机械设计基础 04轮系和减速器
- 格式:ppt
- 大小:2.23 MB
- 文档页数:10
机械设计基础之轮系机械设计基础之轮系轮系是机械设计中重要的基础部分,它的作用主要是通过一系列的齿轮系统传递动力,实现机械设备的运动和动力输出。
本文将详细介绍轮系的组成、分类、设计及实际应用。
一、轮系的组成轮系通常由一系列的齿轮组成,包括主动轮、从动轮和齿轮轴等。
主动轮是动力输入部分,从动轮则是动力输出部分。
齿轮轴是用于支撑和固定齿轮的零件,可以分为输入轴和输出轴。
此外,轮系中还可能包括超越离合器、安全离合器等辅助装置,以保护轮系免受过度载荷或意外损坏。
二、轮系的分类根据轮系中齿轮的形状和啮合方式,可以将轮系分为多种类型,例如凸轮、凹轮、斜齿轮等。
其中,凸轮轮系是最常见的一种,其特点是齿轮的齿形为凸状,具有较高的承载能力和传动效率。
凹轮轮系的齿轮齿形为凹状,通常用于低速传动或高减速比的情况。
斜齿轮轮系则具有较好的啮合性能和承载能力,常用于高速重载场合。
三、轮系的设计轮系的设计主要包括以下几个步骤:1、确定轮系的传动比。
传动比是根据机械设备的需求确定的,通常要求传动比在10:1到1:10之间。
2、选择合适的齿轮类型。
根据传动比和载荷情况,选择合适的齿轮类型,如凸轮、凹轮或斜齿轮等。
3、设计齿轮的尺寸和材料。
根据载荷和转速等情况,设计齿轮的尺寸和材料,通常采用合金钢或碳素钢等材料。
4、校核齿轮的强度和寿命。
通过对齿轮进行强度和寿命的校核,确保齿轮在规定的使用时间内能够正常工作。
四、轮系的实际应用轮系在机械设计中具有广泛的应用,以下列举几个典型的应用场景:1、飞机:飞机的起飞和降落过程中,需要通过轮系将发动机的动力传递到螺旋桨和减速器等部件,实现飞机的起飞和降落。
2、汽车:汽车的变速器中使用了多种类型的轮系,如凸轮、斜齿轮等,用于传递发动机的动力到车轮,实现汽车的加速、减速和转向等操作。
3、船舶:船舶的推进系统中使用了大量的轮系,通过齿轮的啮合实现发动机动力传递到螺旋桨,推动船舶前行。
4、工业机械:工业机械中大量使用轮系,如纺织机械、矿山机械等,通过轮系实现动力的传递和控制。
第7章轮系及减速器7.1 轮系的类型由一对齿轮组成的机构是齿轮传动的最简单形式。
但是在机械中,为了获得很大的传动比,或者为了将输入轴的一种转速变换为输出轴的多种转速等原因,常采用一系列互相啮合的齿轮将输入轴和输出轴连接起来。
这种由一系列齿轮组成的传动系统称为轮系。
轮系可以分为两种类型:定轴轮系和周转轮系。
如上左图所示的轮系,传动时每个齿轮的几何轴线都是固定的,这种轮系称为定轴轮系。
如上右图所示的轮系,齿轮2的几何轴线O2的位置不固定。
当H杆转动时,O2将绕齿轮1的几何轴线民转动。
这种至少有一个齿轮的几何轴线绕另一齿轮的几何轴线转动的轮系,称为周转轮系。
7.2 定轴轮系及其传动比在轮系中,输入轴与输出轴的角速度(或转速)之比称为轮系的传动比,用i ab表示,下标a、b为输入轴和输出轴的代号,即i ab=ωa/ωb。
计算轮系传动比不仅要确定它的数值,而且要确定两轴的相对转动方向,这样才能完整表达输入轴与输出轴间的关系。
定轴轮系各轮的相对转向可以通过逐对齿轮标注箭头的方法来确定。
各种类型齿轮机构的标注箭头规则如上图所示。
定轴轮系传动比数值的计算,以图5-1所示轮系为例说明如下:令z1、z2、z2′、…表示各轮的齿数,n1、n2、、、n2′、…表示各轮的转速。
因同一轴上的齿轮转速相同,故n2=n2′,n3=n3′,n5=n5′,n6=n6′。
由前章所述可知,一对互相啮合的定轴齿轮的转速比等于其齿数反比,故各对啮合齿轮的传动比数值为设与轮1固联的轴为输入轴,与轮7固联的轴为输出轴,则输入轴与输出轴的传动比数值为上式表明,定轴轮系传动比的数值等于组成该轮系的各对啮合齿轮传动比的连乘积,也等于各对啮合齿轮中所有从动轮齿数的乘积与所有主动轮齿数乘积之比。
以上结论可推广到一般情况。
设轮1为起始主动轮,轮K为最末从动轮,则定轴轮系始末两轮传动比数值计算的一般公式为上式所求为传动比数值的大小,通常以绝对值表示。
两轮相对转动方向则由图中箭头表示。