根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。
以下结论不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关 【答案】D 【解析】试题分析:由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关,故选D .考点:正、负相关.2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年19002000 2100 2200 2300 2400 2500 260027004.等比数列{a n }满足a 1=3,135a a a ++ =21,则357a a a ++= ( )A .21B .42C .63D .84 【答案】B考点:等比数列通项公式和性质. 5.设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )A .3B .6C .9D .12 【答案】C 【解析】试题分析:由已知得2(2)1log 43f -=+=,又2log 121>,所以22log 121log 62(log 12)226f -===,故2(2)(log 12)9f f -+=,故选C . 考点:分段函数.6.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A .81 B .71 C .61D .51【答案】D 【解析】试题分析:由三视图得,在正方体1111ABCD A B C D -中,截去四面体111A A B D -,如图所示,,设正方体棱长为a ,则11133111326A A B DV a a -=⨯=,故剩余几何体体积为3331566a a a -=,所以截去部分体积与剩余部分体积的比值为51,故选D . 考点:三视图.CBADD 1C 1B 1A 17.过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( ) A .26 B .8 C .46 D .10 【答案】C【解析】由已知得321143AB k -==--,27341CB k +==--,所以1AB CB k k =-,所以AB CB ⊥,即ABC ∆为直角三角形,其外接圆圆心为(1,2)-,半径为5,所以外接圆方程为22(1)(2)25x y -++=,令0x =,得262y =±-,所以46MN =,故选C . 考点:圆的方程.8.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入,a b 分别为14,18,则输出的a =( )A .0B .2C .4D .14 【答案】B 【解析】 试题分析:程序在执行过程中,a ,b 的值依次为14a =,18b =;4b =;10a =;6a =;2a =;2b =,此时2a b ==程序结束,输出a 的值为2,故选B . 考点:程序框图. 9.已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,a > ba = a -b b = b - a输出a 结 束开 始 输入a ,b a ≠ b 是是否否则球O 的表面积为( )A .36π B.64π C.144π D.256π 【答案】C 【解析】试题分析:如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时2311136326O ABC C AOB V V R R R --==⨯⨯==,故6R =,则球O 的表面积为24144S R ππ==,故选C .考点:外接球表面积和椎体的体积.BOAC10.如图,长方形ABCD 的边2AB =,1BC =,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=.将动P 到A 、B 两点距离之和表示为x 的函数()f x ,则()y f x =的图像大致为( )【答案】B 【解析】DPCBOA x考点:函数的图象和性质.11.已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A .5B .2C .3D .2【答案】D 【解析】试题分析:设双曲线方程为22221(0,0)x y a b a b-=>>,如图所示,AB BM =,0120ABM ∠=,过点M作MN x ⊥轴,垂足为N ,在Rt BMN ∆中,BN a =,3MN a =,故点M 的坐标为(2,3)M a a ,代入双曲线方程得2222a b a c ==-,即222c a =,所以2e =,故选D .考点:双曲线的标准方程和简单几何性质.12.设函数'()f x 是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( )A .(,1)(0,1)-∞-B .(1,0)(1,)-+∞C .(,1)(1,0)-∞--D .(0,1)(1,)+∞【答案】A 【解析】试题分析:记函数()()f x g x x=,则''2()()()xf x f x g x x -=,因为当0x >时,'()()0xf x f x -<,故当0x >时,'()0g x <,所以()g x 在(0,)+∞单调递减;又因为函数()()f x x R ∈是奇函数,故函数()g x 是偶函数,所以()g x 在(,0)-∞单调递减,且(1)(1)0g g -==.当01x <<时,()0g x >,则()0f x >;当1x <-时,()0g x <,则()0f x >,综上所述,使得()0f x >成立的x 的取值范围是(,1)(0,1)-∞-,故选A .考点:导数的应用、函数的图象与性质.第II 卷(非选择题,共90分)本卷包括必考题和选考题两部分。
考向一 等差数列中的最值问题 1.讲高考
(1)考纲要求
理解等差数列的定义,掌握等差数列的通项公式和前n 项和公式、等差数列的性质,会求等差数列的前n 项和的最值问题. (2)命题规律
等差数列前n 项和的最值问题是高考考查的热点之一,考查形式为选择或填空小题,也可以是解答题的一个小题,是中档题.
等差数列前n 项和的最值问题考查题型为求等差数列前n 项和的最值或求取最值时对应的项数或已知取最值时的项数求公差d 的取值范围.
例1【2014高考北京版理第12题】若等差数列{}n a 满足7897100,0a a a a a ++>+<,则当n = 时,{}n a 的前n 项和最大
.
例2【2014高考大纲理第18题】等差数列{}n a 的前n 项和为n S ,已知110a =,2a 为整数,且4n S S ≤.
(I )求{}n a 的通项公式; (II )设1
1
n n n b a a +=
,求数列{}n b 的前n 项和n T .
2.讲基础
已知等差数列{}n a 的首项为1a ,公差为d ,则11(1)n a a n d dn a d =+-=+-是关于n 的函数问题,11()(1)22n n n a a d S na n n +=
=+-=21()22
d d
n a n +-是关于n 的函数问题,可以利用二次函数的图像与性质求解最值问题.
3.讲典例
【例1】【2015届河南省实验中学高三上学期期中考试,理5】设)}({*∈N n a n 是等差数列,
n S 是其前n 项和,且65S S <,876S S S >=,则下列结论错误的是( )
A .0<d
B .07=a
C .59S S >
D .6S 和7S 均为n S 的最大值
【趁热打铁】【河北省正定中学2015届高三上学期第三次月考,理7】已知等差数列{}n a 的
前n 项和为n S ,47109,a a a ++=14377S S -=,则使n S 取得最小值时n 的值为 ( ) A .4 B.5 C.6 D.7 【答案】B
【例2】【浙江省嘉兴市第一中学2015届高三上学期期中考试,理7】已知等差数列{}n a 的前
n 项和为n S 且满足0,01817<>S S ,则
17
1722
11,,,a S a S a S 中最大的项为( ) A .
66a S B .77a S
C .88a S
D .9
9a S
【趁热打铁】【重庆一中2015级高三上期半期考试数学试题卷(理科)】已知等差数列{}n a 的首项为23,公差为整数,且第6项为正数,从第7项起为负数。
(1)求此数列的公差d ;
(2)当前n 项和n S 是正数...
时,求n 的最大值
4.讲方法
求等差数列前n 项和的最值问题的方法:
①二次函数法:将n S 看成关于n 的二次函数,运用配方法,借助函数的单调性及数形结合思想,使问题得到解决,注意项数n 是正整数这一条件.
②通项公式法:求使n a ≥0(n a ≤0)成立的最大n 值,即可求出n S 的最大值(或最小值). ③不等式法:借助n S 取最大值时,有1
*1
(2,)n n n n S S n n N S S -+≥⎧≥∈⎨
≥⎩,解此不等式组确定n 的范围,
进而确定n 的值和对应n S 的值(即为n S 的最值).
5.讲易错
【题目】【2014年重庆一中高2015级高三上期半期考试数学试题卷(理科)】已知等差数列{}n a 的公差0,d <若462824,10,a a a a ⋅=+=则该数列的前n 项和n S 的最大值为 ( )
A .
361
8
B .9
C .45
D .35
考向二 与数列有关的最值问题 1.讲高考
(1)考纲要求
会利用数列及相关知识处理数列中的最值问题、取值范围等问题. (2)命题规律
数列与函数、不等式的结合,是高考考查的重点和热点,重点考查利用数列的相关知识和函
数、不等式知识求数列的最值或已知不等式成立求参数取值范围或是证明不等式,为解答题的一个小题,难度为中档偏上试题.
例1【2014高考湖北理第18题】已知等差数列}{n a 满足:21=a ,且1a 、2a 、5a 成等比数列.
(1)求数列}{n a 的通项公式.
(2)记n S 为数列}{n a 的前n 项和,是否存在正整数n ,使得?80060+>n S n 若存在,求n 的最小值;若不存在,说明理由.
例2【2014高考上海理科第23题】已知数列{}n a 满足111
3,*,13
n n n a a a n N a +≤≤∈=. (1)若2
342,,9a a x a ===,求x 的取值范围;
(2)若{}n a 是公比为q 等比数列,12n
n S a a a =++
+,11
3,*,3
n n n S S S n N +≤≤∈求
q 的取值范围;
(3)若12,,,k a a a 成等差数列,且121000k a a a ++
+=,求正整数k 的最大值,以
及k 取最大值时相应数列12,,
,k a a a 的公差.
2.讲基础
数列是定义域为正整数集或其子集{1,2,3,…,N}函数,故函数中求最值的单调性法、基本不等式等方法在数列最值问题中仍然适用,不等恒成立问题的参变分离方法、分类讨论等方法在解决数列恒成立问题中仍然适合. 3.讲典例
【例1】【湖北省黄冈中学2015届高三上学期期中考试数学,理6】若数列{}n a 满足
110n n
p
a a +-=, *,n N p ∈为非零常数,则称数列{}n a 为“梦想数列”。
已知正项数列1n
b ⎧⎫
⎨⎬⎩⎭
为“梦想数列”,且
99123
992b b b b =,则892b b +的最小值是( )
A .2
B .4
C .6
D .
8
【趁热打铁】【内蒙古一机一中2015届高三上学期期中考试,理11】设{}n a 是等比数列,公
比q =
n S 为{}n a 的前n 项和。
记*21
17,n n
n n S S T n N a +-=
∈,设0n T 为数列{}n T 的最大项,
则0n =( ) A .3
B .4
C .5
D .6
【例2】【浙江省重点中学协作体2015届第一次适应性训练,理10】记数列{}n a 的前n 项和为n S ,若不等式
2
22
12n n
S a ma n
+≥对任意等差数列{}n a 及任意正整数n 都成立,则实数m 的最大值为( )
A .
12 B .13 C .14 D .15
【趁热打铁】【北京市海淀区2015届高三上学期期中练习,理8】设等差数列{}n a 的前n 项和为n S .在同一个坐标系中,()n a f n =及()n S g n =的部分图象如图所示,则( )
(A )当4n =时,n S 取得最大值(B )当3n =时,n S 取得最大值 (C )当4n =时,n S 取得最小值(D )当3n =时,n S 取得最小值
4.讲方法
(1)求数列}{n a 的前n 项和n S 的最值,主要是两种思路:①研究数列)(n f a n =的项的情况,判断n S 的最值;②直接研究n S 的通项公式,即利用类型2的思路求n S 的最值.
(2) 求数列}{n a 的最值,主要有两种方法:①从函数角度考虑,利用函数)(x f y =的性质,求数列)(n f a n =的最值;②利用数列离散的特点,考察⎩⎨
⎧≥≥-+11k k k k a a a a 或⎩⎨⎧≤≤-+1
1
k k k k a a a a ,然后判断
数列}{n a 的最值情况.
(3)对数列不等式恒成立问题,主要有两种方法:①通过参变分离法转化为数列的最值问题求解;②通过分类讨论,解决恒成立.
5.讲易错
【题目】【河南洛阳一高2015届上期第二次月考,17】已知数列}{n a 的通项公式
n n n a )10
9
)(1(+=,)(N n ∈,求}{n a 的最大值。