人教版七年级数学上册有理数的乘方综合练习题精选26
- 格式:doc
- 大小:209.50 KB
- 文档页数:51
有理数的乘方 综合练习(一)一、选择题1.下列算式的结果是正数的是( )A ()[]23---B ()23--C 33--D ()3233-⨯- 2.a 为有理数,则下列说法正确的是( )A.a 2>0B.a 2-1>0C.a 2+1>0D.a 3+1>03.若数a 的相反数等于3,则a 的倒数等于( )A 31B 31- C 3- D 3 4.下面四个结论中正确的是( )A ()()643103.02.0->->- B ()()634102.03.0->->- C ()()4363.02.010-->->- D ()()3642.0103.0->->- 5.某数的平方是41,则这个数的立方是( ) A.81 B.-81 C.81或-81 D.+8或-8 6.n 为正整数时,(-1)n +(-1)n +1的值是( )A.2B.-2C.0D.不能确定7.一个有理数与它的倒数相等,这样的有理数有( )A 1个B 2个C 3个D 无数个8.下列说法错误的是( )A 没有最大的有理数B 没有最小的有理数C 最大的负整数是-1D 最小的自然数是19.n m m n -=-成立的条件是( )A n m =B n m ≠C n m >D n m ,为任意数10.若0<a ,则化简a aa a aa +-+的结果为( )A 0B -1C 1D 2二、填空题11.在数轴上与点-2的距离为5个单位的点有 个,它们是 。
12.若,0,0<>y x 化简=+x y y x 。
13. 的绝对值是19, 的平方是49。
14.比较每对数的大小:0 -0.001;1.8-- 1.8-;54- 65-;--0 15.,y x =则x 与y 的关系是 。
16.一个加数是-7,另一个加数比它的相反数小2,这两个数的和为 。
17.从217-到211-之间的连续整数之积为 。
有理数的乘方练习题课堂学习检测一、选择题1.-12的计算结果是( ).(A)1 (B)-11 (C)-1 (D)-22.-0.22的计算结果是( ).(A)-0.04 (B)0.04 (C)0.4 (D)-0.43.312-的计算结果是( ). (A)91(B)31- (C)91- (D)314.下列各式中,计算结果得0的是( ).(A)22+(-2)2(B)-22-22 (C)2221)21(-- (D)2221)21(+- 5.下列各数互为相反数的是( ).(A)32与-23(B)32与(-3)2 (C)32与-32(D)-32与-(-3)2二、填空题6.对于(-2)6,6是______的指数,底数是______,(-2)6=______.对-26,6是____的指数,底数是____,-26=______.7.计算:(1)34=______; (2)-34=______; (3)(-3)4=______;(4)-(-3)4=______;=32)5(3______; =3)32)(6( ______; =-3)32)(7(______;=--3)2()8(3______; 8.当n 为正奇数时,(-a )n =______;当n 为正偶数时,(-a )n =______.三、计算题9.6×(-2)2÷(-23)10.222232)32(2)2(-+--11.(3×2)2+(-2)3×5-(-0.28)÷(-2)212.)2131()1()3(3322-⨯---÷-13.|32|)2.0(1)1.0(1323--+--- 14.234)21(211])43()21[(1-+--+综合、运用、诊断一、选择题15.下列说法中,正确的个数为( ).①对于任何有理数m ,都有m 2>0;②对于任何有理数m ,都有m 2=(-m )2;③对于任何有理数m 、n (m ≠n ),都有(m -n )2>0;④对于任何有理数m ,都有m 3=(-m )3.(A)1 (B)2 (C)3 (D)016.下列说法中,正确的是( ).(A)一个数的平方一定大于这个数(B)一个数的平方一定是正数 (C)一个数的平方一定小于这个数(D)一个数的平方不可能是负数二、填空题17.设n 为自然数,则:(1)(-1)2n -1=______;(2)(-1)2n =______;(3)(-1)n +1=______.18.当n 为正奇数时,(-a )n =______;当n 为正偶数时,(-a )n =______.19.用“>”或“<”填空:(1)-32________(-2)3;(2)|-3|3________(-3)2; (3)(-0.2)2________(-0.2)4; (4)2)21(________2)31( 20.如果-a >a ,则a 是________;如果|a 3|=a 3,则a 是________.如果|a 2|=-|a 2|,则a 是________;如果|-a |=-a ,则a 是________.三、解答题21.某种细胞每过30分钟便由1个分裂成2个.请根据你所学知识,描述一下细胞的数量是呈什么方式增长的?并计算5小时后1个细胞可以分裂成多少个细胞.拓展、探究、思考22.已知22×83=2n ,则n 的值为( ).(A)18(B)11 (C)8 (D)7 23.根据数表11+31+3+51+3+5+7……可以归纳出一个含有自然数n 的等式,你所归纳出的等式是_____________.24.实验、观察、找规律计算:31=______;32=______;33=______;34=______;35=______;36=______;37=______;38=______.由此推测32004的个位数字是______。
有理数的乘方同步测试卷一.选择题(本大题共8小题,共24分。
在每小题列出的选项中,选出符合题目的一项)1. 下列数据中,是准确数的是( )A. 上海科技馆的建筑面积约98000平方米B. “小巨人”姚明身高2.26米C. 我国的“神舟十三号”飞船有3个舱D. 截至2022年年底中国国内生产总值(GDP)为1210207亿元2. 下列各数是用科学记数法表示的是( )A. 0.1×105B. 10.3×106C. 12×108 D. −7.13×1063. 计算[−5−(−11)]÷(32×4)的结果为( )A. 16B. 1C. −83D. −12834. 某市决定为全市中小学教室安装空调,今年预计投入资金126000000元,其中126000000用科学记数法可表示为( )A. 12.6×107B. 1.26×108C. 1.26×109D. 0.126×10105. 下列四个数中,是负数的是( )A. −(−5)3B. (−2)2C. |−3|3D. −426. 下列各数: ①−12; ②−(−1)2; ③−13; ④−(−1)4中结果等于−1的是( )A. ① ② ③B. ① ② ④C. ② ③ ④D. ① ② ③ ④7. 计算2×(−1)3+4的结果为( )A. 5B. 2C. −1D. −38. 近似数1.50所表示的准确数n的范围是( )A. 1.45≤n<1.55B. 1.45<n<1.55C. 1.495≤n<1.505D. 1.495<n<1.505二.填空题(本大题共8小题,共24分)9. 规定“∗”表示一种运算,且a∗b=3a−2ab,则3∗2=.10. 由四舍五入得到的近似数93.60万精确到位.11. 一种电子计算机每秒可做4×107次计算,也就是说它每秒可做万次计算.12. 太阳半径大约是696000千米,用科学记数法表示为千米,精确到万位的近似数为千米.13. 已知|x|=3,y2=16,xy<0,则x−y的值为.14. 试用“+”“−”号将+3,−8,−10,+12四个数连接起来,使其运算结果最小,这个最小值是.15. 琪琪领取了一笔1500元的稿费,按规定,超过800元的部分,要按20%的税率缴纳个人所得税.琪琪缴纳个人所得税后可领取元.16. 定义新运算:对于任意实数a,b,都有a⊕b=a(a−b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2−5)+1=2×(−3)+1=−5,则3⊕(−2)=;[(−2)⊕3]−[2⊕(−1)]的值为.三.计算题(本大题共1小题,共8分)17. 计算下列各题:(1)(79−56+718)×2×32−74÷(−1.75);(2)23−18−(−13)+(−38);(3)−13×23−0.34×27+13×(−13)−57×0.34.四.解答题(本大题共8小题,共64分。
人教版七年级上册第一章有理数1.5.1.1有理数的乘方同步测试一.选择题(共10小题,3*10=30)1.关于式子(-5)4,下列说法错误的是( )A.表示(-5)×(-5)×(-5)×(-5)B.-5是底数,4是指数C.-5是底数,4是幂D.4是指数,(-5)4是幂2.任何一个有理数的偶数次幂( )A.一定是正数B.一定是负数C.一定不是负数D.一定大于它的绝对值3.当n是正整数时,(-1)2n+1-(-1)2n的值是( )A.2 B.-2C.0 D.2或-24.a是任意有理数,下列说法正确的是( )A.(a+1)2的值总是正数B.a2+1的值总是正数C.-(a+1)2的值总是负数D.a2+1的值中最大的是15.下列各组数互为相反数的是( )A.32与-23B.32与(-3)2C.32与-32D.-23与(-2)36. 下列式子正确的是( )A.(-6)×(-6)×(-6)×(-6)=-64B.(-2)3=(-2)×(-2)×(-2)C .-54=(-5)×(-5)×(-5)×(-5)D.25×25×25=2357. 计算(-3)2的结果等于( )A .5B .-5C .9D .-98.下列各算式中,计算结果得0的是( )A .-22+(-2)2B .-22-22C .-22-(-2)2D .(-2)2-(-22)9.若|m|=4,|n|=2,且m>n ,则n m 的值为( )A .16B .16或-16C .8或-8D .810.下列一组数按规律排列依次为:2,-4,8,-16,…,第2020个数是( )A .22020B .-22020C .-22019D .以上都不对二.填空题(共8小题,3*8=24)11.计算: (-25)2=____,-(-25)2=_____; (-3)3=_____,-(-3)3=____. 12.一个数的平方等于它本身,则这个数是_____;一个数的立方等于它本身,则这个数是_______.13. 若a <0,则下列各式:①a 2>0;②a 2=(-a)2;③a 3=(-a)3;④a 3=-a 3.其中一定成立的有_____.(填序号)14.观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…猜想13+23+33+…+103=____.15.(1)已知x 2=(-3)2,则x =________;(2)已知(x +2)2+|y -3|=0,则x y =____.16.你吃过拉面吗?拉面是把一根很粗的面条对折成2根拉开,第二次对折成4根拉开,…,依次这样进行对折6次是多少根面条?当对折成256根面条时,你知道这时对折了_____次.17. 若|a -1|与(b +2)2互为相反数,則a 2020+(a +b)2019=________.18. 定义一种新的运算,a&b =a b ,如2&3=23=8,那么(3&2)&2=____.三.解答题(共7小题,46分)19. (6分) 计算:(1)(-7)3; (2)(-12)2;(3)(-0.2)3; (4)-26;(5)-(-2)3; (6)4×(-2)3.20. (6分)若|a -1|与(b +2)2互为相反数,试求(a +b)2019+a 2020的值.21. (6分) 计算:(1)-3223;(2)(-113)3;(3)-42×(-4)2; .(4)(-25)2×(-212)3.22. (6分) 一根1米长的绳子,第一次剪去12,第二次剪去剩下的12,如此剪下去,第六次后剩下的绳子有多长?23. (6分) 某校七(1)班的“数学晚会”上,有8个同学藏在8个大盾牌后面,男同学的盾牌前面写的是一个正数,女同学的盾牌前面写的是一个负数,这8个盾牌如图所示: (-30)31 -5-25|-8| (-1)55 -5(-3)3 -216 4×(-2) (-2)3 请说出盾牌后面男女同学各有多少人?24. (8分)观察与思考:(1)通过计算,比较下列各组中的两个数的大小(填“>”“=”或“<”):①12____21;②23____32;③34____43;④45____54;⑤56____65;…(2)从第(1)题的结果经过归纳,可以猜想出n n +1和(n +1)n 的大小关系是___________________ ___________________________________________________(3)根据上面归纳猜想得到的一般结论,试比较20172020与20182019的大小.25. (8分)填空并猜想.(1)填空:22-2-1=__,23-22-2-1=___,24-23-22-2-1=___,25-24-23-22-2-1=___;(2)猜想:21 000-2999-2998-…-23-22-2-1=___;(3)试根据上面的猜想求212-211-210-29-28-27-26的值.参考答案1-5CCBBC 6-10 BCACB11.425,-425,-27,27 12. 1或0,±1或013. ①②14. 5515. ±3,-816. 817. 018. 8119. 解:(1) (-7)3= (-7) ×(-7) × (-7)=-343(2) (-12)2= (-12)× (-12)=14(3) )(-0.2)3=(-0.2) ×(-0.2) × (-0.2)=0.008(4) -26=-2×2×2×2×2×2=-64(5) -(-2)3=-(-2) ×(-2) × (-2)=8(6) 4×(-2)3=4×(-2) ×(-2) × (-2)=4×(-8)=-3220. 解:依题意得|a -1|+(b +2)2=0,∴a =1,b =-2, ∴(a +b)2019+a 2020=[1+(-2)]2019+12020=021. 解:(1)-3223=-98(2)(-113)3=(-43)3=-6427(3)-42×(-4)2= -16×16=-256(4)(-25)2×(-212)3=425 ×(-1258)= -5222. 解:1×(1-12)×(1-12)×(1-12)×(1-12)×(1-12)×(1-12) =(12)6 =126 =164,则第六次后剩下164米 23. 解:计算结果为正数的有:-5-25,|-8|,-5(-3)3; 计算结果为负数的有:(-30)31,(-1)55,-216,4×(-2),(-2)3, 所以有3个男生,5个女生24. 解:(1)因为12=1,21=2,所以12<21;因为23=8,32=9,所以23<32;因为34=81,43=64,所以34>43;因为45=1 024,54=625, 所以45>54;因为56=15 625,65=7 776,所以56>65.故答案为:< < > > >(2)当n <3时,n n +1<(n +1)n ;当n≥3时,n n +1>(n +1)n .(3)2 0182 019>2 0192 018.25. 解:(1)1,1,1,1(2)1(3)212-211-210-29-28-27-26=(212-211-210-…-23-22-2-1)+(25+24+23+22+2+1) =1+(32+16+8+4+2+1)=64。
人教版七年级数学上册 1.5.1-2 有理数的乘方运算 有理数的混合运算同步练习题精选 附答案一、选择题。
细心择一择,你一定很准! 1.58表示( )A .5个8连乘B .5乘以8C .8个5连乘D .8个5相加 2.下列式子正确的是( )A .(-6)×(-6)×(-6)×(-6)=-64B .(-2)3=(-2)×(-2)×(-2)C .-54=(-5)×(-5)×(-5)×(-5) D .35×35×35=3353.下列各对数中,数值相等的是( )A .-32与-23B .-23与(-2)3C .-32与(-3)2D .(-3×2)2与-3×22 4. 下列各对数互为相反数的是( )A .32与-23B .32与(-3)2C .(-3)2与-32D .-23与(-2)3 5.如果一个有理数的平方等于(-2)2,那么这个有理数等于( )A .-2B .2C .4D .2或-2 6.如果一个有理数的正偶次幂是非负数,那么这个数是( )A .正数B .负数C .非负数D .任何有理数 7. 下列各式:①-(-2);②-|-2|;③-22;④-(-2)2,计算结果为负数的个数有( )A .4个B .3个C .2个D .1个8. 下列计算:①32=3×2;②(-3)2=9;③(-5)3=-53;④(-2)4=24;⑤(3+2)2=32+22;⑥(-32)2=94.其中正确的结果有( )A .1个B .2个C .3个D .4个 9. 下列各式中,一定成立的是( )A .22=(-2)2B .-22=|-22|C .23=(-2)3D .(-2)3=|(-2)3| 10.计算-23-(-3)3×(-1)2-(-1)3的结果为( )A .0B .-30C .-1D .2011.-16÷(-2)3-22×(-12)的值是( )A .0B .-4C .-3D .412.在算式4-|-3 5|中的“ ”所在位置,填入下列哪种运算符号,计算出来的值最小( )A .+B .-C .×D .÷13. 设a =-2×32,b =(-2×3)2,c =-(2×3)2,则a ,b ,c 的大小关系是( )A .a <c <bB .c <a <bC .c <b <aD .a <b <c 14. 下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为( )A .135B .170C .209D .252 15. -35÷=35中,在( )内应填上的数是( )A .14B .114C .-214D .-1416. 有一列数a 1,a 2,a 3,…,a n ,从第2个数开始,每个数都等于1与它前面那个数的倒数的差,若a 1=2,则a 2016为( )A .2010B .2C .12 D .-1二、填空题。
姓名: 《2.3.1有理数的乘方》练习题一.选择题1.下列运算正确的是( )A .32=6B .﹣(﹣2)3=8C .﹣52=25D .(﹣2)2=﹣4 2.计算:−(−32)2=( )A .92B .−92C .94D .−943.计算:(﹣1)2022+(﹣1)2021的结果是( ) A .﹣2 B .2 C .0D .﹣1 4.下列各数中,结果相等的是( )A .23和32B .(﹣2)3和﹣23C .(﹣3)2和﹣32D .|﹣2|3和(﹣2)35.下列四个数(﹣4)3,﹣43,(﹣8)2,﹣82中,互为相反数的是( )A .﹣43和(﹣4)3B .(﹣4)3和﹣82C .﹣82和﹣43D .(﹣8)2和﹣436.计算3+3+3+⋯+3︸m +4×4×4×⋯×4︸n的结果是( )A .3m +4ⁿB .m 3+4nC .3m +4nD .3m +n 47.在﹣(+3),﹣(﹣2),(﹣1)2021,﹣|﹣5|中,负数的个数是( )A .1B .2C .3D .48.若数a 的平方等于16,那么数a 可能是( )A .2B .﹣4C .±4D .±8二.填空题9.(﹣2)5的底数是 ,指数是 ,幂是 .10.填空:(﹣3)2= ;﹣32= ;﹣(﹣2)2= ;(−213)3= ;−324= ;﹣24= . 11.若x 、y 互为倒数,则(﹣xy )2018= .12.若a c =b ,则定义(a ,b )=c ,如:若23=8,则(2,8)=3,计算:(3,27)×(2,18)= . 13.有下列说法:①平方等于它本身的数是0和±1;②﹣a 一定是负数;③绝对值等于它本身的数是0,1;④倒数等于它本身的数是±1.其中,错误的有 (填写序号).14.一根1m 长的小棒,第一次截去它的12,第二次截去剩下的12,如此截下去,第五次后剩下的小棒的长度是 m .15.将一张长方形的纸按如图对折,对折时每次折痕与上次的折痕保持平行,第一次对折后可得到1条折痕(图中虚线),第二次对折后可得到3条折痕,第三次对折后得到7条折痕,那么第7次对折后得到的折痕共有 条.三.解答题16.计算:(1)(−3)2×(−43)÷|−2|(2)(−2)2÷49×(−12)3(3)−23÷49×(−23)217.若有理数x,y满足x2=64,|y|=2.(1)求x、y的值;(2)若x>y,求x+y的值.18.老师就式子3×□+9﹣〇,请同学们自己出问题并解答.(1)小磊的问题:若□代表(﹣2)2,〇代表(﹣1)3,计算该式的值;(2)小敏的问题:若3×□+9﹣〇=8,□代表某数的平方,〇代表该数与1的和的平方,求该数.19.计算:(−6)×(23−■)−(−2)3.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是2,请求出(−6)×(23−■)−(−2)3的值;(2)如果计算结果是如图所示集中的最大整数解,请问这个最大整数解是几?并求出被污染的数字.20.(1)算一算,再选“<、>或=”填空:①(3×5)232×52;②[(﹣2)×3]2(﹣2)2×32.(2)想一想:(ab)n=.(3)利用上述结论,求(﹣8)2021×0.1252021.。
一.选择题 1、118表示( )A 、11个8连乘B 、11乘以8C 、8个11连乘D 、8个别1相加 2、-32的值是( )A 、-9B 、9C 、-6D 、6 3、下列各对数中,数值相等的是( ) A 、 -32与 -23B 、-23与 (-2)3C 、-32与(-3)2D 、(-3×2)2与-3×224、下列说法中正确的是( )A 、23表示2×3的积 B 、任何一个有理数的偶次幂是正数 C 、-32与 (-3)2互为相反数 D 、一个数的平方是94,这个数一定是32 5、下列各式运算结果为正数的是( )A 、-24×5 B 、(1-2)×5 C 、(1-24)×5D 、1-(3×5)66、如果一个有理数的平方等于(-2)2,那么这个有理数等于( ) A 、-2 B 、2 C 、4D 、2或-2 7、一个数的立方是它本身,那么这个数是( ) A 、 0 B 、0或1 C 、-1或1D 、0或1或-1 8、如果一个有理数的正偶次幂是非负数,那么这个数是( ) A 、正数 B 、负数 C 、 非负数 D 、任何有理数 9、-24×(-22)×(-2) 3=( )A 、 29B 、-29C 、-224D 、22410、两个有理数互为相反数,那么它们的n 次幂的值( ) A 、相等 B 、不相等 C 、绝对值相等D 、没有任何关系 11、一个有理数的平方是正数,则这个数的立方是( ) A 、正数 B 、负数 C 、正数或负数 D 、奇数 12、(-1)2001+(-1)2002÷1-+(-1)2003的值等于( )A 、0B 、 1C 、-1D 、2 二、填空题1、(-2)6中指数为 ,底数为 ;4的底数是 ,指数是 ;523⎪⎭⎫⎝⎛-的底数是 ,指数是 ,结果是 ;2、根据幂的意义,(-3)4表示 ,-43表示 ; 3、平方等于641的数是 ,立方等于641的数是 ;4、一个数的15次幂是负数,那么这个数的2003次幂是 ;5、平方等于它本身的数是 ,立方等于它本身的数是 ;6、=⎪⎭⎫ ⎝⎛-343 ,=⎪⎭⎫⎝⎛-343 ,=-433 ; 7、()372⋅-,()472⋅-,()572⋅-的大小关系用“<”号连接可表示为 ;8、如果44a a -=,那么a 是 ;9、()()()()=----20022001433221 ;10、如果一个数的平方是它的相反数,那么这个数是 ;如果一个数的平方是它的倒数,那么这个数是 ;11、若032>b a -,则b 0 计算题1、()42-- 2、3211⎪⎭⎫⎝⎛3、()20031- 4、()33131-⨯--5、()2332-+- 6、()2233-÷-7、()()3322222+-+-- 8、()34255414-÷-⎪⎭⎫ ⎝⎛-÷9、()⎪⎭⎫ ⎝⎛-÷----721322246 10、()()()33220132-⨯+-÷---解答题1、按提示填写:2、有一张厚度是0.2毫米的纸,如果将它连续对折10次,那么它会有多厚?3、某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为16个,则这个过程要经过多长时间?4、你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折,……如此往复下去,对折10次,会拉出多少根面条?探究创新乐园 1、你能求出1021018125.0⨯的结果吗?2、若a 是最大的负整数,求2003200220012000a a a a +++的值。
七年级数学上册《有理数的乘方》同步练习题(附答案)一、选择题1、对乘积(−3)×(−3)×(−3)×(−3)记法正确的是( )A .-34B .(-3)4C .-(+3)4D .-(-3)42、下列计算:①(−12)2=14;②(25)2=45;③(−0.2)3=0.008;④−32=9;⑤−(−13)2=19.其中正确的是( )A .1个B .2个C .3个D .4个3、已知|x −3|+(2+y)2=0,则y x 的值为( )A .9B .−9C .−8D .84、计算(−23)2019×1.52020×(−1)2022的结果是( )A .23B .32C .−23D .−325、如图是一个计算程序,若输入a 的值为2-,则输出的结果应为( ).A .2B .2-C .±2D .−46、下列各数:①−12;②−(−1)2;③−13;④|−(−1)2|,其中结果等于−1的是( ) A .①①①B .①①①C .①①①D .①①①①7、若a =−0.1,则a ,1a ,a 3从小到大排列的顺序是( )A .a 3<a <1aB .a <1a <a 3C .1a <a <a 3D .a <a 3<1a8、观察下列等式:3¹=3,3²=9,3³=27,…,则3+32+…+32019的末位数字是( )A.0B.1C.3D.99、设a=-2×42,b=-(2×4)2,c=-(2-4)2,则a,b,c的大小关系为()A. a<b<cB. b<a<cC. c<b<aD. b<c<a二、填空题10、定义运算:若a m=b,则log a b=m(a>0),例如23=8,则log28=3.运用以上定义,计算:log5125−log381=______.11、观察下列各式:1-122=12×32,1-132=2433,1-142=34×54⋯,根据上面的等式所反映的规律(1-122)(1-132)(1-142)⋯(1−120192)=________12、几个相同的加数相加,可以简化记为乘法:(1)3+3+3+3+3=________(2)(-3)+(-3)+(-3)+(-3)=_____________若干个非零数连乘,确定乘积符号的方法是:若有奇数个负因数,则得_________;若有偶数个负因数,则得_________13、求n个相同因数的积的运算,叫做_____,乘方的结果叫做______.在n a中,a叫做______,n叫做______.当n a看做a的n次方的结果时,也可读作“___________”.14、有理数乘方的符号法则:负数的奇次幂是________,负数的偶次幂是__________.正数的任何次幂都是________,0的任何正整数次幂都是______.15、有理数的混合运算顺序:①先算______,再算乘除,最后算______;②同级运算,从___到___进行;③如果有括号,要先算__________的运算.(按小括号、中括号、大括号依次进行)16、(-5)2的底数是____,指数是____,(-5)2表示2个____的乘积,叫做____的2次方,也叫做-5的_____.三、计算题17、计算:(1)﹣12+11﹣10+26;(2)413 991899()9918555⨯+⨯--⨯;(3)−32−35÷(−7)+18×(−13)2.18、计算:(1)−3−(−8)+(−6)+(+10)(2)−14+|3−5|−8÷(−2)×12(3)3×(−1)3+(−5)×(−3)(4)(12−13)÷(−16)+(−2)2×(−14)19、计算:(1)17+(−2)−(−67)(2)6.868×(−5)+68.68×(−1.2)+3.434×(+34)(3)−23+|2−3|−2×(−1)2013(4)−14−[1−(1−0.5×13)×6].参考答案一、选择题1、B【分析】根据乘方的意义,可知四个(-3)相乘,可记为(−3)4.【详解】(−3)×(−3)×(−3)×(−3)=(−3)4.故选:B .【点睛】本题考查有理数乘方的意义:求几个相同因数积的运算,叫做乘方.2、A【分析】根据乘方的意义:a n 表示n 个a 相乘,分别计算出结果,根据结果判断即可.【详解】①(−12)2=14,故本选项正确,②(25)2=425,故本选项错误,③(−0.2)3=−0.008,故本选项错误,④−32=−9,故本选项错误,⑤−(−13)2=−19,故本选项错误,正确的有:①1个.故选:A .【点睛】本题主要考查了乘方的意义,能正确进行计算是解此题的关键,注意计算时应先确定结果的符号.3、C【分析】根据非负数的性质求出x 、y 的值,代入计算即可.【详解】解:根据题意得,x -3=0,2+y =0,①x =3,y =-2,①y x =(-2)3=-8.故选:C .【点睛】本题考查了非负数的性质.熟练掌握非负数的性质是解题的关键.4、D【分析】根据乘方的意义进行简便运算,再根据有理数乘法计算即可.【详解】解:(−23)2019×1.52020×(−1)2022, =−(23)2019×1.52020×1 =−23×⋅⋅⋅×23�2019个×1.5×⋅⋅⋅×1.5�2020个,=−23×1.5⋅⋅⋅×23×1.5�2019个×1.5, =−32,故选:D .【点睛】本题考查了有理数的混合运算,解题关键是熟练依据乘方的意义进行简便运算,准确进行计算.5、B【分析】根据图表列出代数式(a 2−2)×(−3)+4,再按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的,从而可得答案.【详解】由图可得,当a =−2时,(a 2−2)×(−3)+4=[(−2)2−2]×(−3)+4=(4−2)×(−3)+4=2×(−3)+4=(−6)+4=−2.故选择:B .【点睛】本题考查的是代数式的求值,弄懂题意,掌握代数式的运算顺序与有理数运算法则是解题的关键.6、C【分析】根据有理数的乘方,以及相反数和绝对值的求法,逐项判定即可.【详解】解:①−12=−1,②2(1)1--=-,③−13=−1,④|−(−1)2|=1,∴其中结果等于-1的是:①①①.故选:C.【点睛】此题主要考查了有理数的乘方,以及相反数和绝对值的求法,求一个数的相反数的方法就是在这个数的前边添加“-”.7、C【分析】根据a=−0.1,分别求出1a,a3的值,然后比较大小即可.【详解】解:∵a=−0.1∴1a=−10,a3=−0.001∴1a<a<a3故选C.【点睛】本题考查了有理数大小的比较,正确理解倒数、相反数和乘方的意义是解题的关键.8、D【分析】由题意得出规律是末位数,每4个一循环,由2019÷4=504……3,求出31+32+33+…+32019的末位数字的和,即可得出答案.【详解】解:①31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,①末位数,每4个一循环,①2019÷4=504……3,①31+32+33+…+32019的末位数字相当于:3+9+7+1+…+7=(3+9+7+1)×504+3+9+7=10099,①31+32+33+…+32019的末位数字是9;故选:D.【点睛】本题考查了数字的变化类.本题涉及到两个规律,一个是3的乘方的末位数字以4个一循环,一个是每一个循环末位数字之和为0.9、C【分析】略二、填空题10、-1【分析】根据题意可以计算出所求式子的值.【详解】解:由题意可得,log5125-log381=3-4=-1,故答案为:-1.【点睛】本题考查了新定义运算,解答本题的关键是明确新定义运算的计算方法.11、10102019【分析】先根据已知等式探索出变形规律,然后根据规律进行变形,计算有理数的乘法运算即可.【详解】解:由已知等式可知:1−122=12×32=2−12×2+12,1−132=23×43=3−13×3+13,1−142=34×54=4−14×4+14,归纳类推得:1−1n2=n−1n⋅n+1n,其中n为正整数,则1−120192=2019−12019×2019+12019=20182019×20202019,因此(1−122)(1−132)(1−142)⋯(1−120192),=12×32×23×43×34×54×⋯×20182019×20202019,=12×20202019,=10102019,故答案为:10102019.【点睛】此题考查的是有理数运算的规律题,根据已知等式探索出运算规律并应用是解题关键.12、①. 乘方①. 幂①. 底数①. 指数①. a的n次幂13、①. 负数①. 正数①. 正数①. 014、①. 乘方①. 加减①. 左①. 右①. 括号内15、①. -5 ①. 2 ①. -5 ①. -5 ①. 平方16、(1)15;(2)0;(3)-2【分析】(1)先同号相加,再异号相加;(2)根据乘法交换律计算;(3)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算.【详解】解:(1)-12+11-10+26=-22+37=15;(2)99×1845+99×(−15)−99×1835=99×(1845−15−1835)=99×0=0;(3)−32−35÷(−7)+18×(−13)2=-9+5+18×19=-9+5+2=-2.【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.17、(1)9;(2)3;(3)12;(4)-57【分析】(1)先化简,再计算加减法;(2)先算乘方和绝对值,再算乘除,最后算加减;(3)先算乘方,再算乘法,最后算加减;(4)先算乘方和括号内的,再算乘除,最后算加减.【详解】解:(1)−3−(−8)+(−6)+(+10)=-3+8-6+10=-9+18=9;(2)−14+|3−5|−8÷(−2)×12=-1+2+2=3;(3)3×(−1)3+(−5)×(−3)=3×(−1)+5×3=−3+15=12;(4)(12−13)÷(−16)+(−2)2×(−14)=1 6÷(−16)−4×14=−1−56=-57【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18、(1)-1;(2)0;(3)-5;(4)3【分析】(1)先化简符号,再作加减法;(2)利用乘法结合律简化计算;(3)先算乘方和绝对值,再算乘法,最后算加减;(4)先算乘方和括号,再算乘除,最后算加减.【详解】解:(1)17+(−2)−(−67)=1 7+67−2=12=-1;(2)6.868×(−5)+68.68×(−1.2)+3.434×(+34) =6.868×(−5)+6.868×(−12)+6.868×(+17)=6.868×[(−5)+(−12)+(+17)]=6.868×0=0;(3)−23+|2−3|−2×(−1)2013=−8+1−2×(−1)=−8+1+2=-5;(4)−14−[1−(1−0.5×13)×6]=−1−[1−(1−12×13)×6]=−1−(1−56×6) =−1−(1−5)=−1+4=3【点睛】本题考查了有理数的混合运算,解题的关键是掌握运算法则和运算顺序.。
人教版七年级数学上册《2.3 有理数的乘方》同步练习题-带答案一、单选题1.35-表示( )A .3个5-相乘B .3个5相乘的相反数C .5个3-相乘D .5个3相乘的相反数2.计算()32-=( )A .6-B .6C .−8D .8 3.光速约为300000千米/秒,用科学记数法表示为( )A .4310⨯千米/秒B .5310⨯千米/秒C .6310⨯千米/秒D .43010⨯千米/秒4.用四舍五入法对0.3049取近似值,精确到0.01的结果是( )A .0.04B .0.31C .0.305D .0.305.若有理数x y ,满足29x =,4y =且x y <,则x y -的值为( )A .7-或1B .7或1C .7或1-D .7-或1-6.如果一个有理数的奇次幂是正数,那么这个有理数( )A .一定是正数B .是正数或负数C .一定是负数D .可以是任意有理数7.下列式子计算正确的是( )A .()62136-⨯=B .118584102⎛⎫⎛⎫÷-⨯=⨯-=- ⎪ ⎪⎝⎭⎝⎭C .21319-⨯=-D .()482440--÷=-=8.张阿姨看中一套套装,原价1800元,现商场八折酬宾,张阿姨凭贵宾卡在打折的基础上又享受10%的优惠,买这套套装实际付了( )元.A .1260B .1300C .1290D .12969.根据图中的程序,当输入2x =,输出的结果1y =-,将计算结果再次输入,记为第二次输入,则第2024次输出的结果为( )A .1-B .12C .2D .无法确定10.“算24点”的游戏规则是:用“+,-,×,÷”…四种运算符号把给出的4个数字连接起来进行计算,要求最终算出的结果是24,例如,给出2,2,2,8这四个数, 可以列式()222824÷+⨯=.以下的4个数用“+,-,×,÷”四种运算符号不能算出结果为24的是( )A .1,6,8,7B .1,2,3,4C .4,4,10,10D .6,3,3,8二、填空题11.用简便方法计算:131319151717-⨯-⨯= . 12.一个两位小数取近似数后是5.8,这个两位小数最大是 ,最小是 .13.经历百年风雨,中国共产党从小到大、由弱到强,从建党时50多名党员,发展成为今天已经拥有超过9800万党员的世界第一大政党.9800万用科学记数法表示为 .14.已知:1112017A B A B=+>,,且A ,B 都是自然数,则A B ÷= . 15.你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面草图所示.这样捏合到第 次后可拉出2048根细面条.三、解答题16.计算:()2121312⨯--÷. 17.如图1是1个纸杯和6个叠放在一起的纸杯的示意图,量得1个纸杯的高为10cm ,6个叠放在一起的纸杯的高为14cm .(1)问2个叠放在一起的纸杯的高是多少cm(2)若一批这样的纸杯按照图2的方式叠放,测得总高度为90cm,求纸杯个数.18.10筐苹果,以每筐30千克为基准,超过的千克数记作正数,不足的千克数记作负数,记录如下:2,-4,2.5,3,-0.5,1.5,3,-1,0,-2.5.(1)这10筐苹果的总质量与总标准质量相比超过或不足多少千克?(2)这10筐苹果的平均质量是多少千克?参考答案1.B2.C3.B4.D5.D6.A7.C8.D9.B10.A11.26-12. 5.84 5.7513.7⨯9.81014.201715.11-16.1017.(1)10.8cm(2)101个18.(1)超过4千克;(2)30.4千克。
数学试题 第1页(共6页) 数学试题 第2页(共6页)人教版2024新版七年级数学上册《第2章 综合练:有理数的乘方》测试题及答案(满分:100分 时间:60分钟)一、 选择题(每题3分,共30分) 1.23的结果等于( )A.9B.-9C.5D.6 2.下列语句中出现的数,是近似数的是( ) A.七(2)班有40人 B.一星期有7天 C.一本书共有180页 D.小华的身高为1.6m3.用四舍五入法将130 542精确到千位,正确的是( ) A.131 000 B.0.131×610 C.1.31×510 D.13.1×4104.在-(-5),2(5)--,-|-5|,3(5)-中,正数有( ) A.1个 B.2个 C.3个 D.4个5.某自动控制器的芯片,可植入2 020 000 000粒晶体管,这个数2 020 000 000用科学记数法可表示为( )A.0.202×1010B.2.02×910C.20.2×810D.2.02×810 6.下列各组的两个数中,运算后结果相等的是( ) A.223(3)--与 B.3553与 C.337(7)--与D.333344⎛⎫--⎪⎝⎭与7.一个数的平方等于它本身,这个数是( ) A.1 B.0 C.0或1 D.1或-18.与算式333222++的运算结果相等的是( ) A.32 B.92 C.3×32 D.3×69.数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头毛驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为( ) A.42 B.49 C.67 D.7710.观察下列等式:01271,77,749===, 347343,72401==,5716807,,=根据其中的规律可得01220197777++++的结果的个位数字是( )A.0B.1C.7D.8 二、填空题(每题3分,共24分)11.计算:23122⎛⎫⨯= ⎪⎝⎭________. 12.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳的平均距离,即149 600 000千米,用科学记数法表示1个天文单位是_________千米.13.4.24 970≈__________(精确到百分位);近似数6.34万精确到_________位.14.把下列用科学记数法表示的数的原数填在横线上: (1)62.1610⨯=__________; (2)37.12310-⨯=__________. 15.已知2(4)|2|0a b ++-=,则b a 的值是_______. 16.已知,a b互为相反数且a≠0,,c d互为倒数,则202320222022()()a a b cd b ⎛⎫+-+-= ⎪⎝⎭________.数学试题 第3页(共6页) 数学试题 第4页(共6页)17.2323113,(2),,32⎛⎫⎛⎫---- ⎪⎪⎝⎭⎝⎭的大小顺序是_____>_____>_____>______.18.阅读材料:若b a N =,则log a b N =,称b 为以a 为底N 的对数,例如328=,则322log log 238==.根据材料填空:3log 9=________. 三、解答题(共46分)19.(6分)按括号里的要求,对下列各数取近似数:(1)0.83284(精确到千分位);(2)2346.46m (精确到1m ); (3)28.3万亿(精确到万亿位).20.(7分)小明和小刚测量同一根木棒,小明测得长是0.80m ,小刚测得长是0.8m ,问两人测量的结果是否相同?为什么?21.(16分)计算:(1)322(3)(2)+-⨯-;(2)23320221129(1)23⎛⎫⎛⎫-÷-+⨯--- ⎪⎪⎝⎭⎝⎭; (3)2332122(3)22(2)433⎛⎫⎛⎫-÷⨯-++-⨯- ⎪ ⎪⎝⎭⎝⎭; (4)43212333(3)(5)335⎡⎤⎛⎫÷-⨯-⨯--- ⎪⎢⎥⎝⎭⎣⎦.22.(8分)已知2|1|4,(2)4x y +=+=,求x y +的值.23.(9分)观察下列三行数: -3,9,-27,81,-243,…① 1,13,-23,85,-239,…② 1,-3,9,-27,81,…③(1)第①行数是按什么规律排列的?(2)第②行数、第③行数与第①行数有什么关系?(3)第②行、第③行中第6个数之和与第①行中第6个数之差是多少?参考答案一、1.答案:A 2.答案:D 3.答案:C 4.答案:A 5.答案:B 6.答案:C 7.答案:C 8.答案:C 9.答案:C 10.答案:A解析:因为01234571,77,7497343,72401,716807,,======,所以个位数字4个数一循环, 所以(2019+1)÷4=505, 又因为1+7+9+3=20, 所以01220197777++++的结果的个位数字是0.11.答案:2 12.答案:1.496×810 13.答案:4.25;百数学试题 第5页(共6页) 数学试题 第6页(共6页)14.答案:(1)2 160 000(2)-7 123 15.答案:16 16.答案:217.答案:233211;;(2);332⎛⎫⎛⎫---- ⎪⎪⎝⎭⎝⎭18.答案:2三、19.答案:见解析 解析:(1)0.832 84≈0.833. (2)2 346.46m≈2 346m. (3)28.3万亿≈28万亿. 20.答案:见解析解析:不同.小明测得0.80m ,精确到百分位.小刚测得0.8m ,精确到十分位.因为两人测量结果精确度不同,所以两人测量结果不一样. 21.答案:见解析解析:(1)原式=8+(-3)×4 =8-12 =-4.(2)原式=11891427⎛⎫-÷+⨯-- ⎪⎝⎭ =13213⎛⎫-+-- ⎪⎝⎭=1333-.(3)原式=942 2784493⎛⎫-÷⨯++⨯- ⎪⎝⎭=4812893⎛⎫-⨯++- ⎪⎝⎭=168833⎛⎫-++- ⎪⎝⎭=0.(4)原式=410333(27)25325⎡⎤⎛⎫⨯-⨯-⨯-- ⎪⎢⎥⎝⎭⎣⎦ =81+81-25 =137.22.答案:见解析解析:因为2|1|4,(2)4x y +=+=,所以x +1=4或x +1=-4,y +2=2或y +2=-2, 所以x =3或x =-5,y =0或y =-4. 当x =3,y =0时,x y +=3+0=3; 当x =3,y =-4时,x y +=3-4=-1; 当x =-5,y =0时,x y +=-5+0=-5; 当x =-5,y =-4时,x y +=-5-4=-9. 综上所述x y +的值为3或-1或-5或-9. 23.答案:见解析解析:(1)第①行数是按23,(3)--,345(3),(3),(3)---排列的.(2)第②行数是第①行对应数加4得到的, 第③行数是第①行对应数乘13-得到的.(3)第①行、第②行、第③行的第6个数分别为66(3),(3)4--+,61(3)()3-⨯-,故所求结果为6661(3)4(3)()(3)2393-++-⨯---=-.。