9.1电磁感应现象楞次定律
- 格式:doc
- 大小:217.00 KB
- 文档页数:6
法拉第电磁感应定律与楞次定律法拉第电磁感应定律和楞次定律是电磁学中两个关键的物理定律,它们描述了电磁感应现象和电磁场的相互作用。
这两个定律的提出和发展对于电磁学的发展产生了深远的影响。
本文将介绍法拉第电磁感应定律和楞次定律的原理、应用以及它们之间的关系。
一、法拉第电磁感应定律法拉第电磁感应定律是由英国物理学家迈克尔·法拉第于1831年提出的。
该定律描述了导体中电磁感应现象的产生。
根据法拉第电磁感应定律,当导体中的磁通量发生变化时,导体中就会产生电动势(即电压),从而产生电流。
具体来说,法拉第电磁感应定律可以用如下公式表示:ε = -dΦ/dt其中,ε表示感应电动势,Φ表示磁通量,t表示时间,d/dt表示对时间的导数。
根据该公式,当磁通量的变化率增大时,感应电动势的大小也会增大。
而当磁通量的变化率减小或保持不变时,感应电动势的大小也会相应减小或保持不变。
法拉第电磁感应定律的应用十分广泛。
例如,感应电动势的产生是电感器、变压器等电子设备工作的基础原理之一。
另外,发电机的工作原理也是基于法拉第电磁感应定律。
当发电机中的导线在磁场中旋转时,磁通量的变化就会引起导线中的感应电动势,进而产生电流,从而实现转化机械能为电能的过程。
二、楞次定律楞次定律是由法国物理学家亨利·楞次于1834年提出的。
该定律描述了电磁感应现象中的一个重要规律,即感应电流的产生会产生一个与产生它的磁场方向相反的磁场。
楞次定律可以简述为:感应电流产生的磁场方向总是尽可能地抵消引起它的磁场的变化。
具体来说,当磁场发生变化时,感应电流将会在闭合回路中产生。
根据楞次定律,这个感应电流会产生一个磁场,其方向与原来的磁场方向相反,从而抵消了原来的磁场变化。
这一定律使得磁场变化时系统能够自我调节,保持了磁场的相对稳定性。
楞次定律的应用也非常广泛。
一个重要的应用是电感器。
当电流通过电感器时,电感器中会产生一个磁场,该磁场会抵消电流产生的磁场变化,从而使电感器的电流保持稳定。
高考经典课时作业9-1 电磁感应现象、楞次定律(含标准答案及解析)时间:45分钟分值:100分1.假如有一宇航员登月后,想探测一下月球表面是否有磁场,他手边有一只灵敏电流表和一个小线圈,则下列推断正确的是()A.直接将电流表放于月球表面,看是否有示数来判断磁场的有无B.将电流表与线圈组成闭合回路,使线圈沿某一方向运动,如电流表无示数,则可判断月球表面无磁场C.将电流表与线圈组成闭合回路,使线圈沿某一方向运动,如电流表有示数,则可判断月球表面有磁场D.将电流表与线圈组成闭合回路,使线圈在某一平面内沿各个方向运动,如电流表无示数,则可判断月球表面无磁场2.(2012·高考北京卷)物理课上,老师做了一个奇妙的“跳环实验”.如图,她把一个带铁芯的线圈L、开关S和电源用导线连接起来后,将一金属套环置于线圈L上,且使铁芯穿过套环.闭合开关S的瞬间,套环立刻跳起.某同学另找来器材再探究此实验.他连接好电路,经重复试验,线圈上的套环均未动.对比老师演示的实验,下列四个选项中,导致套环未动的原因可能是()A.线圈接在了直流电源上B.电源电压过高C.所选线圈的匝数过多D.所用套环的材料与老师的不同3.(2013·南京模拟)如图所示,在条形磁铁的中央位置的正上方水平固定一铜质圆环.以下判断中正确的是()A.释放圆环,环下落时产生感应电流B.释放圆环,环下落时无感应电流C.释放圆环,环下落时环的机械能守恒D.释放圆环,环下落时环的机械能不守恒4.(2013·芜湖一中高三质检)如图甲所示,两个闭合圆形线圈A、B的圆心重合,放在同一水平面内,线圈A中通以如图乙所示的变化电流,t=0时电流方向为顺时针(如图中箭头所示).在t1~t2时间内,对于线圈B,下列说法中正确的是()A.线圈B内有顺时针方向的电流,线圈有扩张的趋势B.线圈B内有顺时针方向的电流,线圈有收缩的趋势C.线圈B内有逆时针方向的电流,线圈有扩张的趋势D.线圈B内有逆时针方向的电流,线圈有收缩的趋势5.如图所示,甲是闭合铜线框,乙是有缺口的铜线框,丙是闭合的塑料线框,它们的正下方都放置一薄强磁铁,现将甲、乙、丙拿至相同高度H处同时释放(各线框下落过程中不翻转),则以下说法正确的是()A.三者同时落地B.甲、乙同时落地,丙后落地C.甲、丙同时落地,乙后落地D.乙、丙同时落地,甲后落地6.2012年冬季我国自主研发的J-15舰载战机在北海进行着舰训练,在上空盘旋时,由于地磁场的存在,飞机在一定高度水平飞行时,其机翼就会切割磁感线,机翼的两端之间会有一定的电势差,则从飞行员的角度看,机翼左端的电势比右端的电势()A.低B.高C.相等D.以上情况都有可能7.(2013·湖北八校二联)如图是电子感应加速器的示意图,上、下为电磁铁的两个磁极,磁极之间有一个环形真空室,电子在真空室中做圆周运动.上图为侧视图,下图为真空室的俯视图,电子从电子枪右端逸出(不计初速度),当电磁铁线圈电流的方向与图示方向一致时,使电子在真空室中沿虚线加速击中电子枪左端的靶,下列说法中正确的是()A.真空室中磁场方向竖直向上B.真空室中磁场方向竖直向下C.电流应逐渐减小D.电流应逐渐增大8.如图所示的装置中,cd杆原来静止,当ab杆做如下哪些运动时,cd杆将向右移动()A.向右匀速运动B.向右减速运动C.向左加速运动D.向左减速运动9.某同学设计了如图所示的装置验证楞次定律,其中ab是一个可绕垂直于纸面的轴O转动的闭合矩形线框,当滑动变阻器的滑片P自左向右滑动时,从纸外向纸内看,线框ab将()A.保持静止不动B.逆时针转动C.顺时针转动D.发生转动,但因电源极性不明,无法确定转动方向10.如右图所示,光滑固定的金属导轨M、N水平放置,两根导体棒P、Q平行放置在导轨上,形成一个闭合回路,一条形磁铁从高处自由下落接近回路时()A.P、Q将相互靠拢B.P、Q将相互远离C.磁铁的加速度仍为gD.磁铁的加速度小于g11.如右图所示,在匀强磁场中放有平行铜导轨,它与大线圈M相连接,要使小导线圈N 获得顺时针方向的感应电流,则放在导轨上的裸金属棒ab的运动情况是(两线圈共面放置)()A.向右匀速运动B.向左减速运动C.向右减速运动D.向右加速运动12.如图所示,固定于水平面上的金属架CDEF处在竖直向下的匀强磁场中,金属棒MN 沿框架以速度v向右做匀速运动.t=0时,磁感应强度为B0,此时MN到达的位置使MDEN 构成一个边长为l的正方形.为使MN棒中不产生感应电流,从t=0开始,磁感应强度B 随时间t应怎样变化?请推导出这种情况下B与t的关系式.标准答案及解析:1.解析:电磁感应现象产生的条件是:穿过闭合回路的磁通量发生改变时,回路中有感应电流产生.A中,即使有一个恒定的磁场,也不会有示数,A错误;同理,将电流表与线圈组成回路,使线圈沿某一方向运动,如电流表无示数,也不能判断出没有磁场,因为磁通量可能是恒定的,B错误;电流表有示数则说明一定有磁场,C正确;将电流表与线圈组成闭合回路,使线圈在某一个与磁场平行的平面内沿各个方向运动,也不会有示数,D错误.答案:C2.解析:闭合开关S,金属套环跳起,是因为S闭合瞬间,穿过套环的磁通量变化,环中产生感应电流的缘故.产生感应电流要具备两个条件:回路闭合和穿过回路的磁通量变化.只要连接电路正确,闭合S瞬间,就会造成穿过套环磁通量变化,与电源的交直流性质、电压高低、线圈匝数多少均无关.该同学实验失败,可能是套环选用了非导电材料的缘故,故D选项正确.答案:D3.解析:圆环中的磁通量始终为零,无感应电流,故A、D错误,B、C正确.答案:BC4.解析:在t1~t2时间内,通入线圈A中的电流是正向增大的,即逆时针方向增大的,其内部会产生增大的向外的磁场,穿过B的磁通量增大,由楞次定律可判定线圈B中会产生顺时针方向的感应电流.线圈B中电流为顺时针方向,与A的电流方向相反,有排斥作用,故线圈B将有扩张的趋势.答案:A5.解析:甲是铜线框,在下落过程中产生感应电流,所受的安培力阻碍它的下落,故所需的时间长;乙没有闭合回路,丙是塑料线框,故都不会产生感应电流,它们做自由落体运动,故D正确.答案:D6.解析:北半球的地磁场的竖直分量向下,由右手定则可判定飞机无论向哪个方向飞行,由飞行员的角度看均为左侧机翼电势较高.答案:B7.解析:由安培定则知,A正确.电子逆时针加速运动形成顺时针方向的感应电流,感应电流产生的磁场与原电流产生的磁场方向相反,由楞次定律知原磁场是增强的,故D 正确.答案:AD8.解析:ab匀速运动时,ab中感应电流恒定,L1中磁通量不变,穿过L2的磁通量不变,L2中无感应电流产生,cd保持静止,A不正确;ab向右减速运动时,L1中的磁通量向上减小,由楞次定律知L2中感应电流产生的磁场方向向下,故通过cd的电流方向向上,cd向左移动,B错误;同理得C不正确、D正确.答案:D9.解析:滑动变阻器的滑片P向右滑动时,接入电路的电阻变大,电流强度变小,由这个电流产生的磁场减弱,穿过线框磁通量变小.根据楞次定律,感应电流的磁场总是阻碍引起感应电流磁场的变化,所以线框ab应顺时针方向转动,增大其垂直于磁感线方向的投影面积,才能阻碍穿过线框的磁通量减小.答案:C10.解析:设磁铁下端为N极,如右图所示,根据楞次定律可判断出P、Q中的感应电流方向,根据左手定则可判断P、Q所受安培力的方向.可见,PQ将互相靠拢.由于回路所受安培力的合力向下,由牛顿第三定律,磁铁将受到向上的反作用力,从而加速度小于g.当磁铁下端为S极时,根据类似的分析可得到相同的结果.答案:AD11.解析:欲使N产生顺时针方向的感应电流,感应电流的磁场垂直纸面向里,由楞次定律可知有两种情况:一是M中有顺时针方向逐渐减小的电流,使其在N中的磁场方向向里,且磁通量在减小;二是M中有逆时针方向逐渐增大的电流,使其在N中的磁场方向向外,且磁通量在增大.因此对前者应使ab减速向右运动.对于后者,则应使ab 加速向左运动.答案:C12.解析:要使MN棒中不产生感应电流,应使穿过线圈平面的磁通量不发生变化,即任一时刻的磁通量与t=0时刻的磁通量相等在t=0时刻,穿过线圈平面的磁通量Φ1=B0·S=B0·l2设t时刻的磁感应强度为B,此时磁通量为Φ2=Bl(l+vt)由Φ1=Φ2得B=B0ll+vt 答案:见解析。
高三一轮复习基础训练9.1 电磁感应现象楞次定律日期:____学号:_____姓名:_____一、选择题(本大题共10小题,每小题7分,共70分.)1.关于产生感应电流的条件,下述说法正确的是()A.位于磁场中的闭合线圈,一定能产生感应电流B.闭合线圈和磁场发生相对运动,一定能产生感应电流C.闭合线圈做切割磁感线运动,一定能产生感应电流D.穿过闭合线圈的磁通量发生变化,一定能产生感应电流2.如图所示,通电直导线下边有一个矩形线框,线框平面与直导线共面.若使线框逐渐远离(平动)通电导线,则穿过线框的磁通量将()A.逐渐增大B.逐渐减小C.保持不变D.不能确定3.现将电池组、滑动变阻器、带铁芯的线圈A、线圈B、电流计及开关按如图所示方式连接,在开关闭合、线圈A放在线圈B中的情况下,某同学发现当他将滑动变阻器的滑动端P向左加速滑动时,电流计指针向右偏转.由此可以判断()A.线圈A向上移动或滑动变阻器滑动端P向右加速滑动,都能引起电流计指针向左偏转B.线圈A中铁芯向上拔出或断开开关,都能引起电流指针向右偏转C.滑动变阻器的滑片P匀速向左或匀速向右滑动,都能使电流计指针静止在中央D.因为线圈A、线圈B的绕线方向未知,故无法判断电流计指针偏转的方向4. 如图所示,闭合的矩形金属框abcd的平面与匀强磁场垂直,现金属框固定不动而磁场运动,发现ab边所受安培力的方向为竖直向上,则此时磁场的运动可能是()A.水平向右平动B.水平向左平动C.竖直向上平动D.竖直向下平动5.如图所示,甲是闭合铜线框,乙是有缺口的铜线框,丙是闭合的塑料线框,它们的正下方都放置一薄强磁铁,现将甲、乙、丙拿至相同高度H处同时释放(各线框下落过程中不翻转),则以下说法正确的是()A.三者同时落地B.甲、乙同时落地,丙后落地C.甲、丙同时落地,乙后落地D.乙、丙同时落地,甲后落地6.如图所示,在水平地面下有一条沿东西方向铺设的水平直导线,导线中通有自东向西稳定、强度较大的直流电流.现用一闭合的检测线圈(线圈中串有灵敏电流计,图中未画出)检测此通电直导线的位置,若不考虑地磁场的影响,在检测线圈位于水平面内,从距直导线很远处由北向南沿水平地面通过导线的上方并移至距直导线很远处的过程中,俯视检测线圈,其中的感应电流的方向是()A.先顺时针后逆时针B.先逆时针后顺时针C.先顺时针后逆时针,然后再顺时针D.先逆时针后顺时针,然后再逆时针7.如图所示,铜制闭合线圈c被轻线竖直悬吊于天花板上,当金属导轨上的导体棒ab在匀强磁场中沿导轨运动时(导轨电阻不计),下列说法正确的是:()A.ab向右做匀速运动时,闭合线圈c将被螺线管吸引B.ab向左做匀速运动时,闭合线圈c将被螺线管排斥C.ab向右做减速运动时,闭合线圈c将被螺线管吸引D.ab向左做加速运动时,闭合线圈c将被螺线管排斥8.绕有线圈的铁芯直立在水平桌面上,铁芯上套着一个铝环,线圈与电源、电键相连,如图所示,线圈上端与电源正极相连,闭合电键的瞬间,铝环向上跳起.则下列说法中正确的是()A.若保持电键闭合,则铝环不断升高B.若保持电键闭合,则铝环停留在某一高度C.若保持电键闭合,则铝环跳起到某一高度后将回落D.如果电源的正、负极对调,观察到的现象不变9.位于光滑水平面上的小车上放置一螺线管,一个比螺线管长的条形磁铁沿着螺线管的轴线水平穿过,如图所示,在此过程中()A.磁铁做匀速直线运动B.磁铁做减速运动C.小车向右做加速运动D.小车先加速后减速10.已知一灵敏电流计,当电流从正接线柱流入时,指针向正接线柱一侧偏转,现把它与线圈串联接成如图所示电路,当条形磁铁按如图所示情况运动时,以下判断正确的是()A.甲图中电流表偏转方向向右B.乙图中磁铁下方的极性是N极C.丙图中磁铁的运动方向向下D.丁图中线圈的绕制方向从上往下看为顺时针方向二、非选择题(本大题共2小题,共30分.计算题要有必要的文字说明和解题步骤,有数值计算的要注明单位.)11. (12分)如图,金属环A用轻绳悬挂,与长直螺线管共轴,并位于其左侧,若变阻器滑片P向左移动,则金属环A将向________(填“左”或“右”)运动,并有________(填“收缩”或“扩张”)趋势.12.(18分)磁感应强度为B的匀强磁场仅存在于边长为2l的正方形范围内,有一个电阻为R、边长为l的正方形导线框abcd,沿垂直于磁感线方向,以速度v匀速通过磁场,如图所示,从ab进入磁场时开始计时.(1)画出穿过线框的磁通量随时间变化的图象;(2)判断线框中有无感应电流.若有,请判断出感应电流的方向;若无,请说明理由.高 三 一 轮 复 习 基 础 训 练9.2 法拉第电磁感应定律、自感现象日期:____学号:_____姓名:_____一、选择题(本大题共10小题,每小题7分,共70分.)1.图中甲~丁所示分别为穿过某一闭合回路的磁通量Φ随时间t 变化的图象,关于回路中产生的感应电动势的下列论述,正确的是( )A .图甲中回路产生的感应电动势恒定不变B .图乙中回路产生的感应电动势一直在变大C .图丙中回路在0~t 1时间内产生的感应电动势小于在t 1~t 2时间内产生的感应电动势D .图丁中回路产生的感应电动势先变小再变大2.如图中所标的导体棒的长度为L ,处于磁感应强度为B 的匀强磁场中,棒运动的速度均为v ,则产生的电动势为BL v 的是( )3.如图所示,水平放置的光滑∪形框架上接一个阻值为R 0的电阻,放在垂直纸面向里的、磁感应强度大小为B的匀强磁场中,一个半径为L 、质量为m 的半圆形硬导体AC 在水平向右的恒定拉力F 作用下,由静止开始运动距离d 后速度达到v ,半圆形硬导体AC 的电阻为r ,其余电阻不计.下列说法错误的是( )A .此时AC 两端电压为U AC =2BL vB .此时AC 两端电压为U AC =2BL v R 0R 0+rC .此过程中电路产生的电热为Q =Fd -12m v 2D .此过程中通过电阻R 0的电荷量为q =2BLd R 0+r4. 如图所示,电感L 的直流电阻(稳定时的电阻)与电阻R 相同,A 、B 是完全相同的灯泡,当开关S 突然闭合或突然断开时,下列判断正确的是( )A .当开关突然闭合或断开时,A 、B 现象完全相同B .S 闭合较长时间后,B 灯会更亮些C .S 突然断开时,B 会立即熄灭,A 还要亮一会儿D .S 突然闭合时,B 灯比A 灯亮,断开S 时A 、B 要过一会儿后一起熄灭5.如图所示,半径为r 的金属圆盘在垂直于盘面的匀强磁场中,绕O 轴以角速度ω沿逆时针方向匀速转动,电阻两端分别接盘心O 和盘边缘,则通过电阻R 的电流强度的大小和方向是( )A .I =Br 2ωR ,由c 到dB .I =Br 2ωR,由d 到c C .I =Br 2ω2R ,由c 到d D .I =Br 2ω2R,由d 到c6.如图所示,竖直平面内有一金属环,半径为a ,总电阻为R (指拉直时两端的电阻),磁感应强度为B 的匀强磁场垂直穿过环平面,在环的最高点A 用铰链连接长度为2a 、电阻为R 2的导体棒,导体棒由水平位置紧贴环面摆下,当摆到竖直位置时,最低点的线速度为v ,则这时AB 两点间的电压大小为( )A.Ba v 3B.Ba v 6C.2Ba v 3D .Ba v7.某地的地磁场磁感应强度的竖直分量方向向下,大小为4.5×10-5 T .一灵敏电压表连接在当地入海河段的两岸,河宽100 m ,该河段涨潮和落潮时有海水(视为导体)流过.设落潮时,海水自西向东流,流速为2 m/s.下列说法正确的是( )A .河北岸的电势较高B .河南岸的电势较高C .电压表记录的电压为9 mVD .电压表记录的电压为5 mV8.如图所示,一导线弯成半径为a 的半圆形闭合回路.虚线MN 右侧有磁感应强度为B 的匀强磁场,方向垂直于回路所在的平面.回路以速度v 向右匀速进入磁场,直径CD 始终与MN 垂直.从D 点到达边界开始到C 点进入磁场为止,下列结论正确的是( )A .感应电流方向不变B .CD 段直导线始终不受安培力C .感应电动势最大值E m =Ba vD .感应电动势平均值E =14πBa v 9.如图所示,P 、Q 是两根竖直且足够长的金属杆(电阻忽略不计),处在垂直纸面向里的匀强磁场B 中,MN 是一个螺线管,它的绕线方法没有画出,P 、Q 的输出端a 、b 和MN 的输入端c 、d 之间用导线相连,A 是在MN 的正下方水平放置在地面上的金属圆环.现将金属棒ef 由静止释放,在下滑中始终与P 、Q 杆良好接触且无摩擦,则在金属棒释放后( )A .A 环中有大小不变的感应电流B .A 环中的感应电流逐渐减小至恒定值C .A 环对地面的压力先增大后减小至恒定值D .A 环对地面的压力先减小后增大至恒定值10.如图所示电路中,L 为电感线圈,C 为电容器,当开关S 由断开变为闭合时( )A .A 灯中无电流通过,不可能变亮B .A 灯中有电流通过,方向由b 到aC .B 灯逐渐熄灭,c 点电势高于d 点电势D .B 灯逐渐熄灭,c 点电势低于d 点电势二、非选择题(本大题共2小题,共30分.计算题要有必要的文字说明和解题步骤,有数值计算的要注明单位.)11. (14分)如所示,用均匀导线做成正方形单匝线圈,边长为0.3 m ,线框面积的2/3(即ab连线左侧)处于垂直纸面向里的匀强磁场中,此时B =3 T.(1)当磁场以10 T/s 的变化率减弱时,U ab 为多大?(2)当线圈以0.5 m/s 的水平速度向右刚要离开磁场时,U cd 为多大?12.(16分)如图,两根相距l =0.4 m 、电阻不计的平行光滑金属导轨水平放置,一端与阻值R =0.15Ω的电阻相连.导轨x >0一侧存在沿x 方向均匀增强的恒磁场,其方向与导轨平面垂直,变化率k =0.5 T/m ,x =0处磁场的磁感应强度B 0=0.5 T .一根质量m =0.1 kg 、电阻r =0.05Ω的金属棒置于导轨上,并与导轨垂直.棒在外力作用下从x =0处以初速度v 0=2 m/s 沿导轨向右运动,运动过程中电阻上消耗的功率不变.求:(1)回路中的电流;(2)金属棒在x =2 m 处的速度;(3)金属棒从x =0运动到x =2 m 过程中安培力做功的大小;(4)金属棒从x =0运动到x =2 m 过程中外力的平均功率.高 三 一 轮 复 习 基 础 训 练9.3电磁感应规律的综合应用日期:____学号:_____姓名:_____一、选择题(本大题共10小题,每小题7分,共70分。
电磁学电磁感应定律与楞次定律电磁学是研究电荷、电流和电磁场之间相互作用的一门科学。
在电磁学中,电磁感应定律和楞次定律是两个基本原理,它们揭示了电磁感应现象和电磁场的生成规律。
本文将对电磁感应定律和楞次定律进行详细的介绍和解析。
一、电磁感应定律1. 法拉第电磁感应定律法拉第电磁感应定律是描述电磁感应现象的基本规律。
它由英国科学家迈克尔·法拉第于1831年提出,被广泛应用于电力发电、电磁感应器等领域。
法拉第电磁感应定律的表达式为:在一根闭合导体回路中,当磁场的磁通量发生变化时,该导体中就会产生感应电动势。
该电动势的大小正比于磁通量的变化率,并与导线的回路长度成正比。
其中,感应电动势的方向遵循楞次定律。
2. 电磁感应定律的应用电磁感应定律的应用非常广泛。
在电力工程中,电磁感应定律被应用于发电机的原理。
当导体在磁场中移动时,磁通量发生变化,从而产生感应电动势,将机械能转化为电能。
这一原理极大地推动了电力工业的发展。
另外,电磁感应定律还应用于电磁感应传感器、变压器等领域。
电磁感应传感器利用感应电动势来测量环境中的物理量,如温度、湿度等。
变压器则是利用电磁感应定律中的电磁感应现象来实现电能的变换和传输。
二、楞次定律1. 楞次定律的提出楞次定律是法拉第电磁感应定律的延伸和补充。
它由法国物理学家亨利·楞次于1834年提出,描述了电磁感应现象中的能量守恒关系。
楞次定律是电磁学的重要基本定律之一。
2. 楞次定律的表达式和应用楞次定律的表达式为:当磁场内的闭合导体回路中有电流变化时,会产生与变化的磁通量相反的电动势,从而产生感应电流。
感应电流的大小正比于磁通量的变化率,并与导线的回路长度成正比。
楞次定律不仅适用于电磁感应定律中的感应电动势,还适用于其他电磁现象中的感应效应。
例如,当导体在磁场中移动时,磁通量发生变化,从而产生感应电流,这就是楞次定律的应用之一。
此外,楞次定律还可以解释电磁铁的工作原理。
栾川实验高中“三段五环”教学模式学生学习操作卡------高三物理制作人:常新锋协作人:郭高举班级:姓名:编号:使用日期:2015.1.17§9.1 电磁感应现象楞次定律第一学时自主课●导学卡一、学习目标1、知道什么是电磁感应现象,能说出感应电流产生的条件,会画等效电路图。
2、准确描述楞次定律定律内容。
3、能熟练应用楞次定律判断感应电流的方向二、学习重点和难点1、用穿过回路的磁感线条数变化判断磁通量的变化。
2、楞次定律的综合应用三、学习任务先通读教材有关内容,进行知识梳理归纳,再认真限时完成课前预习部分内容,并将自己的疑问记下来(写上提示语、标记符号)。
(一)、磁通量1、定义:磁感应强度B与面积S的________叫做穿过这个面积的磁通量,简称_________。
计算公式为Ф=___________,其中B与S_____________。
2、单位:磁通量的单位是__________ ,简称_______,符号是____________。
3、穿过某面积的磁通量大小可用穿过这个面积的______________条数来定性描述。
同一个平面,穿过它的__________条数多,磁通量__________,当平面与磁场平行时,没有____________穿过平面,磁通量为_________。
(二)、电磁感应现象只要穿过闭合电路的磁通量____________,闭合电路中就有电流产生,这种利用______产生电流的现象叫做______________,产生的电流叫做______________。
(三)、楞次定律1、内容:感应电流具有这样的方向,即感应电流的磁场总是引起感应电流的磁通量的变化。
2、对楞次定律理解从磁通量变化的角度看:感应电流的磁场总是阻碍穿过感应电流线圈的原磁通量的变化。
对“阻碍”二字应正确理解,“阻碍”不是“阻止”,而只是延缓了原磁通的变化,电路中的磁通量还是在变化的。
3、应用楞次定律判定感应电流的步骤(四步走):(1)明确原磁场的方向(2)明确穿过闭合回路的磁通量是增加还是减少(3)根据楞次定律,判定感应电流的磁场方向(4)利用安培定则判定感应电流的方向(四)、楞次定律的应用1、闭合回路中部分导体切割磁感线的感应电流方向判断:右手定则伸开右手,让拇指跟其余四指,并且都跟在一个平面内,让磁感线_____ 穿过手心,拇指指向运动的方向,其余四指的指向就是的方向。
电磁感应中的楞次定律电磁感应是电与磁相互作用的一种现象,而楞次定律则是描述了电磁感应现象的重要规律。
楞次定律是法国物理学家楞次于1831年提出的,该定律表明当导线中的磁通量发生变化时,会在导线中产生感应电动势,进而产生感应电流。
本文将详细介绍楞次定律的原理、公式以及应用。
一、楞次定律的原理楞次定律是电磁感应现象的基本规律,它可以通过磁力线剪切导线而产生感应电动势。
当导体在磁场中运动或与磁场相对运动时,导体内的自由电荷将受到磁力的作用。
根据法拉第电磁感应定律,导体中的自由电子将受到电磁感应力,从而导致导体内部产生电场。
当导体形成闭合回路,电场将驱动电子沿导体移动,从而产生感应电流。
二、楞次定律的数学表达楞次定律可以用一个简洁的数学表达式来表示,即:ε = -dφ/dt其中,ε表示感应电动势,dφ/dt表示磁通量的变化率。
该公式表明,感应电动势的大小与磁通量的变化率成正比,且方向满足右手法则。
当磁通量增加时,感应电动势的方向与磁场的变化方向相反;当磁通量减小时,感应电动势与磁场的变化方向一致。
三、楞次定律的应用楞次定律在实际应用中具有广泛的意义和价值。
以下是几个典型的应用案例:1. 发电机原理楞次定律是理解发电机原理的基础,发电机利用电磁感应效应将机械能转化为电能。
当发电机的磁场通过线圈时,磁通量随着时间的变化而变化,从而在线圈中产生感应电动势。
通过导线的闭合回路,感应电动势将驱动电子流动,实现了将机械能转化为电能。
2. 变压器原理变压器是利用电磁感应原理来实现电压的变换,楞次定律为变压器的正常运行提供了重要理论依据。
当变压器的初级线圈中的电流发生变化时,导致磁场的变化,从而在副级线圈中感应出电动势。
根据楞次定律,副级线圈中的感应电动势与磁场的变化成正比,因此可以实现电流的变换。
3. 感应加热楞次定律还被应用于感应加热技术中。
感应加热利用变化磁场在导体内引起感应电流,而感应电流在导体内产生焦耳热,从而实现对物体的加热。
第九章电磁感应9.1电磁感应现象楞次定律班级姓名成绩(时间:45分钟满分:100分)【知识要点】欲解“感应电流的方向”一类问题,大致可用以下几条依据:㈠产生感应电流的条件:⑴穿过回路的“______________”。
⑵回路是“______”的。
“不变_____”原则,再配合“______”㈡感生电动势的方向:楞次定律即应用“__________”定则。
电动势与电源内的电流的方向___________。
㈢动生电动势的方向:“手心对_____、拇指表______、四指示(动生)_______”————____手定则。
与“手心对_____、四指表_____、拇指示______”————____手定则显著不同。
㈣“回路”所受的磁场力:对应“___________”规律则有“__________”的规律。
【精选习题】一、选择题(本题共10小题,每小题7分,每题只有一个答案正确,共70分)1.德国《世界报》曾报道个别西方国家正在研制电磁脉冲武器即电磁炸弹.若一枚原始脉冲功率10千兆瓦,频率5千兆赫的电磁炸弹在不到100 m的高空爆炸,它将使方圆400~500 m2的范围内电场强度达到每米数千伏,使得电网设备、通信设施和计算机中的硬盘与软盘均遭到破坏.电磁炸弹有如此破坏力的主要原因是()A.电磁脉冲引起的电磁感应现象B.电磁脉冲产生的动能C.电磁脉冲产生的高温D.电磁脉冲产生的强光2.(改编题)2009年11月底,中国首条中低速磁悬浮列车工程化示范线唐山试验线工程竣工并通过验收.磁悬浮列车是在车辆底部安装电磁铁,在轨道两旁埋设一系列闭合的铝环,当列车运行时,电磁铁产生的磁场相对铝环运动,列车凌空浮起,使车与轨之间的摩擦减小到零,从而提高列车的速度,以下说法正确的是( )A.当列车通过铝环时,铝环中有感应电流,感应电流产生的磁场的方向与电磁铁产生磁场的方向相同B.当列车通过铝环时,铝环中有感应电流,感应电流产生的磁场的方向与电磁铁产生磁场的方向相反C.当列车通过铝环时,铝环中通有电流,铝环中电流产生的磁场的方向与电磁铁产生磁场的方向相同D.当列车通过铝环时,铝环中通有电流,铝环中电流产生的磁场的方向与电磁铁产生磁场的方向相反3.1931年英国物理学家狄拉克从理论上预言:存在只有一个磁极的粒子——磁单极子.1982年美国物理学家卡布莱拉设计了一个寻找磁单极子的实验.设想一个只有N极的磁单极子从上向下穿过一个超导线圈,那么从上向下看①超导线圈中将出现先逆时针后顺时针方向的感应电流②超导线圈中将出现总是逆时针方向的感应电流③超导线圈中产生的感应电动势一定恒定不变④超导线圈中产生的感应电流将长期维持下去以上判断正确的是( )A.①③B.②④C.①②D.③④4.如图所示,一定长度的导线围成闭合的正方形线框,使框面垂直于磁场放置,若因磁场的变化而导致线框突然变成圆形,则( )A.因B增强而产生逆时针的电流B.因B减弱而产生逆时针的电流C.因B减弱而产生顺时针的电流D.以上选项均错误5.如图所示,将电池组、滑动变阻器、带铁芯的线圈A、线圈B、电流计及开关如图连接,在开关闭合、线圈A放在线圈B中的情况下,某同学发现当他将滑动变阻器的滑动端P 向左加速滑动时,电流计指针向右偏转.由此可以判断()A.线圈A向上移动或滑动变阻器滑动端P向右加速滑动,都能引起电流计指针向左偏转B.线圈A中铁芯向上拔出或断开开关,都能引起电流计指针向右偏转C.滑动变阻器的滑动端P匀速向左或匀速向右滑动,都能使电流计指针静止在中央D.因为线圈A、线圈B的绕线方向未知,故无法判断电流计指针偏转的方向6.无线电技术的发展,极大地方便了人们的生活.在无线电技术中,常有这样的要求,即一个线圈中电流变化时对另一个线圈中的电流影响最小.下列两个线圈安装位置的图中,最符合该要求的是()7.如图所示,铜质金属环从条形磁铁的正上方由静止开始下落,在下落过程中,下列判断中正确的是()A.金属环在下落过程中的机械能守恒B.金属环在下落过程动能的增加量小于其重力势能的减少量C.金属环的机械能先减小后增大D.磁铁对桌面的压力始终大于其自身的重力8.如图所示,将一个正方形导线框ABCD置于一个范围足够大的匀强磁场中,磁场方向与其平面垂直.现在AB、CD的中点处连接一个电容器,其上、下极板分别为a、b,让匀强磁场以某一速度水平向右匀速移动,则下列说法错误的是()A.ABCD回路中没有感应电流B.A与D、B与C间有电势差C.电容器a、b两极板分别带上负电和正电D.电容器a、b两极板分别带上正电和负电9.(2009·海南)一长直铁芯上绕有一固定线圈M,铁芯右端与一木质圆柱密接,木质圆柱上套有一闭合金属环N,N可在木质圆柱上无摩擦移动.M连接在如图所示的电路中,其中R为滑动变阻器,E1和E2为直流电源,S为单刀双掷开关.下列情况可观测到N向左运动的是()A.在S断开的情况下,S向a闭合的瞬间B.在S断开的情况下,S向b闭合的瞬间C.在S已向a闭合的情况下,将R的滑动头向c端移动时D.在S已向a闭合的情况下,将R的滑动头向d端移动时10.(2010·芜湖模拟)如图,线圈L1、铁芯M、线圈L2都可以自由移动,开关S合上后使L2中有感应电流且流过电阻R的电流方向是a→b,可采用的办法是()A.使L2迅速远离L1B.断开电源开关SC.将铁芯M插入D.将铁芯M抽出二、计算题(本题共2小题,共30分,要有必要的文字说明和解题步骤,有数值计算的要注明单位)11.(14分)磁感应强度为B的匀强磁场仅存在于边长为2l的正方形范围内,有一个电阻为R、边长为l的正方形导线框abcd,沿垂直于磁感线方向,以速度v匀速通过磁场,如图所示,从ab进入磁场时开始计时.(1)画出穿过线框的磁通量随时间变化的图象.(2)判断线框中有无感应电流.若有请判断出感应电流的方向.12.(16分)如图所示,固定于水平面上的金属架CDEF处在竖直向下的匀强磁场中,金属棒MN沿框架以速度v向右做匀速运动.t=0时,磁感应强度为B0,此时MN到达的位置使MDEN构成一个边长为l的正方形,为使MN棒中不产生感应电流,从t=0开始,磁感应强度B应怎样随时间t变化?请推导出这种情况下B与t的关系式.【参考答案】1.解析:电场的变化产生磁场,使周围的闭合回路产生感应电流,从而达到破坏电网设备、通信设施和计算机中的硬盘与软盘的目的.选项A正确.答案:A2.解析:列车通过铝环时,铝环中磁通量增加,铝环中产生感应电流,由楞次定律知,铝环中感应电流的磁场方向跟电磁铁的磁场方向相反,从而使电磁铁受到向上的力,使列车悬浮.选项B正确.答案:B3.解析:由楞次定律可知出现逆时针电流,又因超导体电阻为零,故电流会长期维持下去,而感应电动势则是变化的.选项B正确.答案:B4.解析:线圈因磁场变化变成圆形,线圈面积增大,由楞次定律知,感应电流是为了阻碍磁通量减少而使线圈面积增大,所以磁感应强度减弱,感应电流沿顺时针方向.选项C正确.答案:C5.解析:当滑动变阻器的滑动端P向左加速滑动时,通过A线圈的电流减小,使得穿过B 线圈的磁通量减少,从而使电流计指针向右偏转.在选项中如果是使穿过B中的磁通量减少,电流计指针就向右偏转;如果是使穿过B中的磁通量增加,则电流计指针就向左偏转.所以答案为B.答案:B6. 解析:当两线圈垂直交错在一起时,其中的任意一个线圈的电流发生变化,此时穿过另一线圈的磁通量为零,因此选项D正确.答案:D7.解析:线圈下落过程中由于安培力做功,将一部分机械能转化为电能,因此B正确,A、C错误;金属环在落到磁铁中部N极与S极的分界线时并不切割磁感线,环中无感应电流,不受安培力,由牛顿第三定律可知磁铁也不受环通过磁场作用的力.此时磁铁对桌面的压力等于其重力.选项D错误.答案:B8.解析:匀强磁场运动过程中,AD杆和BC杆各相当于一个电源,它们的电动势相等,且两个电源的正负极分别相连,由右手定则可以判断C、D两点均为电源正极.选项A、B、C正确,答案为D.答案:D9.解析:由楞次定律可知,线圈N向左运动的效果是为了阻碍线圈磁通量的减小,故电路中电流是减小的,A、B、D中电流增加,C中电流减小,所以选C正确.答案:C10.解析:合上S后,根据安培定则,线圈L2中的磁感线向右,而若R中流过由a→b的电流,根据楞次定律应是L2中的原磁加强而引起的,因此C正确,A、B、D错误.答案:C11.解析:线框穿过磁场的过程可分为三个阶段:进入磁场阶段(只有ab边在磁场中)、在磁场中运动阶段(ab、cd两边都在磁场中)、离开磁场阶段(只有cd边在磁场中).(1)①线框进入磁场阶段:t为0~lv,线框进入磁场中的面积随时间成正比,S=lvt,最后为Φ=BS=Bl2.②线框在磁场中运动阶段:t为lv ~2lv,线框磁通量为Φ=Bl2,保持不变.③线框离开磁场阶段:t为2lv ~3lv线框磁通量线性减小,最后为零.综上可作出磁通量随时间变化的图象如图所示:(2)线框进入磁场阶段,穿过线框的磁通量增加,线框中将产生感应电流.由右手定则可知感应电流方向为逆时针方向.线框在磁场中运动阶段,穿过线框的磁通量保持不变,无感应电流产生.线框离开磁场阶段,穿过线框的磁通量减小,线框中将产生感应电流.由右手定则可知,感应电流方向为顺时针方向.12.解析:要使MN棒中不产生感应电流,应使穿过线圈平面的磁通量不发生变化.在t=0时刻,穿过线圈平面的磁通量Φ1=B0S=B0l2,设t时刻的磁感应强度为B,此时磁通量为Φ2=Bl(l+vt),由Φ1=Φ2得B=B0l/(l+vt)。