吉林省吉林市船营区毓文中学2017-2018学年高二上学期期末数学试卷(文科) Word版含解析
- 格式:doc
- 大小:322.23 KB
- 文档页数:14
2017-2018学年高二(上)期末数学试卷(文科)一、选择题:(每小题5分,共60分)1.(5分)圆O1:x2+y2﹣2x=0和圆O2:x2+y2﹣4y=0的位置关系是()A.相离B.相交C.外切D.内切2.(5分)已知直线l、m,平面α、β且l⊥α,m⊂β,给出下列四个命题:①若α∥β,则l⊥m;②若l⊥m,则α∥β;③若α⊥β,则l∥m;④若l∥m,则α⊥β.其中正确的命题个数为()A.1 B.2 C.3 D.43.(5分)已知条件p:k=;条件q:直线y=kx+2与圆x2+y2=1相切,则¬p 是¬q的()A.充分必要条件B.必要不充分条件C.必要不充分条件 D.既不充分也不必要条件4.(5分)设A为圆周上一点,在圆周上等可能取点,与A连结,则弦长不超过半径的概率为()A.B.C.D.5.(5分)在对两个变量x,y进行线性回归分析时,有下列步骤:①对所求出的回归直线方程作出解释;②收集数据(x i,y i),i=1,2,…,n;③求线性回归方程;④求相关系数;⑤根据所搜集的数据绘制散点图.如果根据可形性要求能够作出变量x,y具有线性相关结论,则在下列操作顺序中正确的是()A.①②⑤③④B.③②④⑤①C.②④③①⑤D.②⑤④③①6.(5分)若直线3x+y+a=0过圆x2+y2+2x﹣4y=0的圆心,则a的值为()A.﹣1 B.1 C.3 D.﹣37.(5分)设m∈R,命题“若m>0,则方程x2+x﹣m=0 有实根”的逆否命题是()A.若方程x2+x﹣m=0 有实根,则m>0B.若方程x2+x﹣m=0有实根,则m≤0C.若方程x2+x﹣m=0 没有实根,则m>0D.若方程x2+x﹣m=0 没有实根,则m≤08.(5分)命题“存在x0∈R,2x0≤0”的否定是()A.不存在x0∈R,2x0>0 B.存在x0∈R,2x0≥0C.对任意的x∈R,2x≤0 D.对任意的x∈R,2x>09.(5分)若直线x﹣y+1=0与圆(x﹣a)2+y2=2有公共点,则实数a取值范围是()A.[﹣3,﹣1]B.[﹣1,3]C.[﹣3,1]D.(﹣∞,﹣3]∪[1,+∞)10.(5分)若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,一个焦点的坐标是(3,0),则椭圆的标准方程为()A.=1 B.=1C.=1 D.=111.(5分)已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax ﹣y+1=0垂直,则a=()A.B.1 C.2 D.12.(5分)对一个作直线运动的质点的运动过程观测了8次,第i次观测得到的数据为a i,具体如下表所示:在对上述统计数据的分析中,一部分计算见如图所示的算法流程图(其中是这8个数据的平均数),则输出的S的值是()A.6 B.7 C.8 D.9二、填空题:(每小题5分,共20分)13.(5分)程所表示的曲线是.(椭圆的一部分,圆的一部分,椭圆,直线的)14.(5分)直线x﹣2y+5=0与圆x2+y2=8相交于A、B两点,则|AB|=.15.(5分)命题“∃x∈R,2x2﹣3ax+9<0”为假命题,则实数a的取值范围为.16.(5分)已知P为椭圆上一点,F1,F2是椭圆的两个焦点,∠F1PF2=60°,则△F1PF2的面积S=.三、解答题:17.(10分)给定两个命题,P:对任意的实数x都有ax2+ax+1>0恒成立;Q:关于x的方程x2﹣x+a=0有实数根;如果p∨q为真,p∧q为假,求实数a的取值范围.18.(12分)某校高二年级有男生105人,女生126人,教师42人,用分层抽样的方法从中抽取13人,进行问卷调查,设其中某项问题的选择支为“同意”,“不同意”两种,且每人都做了一种选择,下面表格中提供了被调查人答卷情况的部分信息.(1)请完成此统计表;(2)试估计高二年级学生“同意”的人数;(3)从被调查的女生中选取2人进行访谈,求选到的两名学生中,恰有一人“同意”一人“不同意”的概率.19.(12分)设锐角三角形的内角A、B、C的对边分别为a、b、c,且a=2bsinA.(1)求B的大小;(2)求cosA+sinC的取值范围.20.(12分)设p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.21.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.22.(12分)已知直线l:(2m+1)x+(m+1)y﹣7m﹣4=0,m∈R,圆C:(x﹣1)2+(y﹣2)2=25.(Ⅰ)证明:直线l恒过一定点P;(Ⅱ)证明:直线l与圆C相交;(Ⅲ)当直线l被圆C截得的弦长最短时,求m的值.参考答案与试题解析一、选择题:(每小题5分,共60分)1.(5分)圆O1:x2+y2﹣2x=0和圆O2:x2+y2﹣4y=0的位置关系是()A.相离B.相交C.外切D.内切【解答】解:圆O1:x2+y2﹣2x=0,即(x﹣1)2+y2=1,圆心是O1(1,0),半径是r1=1圆O2:x2+y2﹣4y=0,即x2+(y﹣2)2=4,圆心是O2(0,2),半径是r2=2∵|O1O2|=,故|r1﹣r2|<|O1O2|<|r1+r2|∴两圆的位置关系是相交.故选B2.(5分)已知直线l、m,平面α、β且l⊥α,m⊂β,给出下列四个命题:①若α∥β,则l⊥m;②若l⊥m,则α∥β;③若α⊥β,则l∥m;④若l∥m,则α⊥β.其中正确的命题个数为()A.1 B.2 C.3 D.4【解答】解;①∵l⊥α,α∥β,∴l⊥β,又∵m⊂β,∴l⊥m,①正确.②由l⊥m推不出l⊥β,②错误.③当l⊥α,α⊥β时,l可能平行β,也可能在β内,∴l与m的位置关系不能判断,③错误.④∵l⊥α,l∥m,∴m∥α,又∵m⊂β,∴α⊥β,正确;故选:B.3.(5分)已知条件p:k=;条件q:直线y=kx+2与圆x2+y2=1相切,则¬p 是¬q的()A.充分必要条件B.必要不充分条件C.必要不充分条件 D.既不充分也不必要条件【解答】解:条件q:直线y=kx+2与圆x2+y2=1相切,可得:=1,解得k=.∴p是q的充分不必要条件.则¬p是¬q的必要不充分条件.故选:B.4.(5分)设A为圆周上一点,在圆周上等可能取点,与A连结,则弦长不超过半径的概率为()A.B.C.D.【解答】解:在圆上其他位置任取一点B,设圆半径为R,则B点位置所有情况对应的弧长为圆的周长2πR,其中满足条件AB的长度不超过半径长度的对应的弧长为•2πR,则AB弦的长度不超过半径长度的概率P=.故选:C.5.(5分)在对两个变量x,y进行线性回归分析时,有下列步骤:①对所求出的回归直线方程作出解释;②收集数据(x i,y i),i=1,2,…,n;③求线性回归方程;④求相关系数;⑤根据所搜集的数据绘制散点图.如果根据可形性要求能够作出变量x,y具有线性相关结论,则在下列操作顺序中正确的是()A.①②⑤③④B.③②④⑤①C.②④③①⑤D.②⑤④③①【解答】解:对两个变量进行回归分析时,首先收集数据(x i,y i),i=1,2,…,n;根据所搜集的数据绘制散点图.观察散点图的形状,判断线性关系的强弱,求相关系数,写出线性回归方程,最后对所求出的回归直线方程作出解释;故正确顺序是②⑤④③①故选D.6.(5分)若直线3x+y+a=0过圆x2+y2+2x﹣4y=0的圆心,则a的值为()A.﹣1 B.1 C.3 D.﹣3【解答】解:圆x2+y2+2x﹣4y=0的圆心为(﹣1,2),代入直线3x+y+a=0得:﹣3+2+a=0,∴a=1,故选B.7.(5分)设m∈R,命题“若m>0,则方程x2+x﹣m=0 有实根”的逆否命题是()A.若方程x2+x﹣m=0 有实根,则m>0B.若方程x2+x﹣m=0有实根,则m≤0C.若方程x2+x﹣m=0 没有实根,则m>0D.若方程x2+x﹣m=0 没有实根,则m≤0【解答】解:命题的逆否命题为,若方程x2+x﹣m=0 没有实根,则m≤0,故选:D.8.(5分)命题“存在x0∈R,2x0≤0”的否定是()A.不存在x0∈R,2x0>0 B.存在x0∈R,2x0≥0C.对任意的x∈R,2x≤0 D.对任意的x∈R,2x>0【解答】解:命题“存在x0∈R,2x0≤0”的否定是对任意的x∈R,2x>0,故选:D.9.(5分)若直线x﹣y+1=0与圆(x﹣a)2+y2=2有公共点,则实数a取值范围是()A.[﹣3,﹣1]B.[﹣1,3]C.[﹣3,1]D.(﹣∞,﹣3]∪[1,+∞)【解答】解:∵直线x﹣y+1=0与圆(x﹣a)2+y2=2有公共点∴圆心到直线x﹣y+1=0的距离为∴|a+1|≤2∴﹣3≤a≤1故选C.10.(5分)若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,一个焦点的坐标是(3,0),则椭圆的标准方程为()A.=1 B.=1C.=1 D.=1【解答】解:设椭圆的短轴为2b(b>0),长轴为2a,则2a+2b=18又∵个焦点的坐标是(3,0),∴椭圆在x轴上,c=3∵c2=a2﹣b2∴a2=25 b2=16所以椭圆的标准方程为故选B.11.(5分)已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax ﹣y+1=0垂直,则a=()A.B.1 C.2 D.【解答】解:因为点P(2,2)满足圆(x﹣1)2+y2=5的方程,所以P在圆上,又过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax﹣y+1=0垂直,所以切点与圆心连线与直线ax﹣y+1=0平行,所以直线ax﹣y+1=0的斜率为:a==2.故选C.12.(5分)对一个作直线运动的质点的运动过程观测了8次,第i次观测得到的数据为a i,具体如下表所示:在对上述统计数据的分析中,一部分计算见如图所示的算法流程图(其中是这8个数据的平均数),则输出的S的值是()A.6 B.7 C.8 D.9【解答】解:本题在算法与统计的交汇处命题,考查了同学们的识图能力以及计算能力.本题计算的是这8个数的方差,因为所以故选B二、填空题:(每小题5分,共20分)13.(5分)程所表示的曲线是椭圆的一部分.(椭圆的一部分,圆的一部分,椭圆,直线的)【解答】解:方程,可得x≥0,方程化为:x2+4y2=1,(x≥0),方程表示焦点坐标在x轴,y轴右侧的一部分.故答案为:椭圆的一部分;14.(5分)直线x﹣2y+5=0与圆x2+y2=8相交于A、B两点,则|AB|=2.【解答】解:圆心为(0,0),半径为2,圆心到直线x﹣2y+5=0的距离为d=,故,得|AB|=2.故答案为:2.15.(5分)命题“∃x∈R,2x2﹣3ax+9<0”为假命题,则实数a的取值范围为[﹣2,2] .【解答】解:原命题的否定为“∀x∈R,2x2﹣3ax+9≥0”,且为真命题,则开口向上的二次函数值要想大于等于0恒成立,只需△=9a2﹣4×2×9≤0,解得:﹣2≤a≤2.故答案为:[﹣2,2]16.(5分)已知P为椭圆上一点,F1,F2是椭圆的两个焦点,∠F1PF2=60°,则△F1PF2的面积S=.【解答】解:由椭圆的标准方程可得:a=5,b=3,∴c=4,设|PF1|=t1,|PF2|=t2,所以根据椭圆的定义可得:t1+t2=10①,在△F1PF2中,∠F1PF2=60°,所以根据余弦定理可得:|PF1|2+|PF2|2﹣2|PF1||PF2|cos60°=|F1F2|2=(2c)2=64,整理可得:t12+t22﹣t1t2=64,②把①两边平方得t12+t22+2t1•t2=100,③所以③﹣②得t1t2=12,∴∠F1PF2=3.故答案为:3.三、解答题:17.(10分)给定两个命题,P:对任意的实数x都有ax2+ax+1>0恒成立;Q:关于x的方程x2﹣x+a=0有实数根;如果p∨q为真,p∧q为假,求实数a的取值范围.【解答】解:当P为真时,a=0,或,解得:a∈[0,4)﹣﹣(3分)当Q为真时,△=1﹣4a≥0.解得:a∈(﹣∞,]﹣﹣(6分)如果p∨q为真,p∧q为假,即p和q有且仅有一个为真,﹣﹣(8分)当p真q假时,a∈(,4)当p假q真时,a∈(﹣∞,0)a的取值范围即为:(﹣∞,0)∪(,4)﹣﹣(12分)18.(12分)某校高二年级有男生105人,女生126人,教师42人,用分层抽样的方法从中抽取13人,进行问卷调查,设其中某项问题的选择支为“同意”,“不同意”两种,且每人都做了一种选择,下面表格中提供了被调查人答卷情况的部分信息.(1)请完成此统计表;(2)试估计高二年级学生“同意”的人数;(3)从被调查的女生中选取2人进行访谈,求选到的两名学生中,恰有一人“同意”一人“不同意”的概率.【解答】解:(1)根据题意,填写被调查人答卷情况统计表如下:男生105人,女生126人,教师42人,用分层抽样的方法从中抽取13人,进行问卷调查,设其中某项问题的选择支为“同意”,“不同意”两种,且每人都做了一种选择,下面表格中提供了被调查人答卷情况的部分信息.(2)由表格可以看出女生同意的概率是,男生同意的概率是;用男女生同意的概率乘以人数,得到同意的结果数为105×+126×=105,估计高二年级学生“同意”的人数为105人;(3)设“同意”的两名学生编号为1,2,“不同意”的四名学生分别编号为3,4,5,6,选出两人则有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15种方法;其中(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),共8种满足题意;则恰有一人“同意”一人“不同意”的概率为P=.19.(12分)设锐角三角形的内角A、B、C的对边分别为a、b、c,且a=2bsinA.(1)求B的大小;(2)求cosA+sinC的取值范围.【解答】解:(1)由a=2bsinA.根据正弦定理,得sinA=2sinBsinA,sinA≠0.故sinB=.因△ABC为锐角三角形,故B=.(2)cosA+sinC=cosA+sin=cosA+sin=cosA+cosA+sinA=sin.由△ABC为锐角三角形,知=﹣B<A<,∴<A+<,故<sin<,<<.故cosA+sinC的取值范围是.20.(12分)设p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.【解答】解:p:实数x满足x2﹣4ax+3a2<0,其中a>0,解得a<x<3a.命题q:实数x满足.化为,解得,即2<x≤3.(1)a=1时,p:1<x<3.p∧q为真,可得p与q都为真命题,则,解得2<x<3.实数x的取值范围是(2,3).(2)∵p是q的必要不充分条件,∴,a>0,解得1<a≤2.∴实数a的取值范围是(1,2].21.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.【解答】证明:(1)∵在四棱锥P﹣ABCD中,∠BAP=∠CDP=90°,∴AB⊥PA,CD⊥PD,又AB∥CD,∴AB⊥PD,∵PA∩PD=P,∴AB⊥平面PAD,∵AB⊂平面PAB,∴平面PAB⊥平面PAD.解:(2)设PA=PD=AB=DC=a,取AD中点O,连结PO,∵PA=PD=AB=DC,∠APD=90°,平面PAB⊥平面PAD,∴PO⊥底面ABCD,且AD==,PO=,∵四棱锥P﹣ABCD的体积为,由AB⊥平面PAD,得AB⊥AD,=∴V P﹣ABCD====,解得a=2,∴PA=PD=AB=DC=2,AD=BC=2,PO=,∴PB=PC==2,∴该四棱锥的侧面积:S侧=S△PAD+S△PAB+S△PDC+S△PBC=+++==6+2.22.(12分)已知直线l:(2m+1)x+(m+1)y﹣7m﹣4=0,m∈R,圆C:(x﹣1)2+(y﹣2)2=25.(Ⅰ)证明:直线l恒过一定点P;(Ⅱ)证明:直线l与圆C相交;(Ⅲ)当直线l被圆C截得的弦长最短时,求m的值.【解答】(本题满分12分)解:证明:(Ⅰ)直线l方程变形为(2x+y﹣7)m+(x+y﹣4)=0,由,得,∴直线l恒过定点P(3,1).…(4分)(Ⅱ)∵P(3,1),圆C:(x﹣1)2+(y﹣2)2=25的圆心C(1,2),半径r=5,∴,∴P点在圆C内部,∴直线l与圆C相交.…(8分)解:(Ⅲ)当l⊥PC时,所截得的弦长最短,此时有k l•k PC=﹣1,而,k PC=﹣,∴=﹣1,解得m=﹣.…(12分)。
注参考公式:()()()1122211nniii ii i nniii i x x yyx y nxyb x x xnx====---==--∑∑∑∑,a y bx =-.一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知:2p x ≤,:02q x ≤≤,则p 是q 的( )条件A .充要B .充分不必要C .必要不充分D .既不充分也不必要 2.用简单随机抽样的的方法从含有100个个体的总体中抽取一个容量为5的样本,则个体M 被抽到的概率为( ) A .1100 B .199 C .120 D .1503.已知命题:p 若a b >,则22a b >,命题:q 若24x =,则2x =,则下列命题中为真命题的是( )A .p q ∧B .p q ∨C .p ⌝D .q ⌝ 4.把“二进制”数()2101101化为“十进制”数是( ) A .45 B .44 C.43 D .425.天气预报说,在今后的三天中,每一天下雨的概率均为40%,现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每天个随机数作为一组,代表这三天的下雨情况,经随机模拟试验产生了如下20组随机数:据此估计,这三天中恰有两天下雨的概率近似为( ) A .0.35 B .0.15 C.0.20 D .0.256.某班共有学生52名,学号分别为152~号,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号,29号,42号的学生在样本中,那么样本中还有一名学生的学号是( )A .10B .16 C.53 D .32 7.阅读下图的程序框图,则输出的S =( )A .14B .20 C.30 D .558.已知函数()y f x =,其导函数()'y f x =的图象如图所示,则()y f x =( )A .在() 0-∞,上为减函数 B .在0x =处取极小值 C.在()4 +∞,上为减函数 D .在2x =处取极大值 9.双曲线()22216103x y p p-=>的左焦点在抛物线22y px =的准线上,则p =( )A .14 B .12C.2 D .4 10.曲线3ln 2y x x =++在点0P 处切线方程为410x y --=,则点0P 的坐标是( )A .()0 1,B .()1 1-, C.()1 3, D .()1 0, 11.有5件产品,其中3件正品,2件次品,从中任取2件,则互斥而不对立的两个事件是( )A .至少有1件次品与至多有1件正品B .恰有1件次品与恰有2件正品 C.至少有1件次品与至少有1件正品 D .至少有1件次品与都是正品 12.圆柱的表面积为S ,当圆柱的体积最大时,圆柱的底面半径为( )A B D .3二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.用辗转相除法求108和45的最大公约数为 .14.在区间[]1 5,和[]2 4,上分别各取一个数,记为m 和n ,则方程22221x y m n+=表示焦点在x 轴上的椭圆的概率是 .15.已知一个多项式()765432765432f x x x x x x x x =++++++,用秦九韶算法求3x =时的函数值时,3v = . 16.下列命题中:①命题:p “0x R ∃∈,20010x x -->”的否定p ⌝“x R ∀∈,210x x --≤”; ②汽车的重量和汽车每消耗1升汽油所行驶的平均路程成正相关关系; ③命题“若a b >,则221a b >-”的否命题为“若a b ≤,则221a b ≤-”;④概率是随机的,在试验前不能确定.正确的有.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)一个盒子中装有5个编号依次为1,2,3,4,5的球,这5个球除号码外完全相同,有放回地连续抽取两次,每次任意地取出一个球.(1)用列举法列出所有可能的结果;(2)求事件A=“取出球的号码之和不小于6的概率”.18. (本小题满分12分)甲、乙两位同学参加数学竞赛培训,在培训期间他们参加5项预赛,成绩如下:甲:78 76 74 90 82 乙:90 70 75 85 80(1)用茎叶图表示这两组数据;(2)现要从中选派一人参加数学竞赛,从平均数、方差的角度考虑,你认为选派哪位学生参加合适?说明理由.19. (本小题满分12分)在某化学反应的中间阶段,压力保持不变,温度从1︒变化到5︒,反应结果如下表所示(x代表温度,y代表结果):=+;(1)求化学反应的结果y对温度x的线性回归方程y bx a(2)判断变量x与y之间是正相关还是负相关,并预测当温度达到10︒时反应结果为多少?20. (本小题满分12分)为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得的数据整理后画出频率分布直方图(如图),已知图中从左到右的前三个小组的频率分别是0.1,0.3,0.4.第一小组的眇数是5.(1)求第四小组的频率和参加这次测试的学生人数; (2)在这次测试中,学生跳绳次数的中位数落在第几小组内?(3)参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩的优秀率是多少?21. (本小题满分12分)已知椭圆()2222:10x y C a b a b+=>>,两焦点分别为12 F F ,,过1F 的直线交椭圆C 于 M N ,两点,且2MF N △的周长为8. (1)求椭圆C 的方程;(2)过点() 0P m ,作圆221x y +=的切线l 交椭圆C 于 A B ,两点,求弦长AB 的最大值.22. (本小题满分12分)函数()22ln f x ax x x =-+,a 为常数.(1)当12a =时,求()f x 的最大值; (2)若函数()f x 在区间[]1 2,上为单调函数,求a 的取值范围.2016-2017学年度上学期高二年级数学(文)学科期末试题答案一、选择题1-5:CCBAD 6-10:BCCCDC 11、12:BC 二、填空题 13.9 14.1215.262 16.()()13 三、解答题17.解:(1)所有可能结果为25.列举如下:()()()()()1 1 1 2 1 3 1 4 1 5,,,,,,,,,; ()()()()()2 1 2 2 2 3 2 4 2 5,,,,,,,,,; ()()()()()3 1 3 2 3 3 3 4 3 5,,,,,,,,,; ()()()()()4 1 4 2 4 3 4 4 4 5,,,,,,,,,; ()()()()()5 1 5 2 5 3 5 4 5 5,,,,,,,,,. (2)取出球的号码之和不小于6的是()()()()()()1 5 2 4 2 5 3 3 3 4 3 5,,,,,,,,,,,,()()4 2 4 3,,,,()()4 4 4 5,,,,()()()()()5 1 5 2 5 3 5 4 5 5,,,,,,,,,,共15种, 所以()153255P A ==. 18.解:(1)用茎叶图表示如下:………………3分(2)80x =甲,80x =乙.………………7分而()()()()()222222178807680748090808280325s ⎡⎤=-+-+-+-+-=⎣⎦甲,()()()()()222222190807080758085808080505s ⎡⎤=-+-+-+-+-=⎣⎦乙,因为x x =甲乙,22s s <甲乙,所以在平均数一样的条件下,甲的水平更为稳定,所以我认为应该派甲去.19.附:线性回归方程y bx a =+中,1221ni ii nii x ynxy b xnx==-=-∑∑,a y bx =-.解:(1)由题意:5n =,51135i i x x ===∑,5117.25i i y y ===∑,又5221155559105i i x x =-=-⨯=∑,515129537.221i i i x y xy =-=-⨯⨯=∑. ∴1221212.110ni ii n i i x ynxyb x nx==-===-∑∑,7.2 2.130.9a y bx =-=-⨯=. 故所求的回归方程为 2.10.9y x =+.因为第一小组的频数为5,其频率为0.1.所以参加这次测试的学生人数为50.150+=(人). (2)0.350 1.5⨯=,0.45020⨯=,0.25010⨯=,则第一、第二、第三、第四小组的频数分别为5,15,20,10. 所以学生跳绳次数的中位数落在第三小组内. (3)跳绳成绩的优秀率为()0.40.2100%60%+⨯=.21.解:(1)由题得:c a =,48a =,所以2a =,c =,又222b a c =-,所以1b =. 即椭圆C 的方程为2214x y +=.(2)由题意知,1m >,设切线l 的方程为()()y k x m k o =-≠,由()2244y k x m x y ⎧=-⎪⎨+=⎪⎩, 得()22222148440k x k mx k m +-+-=,设()11 A x y ,,()22 B x y ,. 则2480k ∆=>,2122814k m x x k +=+,221224414k m x x k-=+, 由过点()() 01P m m ≠±,的直线l 与圆221x y +=相切得1d ==,即2211k m =-,所以2AB m m==+,当且仅当m =时,2AB =,所以AB 的最大值为2.22.解:(1)当12a =时,()2ln f x x x x =-+,则()f x 的定义域为()0 +∞,, ∴()()()2111'12x x f x x x x-+-=-+=, 由()'0f x >,得01x <<,由()'0f x <,得1x >;∴()f x 在()0 1,上是增函数,在()1 +∞,上是减函数, ∴()f x 的最大值为()10f =.(2)∵()1'22f x a x x=-+,若函数()f x 在区间[]1 2,上为单调函数, 则()'0f x ≥或()'0f x ≤在区间[]1 2,上恒成立, ∴1220a x x -+≥或1220a x x-+≤在区间[]1 2,上恒成立. 即122a x x ≥-或122a x x ≤-在区间[]1 2,上恒成立. 设()12h x x x =-,∵()21'20h x x =+>, ∴()12h x x x=-在区间[]1 2,上为增函数, ∴()()max 722h x h ==,()()min 11h x h ==, ∴只需722a ≥或21a ≤.。
吉林省长春市2017-2018学年高二数学上学期期末考试试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页。
考试结束后,将答题卡交回。
注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信 息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书 写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效; 在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5. 保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷一、选择题:本题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于13,则椭圆C 的方程是A . 19822=+y xB . 18922=+y xC . 15922=+y xD . 19522=+y x 2. 在直角坐标系xOy 中,点A (-2,2).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,点A 的极坐标为A . ⎪⎭⎫⎝⎛4,22π B .C . ⎪⎭⎫ ⎝⎛4,2π D . ⎪⎭⎫ ⎝⎛43,2π 3. 运行如图所示的程序框图,输出A ,B ,C 的一组数据为3,-1,2,则在两个判断框内的横线上分别应填(第3题图) (第5题图)A .垂直、相切B .平行、相交C .垂直、相离D .平行、相切4. 已知双曲线中心在原点且一个焦点为F 0),直线1y x =-与其相交于M 、N 两点,MN 中点的横坐标为23-,则此双曲线的方程是 A. 22134x y -= B. 22143x y -= C. 22152x y -= D. 22125x y -= 5. 根据下边框图,对大于2的整数N ,输出的数列的通项公式是A . n a n 2=B . )1(2-=n a nC .nn a 2= D .12-=n n a6. 在面积为S 的ABC ∆的边AB 上任取一点P ,则PBC ∆的面积大于2S的概率是 A .14 B . 34 C . 12 D . 237. 在极坐标系中,点π23⎛⎫ ⎪⎝⎭‚到直线()cos 6ρθθ=的距离为A . 2B . 23C . 1D . 21 8. 下列说法中正确的是①相关系数r 用来衡量两个变量之间线性关系的强弱, r 越接近于1,相关性越弱; ②回归直线y bx a =+一定经过样本点的中心(),x y ; ③随机误差e 的方差()D e 的大小是用来衡量预报的精确度;④相关指数2R 用来刻画回归的效果, 2R 越小,说明模型的拟合效果越好.A . ①②B . ③④C . ①④D . ②③ 9. 下列程序执行后输出的结果是A . 600B . 880C . 990D . 110010. 已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为(),0F c ,直线x a =与双曲线C 的渐近线在第一象限的交点为,A O 为坐标原点,若OAF ∆的面积为2163a ,则双曲线C 的离心率为 A .332 B .423 C .26 D .31311. 设不等式组⎩⎨⎧≤≤≤≤2020y x 表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是 A .4π B . 22-π C . 6π D . 4-4π12.已知直线5:12x l y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos ρθ=,设点M的直角坐标为,直线l 与曲线C 的交点为A ,B ,||||MA MB ⋅的值为A . 16B . 18C . 8D . 10第Ⅱ卷二、填空题:本题共4小题,每小题5分。
注参考公式:()()()1122211nnii i ii i nniii i xx y yx y nx yb xxxnx====---==--∑∑∑∑,a y bx =-.一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知:2p x ≤,:02q x ≤≤,则p 是q 的( )条件A .充要B .充分不必要C .必要不充分D .既不充分也不必要 2.用简单随机抽样的的方法从含有100个个体的总体中抽取一个容量为5的样本,则个体M 被抽到的概率为( ) A .1100 B .199 C .120 D .1503.已知命题:p 若a b >,则22a b >,命题:q 若24x =,则2x =,则下列命题中为真命题的是( )A .p q ∧B .p q ∨C .p ⌝D .q ⌝ 4.把“二进制”数()2101101化为“十进制”数是( ) A .45 B .44 C.43 D .425.天气预报说,在今后的三天中,每一天下雨的概率均为40%,现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每天个随机数作为一组,代表这三天的下雨情况,经随机模拟试验产生了如下20组随机数:据此估计,这三天中恰有两天下雨的概率近似为( ) A .0.35 B .0.15 C.0.20 D .0.256.某班共有学生52名,学号分别为152~号,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号,29号,42号的学生在样本中,那么样本中还有一名学生的学号是( )A .10B .16 C.53 D .32 7.阅读下图的程序框图,则输出的S =( )A .14B .20 C.30 D .558.已知函数()y f x =,其导函数()'y f x =的图象如图所示,则()y f x =( )A .在() 0-∞,上为减函数 B .在0x =处取极小值 C.在()4 +∞,上为减函数 D .在2x =处取极大值 9.双曲线()22216103x y p p-=>的左焦点在抛物线22y px =的准线上,则p =( )A .14 B .12C.2 D .4 10.曲线3ln 2y x x =++在点0P 处切线方程为410x y --=,则点0P 的坐标是( )A .()0 1,B .()1 1-, C.()1 3, D .()1 0, 11.有5件产品,其中3件正品,2件次品,从中任取2件,则互斥而不对立的两个事件是( )A .至少有1件次品与至多有1件正品B .恰有1件次品与恰有2件正品 C.至少有1件次品与至少有1件正品 D .至少有1件次品与都是正品 12.圆柱的表面积为S ,当圆柱的体积最大时,圆柱的底面半径为( )A D .3二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.用辗转相除法求108和45的最大公约数为 .14.在区间[]1 5,和[]2 4,上分别各取一个数,记为m 和n ,则方程22221x y m n+=表示焦点在x 轴上的椭圆的概率是 .15.已知一个多项式()765432765432f x x x x x x x x =++++++,用秦九韶算法求3x =时的函数值时,3v = . 16.下列命题中:①命题:p “0x R ∃∈,20010x x -->”的否定p ⌝“x R ∀∈,210x x --≤”; ②汽车的重量和汽车每消耗1升汽油所行驶的平均路程成正相关关系; ③命题“若a b >,则221a b >-”的否命题为“若a b ≤,则221a b ≤-”; ④概率是随机的,在试验前不能确定. 正确的有 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. (本小题满分12分)一个盒子中装有5个编号依次为1,2,3,4,5的球,这5个球除号码外完全相同,有放回地连续抽取两次,每次任意地取出一个球. (1)用列举法列出所有可能的结果;(2)求事件A =“取出球的号码之和不小于6的概率”. 18. (本小题满分12分)甲、乙两位同学参加数学竞赛培训,在培训期间他们参加5项预赛,成绩如下: 甲:78 76 74 90 82 乙:90 70 75 85 80 (1)用茎叶图表示这两组数据;(2)现要从中选派一人参加数学竞赛,从平均数、方差的角度考虑,你认为选派哪位学生参加合适?说明理由. 19. (本小题满分12分)在某化学反应的中间阶段,压力保持不变,温度从1︒变化到5︒,反应结果如下表所示(x 代表温度,y 代表结果):(1)求化学反应的结果y 对温度x 的线性回归方程y bx a =+;(2)判断变量x 与y 之间是正相关还是负相关,并预测当温度达到10︒时反应结果为多少? 20. (本小题满分12分)为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得的数据整理后画出频率分布直方图(如图),已知图中从左到右的前三个小组的频率分别是0.1,0.3,0.4.第一小组的眇数是5.(1)求第四小组的频率和参加这次测试的学生人数; (2)在这次测试中,学生跳绳次数的中位数落在第几小组内?(3)参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩的优秀率是多少?21. (本小题满分12分)已知椭圆()2222:10x y C a b a b+=>>12 F F ,,过1F 的直线交椭圆C 于 M N ,两点,且2MF N △的周长为8. (1)求椭圆C 的方程;(2)过点() 0P m ,作圆221x y +=的切线l 交椭圆C 于 A B ,两点,求弦长AB 的最大值. 22. (本小题满分12分)函数()22ln f x ax x x =-+,a 为常数. (1)当12a =时,求()f x 的最大值; (2)若函数()f x 在区间[]1 2,上为单调函数,求a 的取值范围.2016-2017学年度上学期高二年级数学(文)学科期末试题答案一、选择题1-5:CCBAD 6-10:BCCCDC 11、12:BC 二、填空题 13.9 14.1215.262 16.()()13 三、解答题17.解:(1)所有可能结果为25.列举如下:()()()()()1 1 1 2 1 3 1 4 1 5,,,,,,,,,; ()()()()()2 1 2 2 2 3 2 4 2 5,,,,,,,,,; ()()()()()3 1 3 2 3 3 3 4 3 5,,,,,,,,,; ()()()()()4 1 4 2 4 3 4 4 4 5,,,,,,,,,; ()()()()()5 1 5 2 5 3 5 4 5 5,,,,,,,,,. (2)取出球的号码之和不小于6的是()()()()()()1 5 2 4 2 5 3 3 3 4 3 5,,,,,,,,,,,,()()4 2 4 3,,,,()()4 4 4 5,,,,()()()()()5 1 5 2 5 3 5 4 5 5,,,,,,,,,,共15种, 所以()153255P A ==. 18.解:(1)用茎叶图表示如下:………………3分(2)80x =甲,80x =乙.………………7分而()()()()()222222178807680748090808280325s ⎡⎤=-+-+-+-+-=⎣⎦甲,()()()()()222222190807080758085808080505s ⎡⎤=-+-+-+-+-=⎣⎦乙,因为x x =甲乙,22s s <甲乙,所以在平均数一样的条件下,甲的水平更为稳定,所以我认为应该派甲去.19.附:线性回归方程y bx a =+中,1221ni ii nii x ynxy b xnx==-=-∑∑,a y bx =-.解:(1)由题意:5n =,51135i i x x ===∑,5117.25i i y y ===∑,又5221155559105i i x x =-=-⨯=∑,515129537.221i i i x y xy =-=-⨯⨯=∑. ∴1221212.110ni ii n i i x ynxyb x nx==-===-∑∑,7.2 2.130.9a y bx =-=-⨯=. 故所求的回归方程为 2.10.9y x =+.因为第一小组的频数为5,其频率为0.1.所以参加这次测试的学生人数为50.150+=(人). (2)0.350 1.5⨯=,0.45020⨯=,0.25010⨯=,则第一、第二、第三、第四小组的频数分别为5,15,20,10. 所以学生跳绳次数的中位数落在第三小组内. (3)跳绳成绩的优秀率为()0.40.2100%60%+⨯=. 21.解:(1)由题得:c a =,48a =,所以2a =,c ,又222b a c =-,所以1b =. 即椭圆C 的方程为2214x y +=.(2)由题意知,1m >,设切线l 的方程为()()y k x m k o =-≠,由()2244y k x m x y ⎧=-⎪⎨+=⎪⎩, 得()22222148440k x k mx k m +-+-=,设()11 A x y ,,()22 B x y ,.则2480k ∆=>,2122814k m x x k +=+,221224414k m x x k -=+,由过点()() 01P m m ≠±,的直线l 与圆221x y +=相切得1d ==,即2211k m =-,所以2AB m m==≤+,当且仅当m =2AB =,所以AB 的最大值为2. 22.解:(1)当12a =时,()2ln f x x x x =-+,则()f x 的定义域为()0 +∞,, ∴()()()2111'12x x f x x x x-+-=-+=, 由()'0f x >,得01x <<,由()'0f x <,得1x >;∴()f x 在()0 1,上是增函数,在()1 +∞,上是减函数, ∴()f x 的最大值为()10f =. (2)∵()1'22f x a x x=-+,若函数()f x 在区间[]1 2,上为单调函数, 则()'0f x ≥或()'0f x ≤在区间[]1 2,上恒成立, ∴1220a x x -+≥或1220a x x -+≤在区间[]1 2,上恒成立. 即122a x x ≥-或122a x x≤-在区间[]1 2,上恒成立. 设()12h x x x =-,∵()21'20h x x =+>,∴()12h x x x=-在区间[]1 2,上为增函数, ∴()()max 722h x h ==,()()min 11h x h ==, ∴只需722a ≥或21a ≤.。
长春市十一高中2017-2018学年度高二上学期期末考试数学试题(文科)组题人:高二数学组 2018.1.10一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知复数iiz 2131+-=,则=z ( ) A. 2B.2C.10D. 52.若原命题为:“若21,z z 为共轭复数,则21z z =”,则该命题的逆命题、否命题、逆否命题真假性的判断依次为( ) A. 真、真、真 B. 真、真、假 C. 假、假、真D. 假、假、假3.下列命题为特称命题的是( ) A. 任意一个三角形的内角和为︒180 B. 棱锥仅有一个底面C. 偶函数的图象关于y 轴垂直D. 存在大于1的实数x ,使21lg <+x 4.“n m =”是“方程322=+ny mx 表示圆”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件5.设双曲线)0,0(12222>>=-b a bx a y 的离心率是5,则其渐近线的方程为( )A.02=±y xB.02=±y xC. 02=±y xD. 02=±y x6.已知点)1,2,1(-A ,点C 与点A 关于平面xOy 对称,点B 与点A 关于x 轴对称,则=BC ( )A. 72B. 52C. 22D. 47.椭圆16822=+y x 中,以点)1,2(M 为中点的弦所在直线斜率为( ) A.43-B.83-C. 32-D.34-8.若),0(,,321+∞∈x x x ,设133221,,x x c x xb x x a ===,则c b a ,,的值( ) A. 至多有一个不大于1 B. 至少有一个不大于1 C. 都大于1D. 都小于19.点),(y x P 在椭圆191622=+y x 上,则y x 2-的最大值为( ) A.6B. 132C.134D.1010.设函数x x x f ln 1621)(2-=在区间[]2,1+-a a 上单调递减,则实数a 的取值范围是( ) A. )3,1(B. )3,2(C. (]2,1D. []3,211.在ABC Rt ∆中,1==AC AB ,若一个椭圆经过B A ,两点,它的一个焦点为点C ,另一个焦点在边AB 上,则这个椭圆的离心率为( )A.3632-B.23-C.36-D.12-12.已知函数xe x xf 1)(+=,若对任意R x ∈,ax x f >)(恒成立,则实数a 的取值范围是( )A.(]1,1e -B. )1,(e --∞C. [)1,1-eD. ),1(+∞-e二、填空题(本大题共4小题,每小题5分,共20分.)13.在极坐标系中,圆θθρsin 32cos 2-=的圆心的极坐标...是____________. 14.观察下列各式:125355=,6251556=,7578125=,则20165的末四位数字为__________________.15.函数)cos (sin 21)(x x e x f x +=在区间⎥⎦⎤⎢⎣⎡2,0π上的值域为_________________. 16.设21,F F 分别为双曲线124:22=-y x C 的左、右焦点,P 为双曲线C 在第一象限上的一点,若3421=PF PF ,则21F PF ∆内切圆的面积为________________. 三、解答题(解答应写出文字说明,证明过程或演算步骤.)17.(本题满分10分)已知极点为直角坐标系的原点,极轴为x 轴正半轴且单位长度相同的极坐标系中曲线1:1=ρC ,直线⎪⎪⎩⎪⎪⎨⎧+=+-=t y tx C 221221:2(t 为参数). (1)求曲线1C 上的点到直线2C 距离的最小值;(2)若把1C 上各点的横坐标都伸长为原来的2倍,纵坐标伸长为原来的3倍,得到曲线3C .设)1,1(-P ,直线2C 与曲线3C 交于B A ,两点,求PB PA +.18.(本小题满分12分)如图,在四棱锥ABCD P -中, 底面ABCD 为菱形,⊥PC 平面ABCD ,点E 在棱PA 上. (1)求证:直线⊥BD 平面PAC ;(2)是否存在点E ,使得四面体BDE A -的体积等于四面体BDC P -的体积的31?若存在,求出PAPE的值;若不存在,请说明理由.19.(本题满分12分)已知x xax x f ln )(-+=.R a ∈ (1)若2=a ,求)(x f 的单调区间;(2)当41-≤a 时,若2ln )(-≥x f 在[]e x ,2∈上恒成立,求a 的取值范围.20.(本题满分12分)已知椭圆C 的中心在原点,焦点在x 轴上,焦距为2,且长轴长是短轴长的2倍.(1)求椭圆C 的标准方程;(2)设)0,2(P ,过椭圆C 左焦点F 作斜率k 直线l 交C 于B A ,两点,若ABP S ∆=求直线l 的方程.21.(本小题满分12分)已知抛物线G :)0(22>=p px y ,过焦点F 的动直线l 与抛物线交于B A ,两点,线段AB 的中点为M .(1)当直线l 的倾斜角为4π时,16=AB .求抛物线G 的方程; (2)对于(1)问中的抛物线G ,设定点)0,3(N ,求证:MN AB 2-为定值.22(本小题满分12分).已知xa x x x f +-+=42)(2. (1)若4=a ,求)(x f 的单调区间;(2)若)(x f 有三个零点,求a 的取值范围.体验 探究 合作 展示长春市十一高中2017-2018学年度高二上学期期中考试数学试题(文科)参考答案一、选择题(每题5分,共60分)二、选择题(每题5分,共20分)13.)3,2(π- 14. 3125 15. ⎥⎦⎤⎢⎣⎡221,21πe 16. π4三、解答题17.解(1)1:221=+y x C ,圆心为)0,0(,半径为1;2:2+=x y C圆心到直线距离222==d --------3分 所以1C 上的点到2C 的最小距离为12-.--------5分(2)伸缩变换为⎩⎨⎧='='yy x x 32,所以134:223='+'y x C --------7分 将2C 和3C 联立,得0102272=-+t t .因为021<t t --------8分72124)(212212121=-+=-=+=+∴t t t t t t t t PB PA --------10分18.解(Ⅰ)因为⊥PC 平面ABCD ,所以BD PC ⊥, 因为底面ABCD 是菱形,所以AC BD ⊥, 因为C AC PC = ,所以⊥BD 平面PAC .(2)在PAC ∆中过点E 作EF ∥PC ,交AC 于点F , 因为⊥PC 平面ABCD , 所以⊥EF 平面ABCD .由ABCD 是菱形可知BCD ABD S S ∆∆=,设存在点E ,使得四面体BDE A -的体积等于四面体BDC P -的体积的31,即BDC P BDA E V V --=31,则PC EF 31=,所以在PAC ∆中,31==PC EF AP AE ,所以32=PA PE .19.解(1)当2=a 时,x x x x f ln 2)(-+=,则2222121)(x x x x x x f --=--=',0>x令0)(>'x f ,解得2>x ,令0)(<'x f ,解得20<<x ,所以)(x f 增区间为),2(+∞,减区间为)2,0(.(2)由22211)(xa x x x x a x f --=--=',[]e x ,2∈,当41-≤a 时,02>--a x x故)(x f 在[]e x ,2∈上为增函数,若2ln )(-≥x f ,则只需2ln 2ln 22)2()(min -≥-+==af x f , 即:4-≥a ,综上有:414-≤≤-a20.解(1)依题意,221,1,2a b c b a =+==,解得1,222==b a ,所以椭圆C 的标准方程为1222=+y x . (2)设直线l :1+=x ty ,代入椭圆消去x 得:012)2(22=--+ty y t ,设),(),,(2211y x B y x A ,则21,22221221+-=+=+t y y t t y y 所以:2102121=-=∆y y FP S ABP , 即:2104)(32121221=-+⨯⨯y y y y ,即:10)24)2(4(92222=+++t t t解得:42=t ,即2±=t ,所以l :012=+±y x21.解(1)由题意知)0,2(p F ,设直线l 的方程为2px y -=,),(),,(2211y x B y x A 由⎪⎩⎪⎨⎧-==222p x y pxy 得:04322=+-p px x ,所以:p x x 321=+ 又由1621=++=p x x AB ,所以4=p ,所以:抛物线G 的方程为x y 82=(2)由(1)抛物线G 的方程为x y 82=,此时设2:-=x ty AB消去x 得:01682=--ty y ,设),(),,(2211y x B y x A , 则:16,82121-==+y y t y y所以:)1(88)(422121+=++=++=t y y t x x ABt y t y y tx M M 4,242)(2221=+=++=,即 )4,24(2t t M + 所以:222216)14(2)1(82t t t MN AB +--+=-6)14(2)1(822=+-+=t t()()222124a .f x x x x=+-+, 则,令0)(='x f ,解得1=x ,且有1>x 时,0)(>'x f ,1<x 时,0)(<'x f ,所以)(x f 在)1,0(),0,(-∞上单调递减,)(x f 在),1(+∞上单调递增.(2)0)(=x f ,即x x x a 4223-+=-,令x x x x g 42)(23-+=,()0x ≠则443)(2-+='x x x g ,解得,所以)(x g 有两个极值,,所以,即.又()40080027a ,a ,,⎛⎫≠∈- ⎪⎝⎭所以.。
吉林市普通中学2017—2018学年度高中毕业班第一次调研测试文科数学本试卷共22小题,共150分,共4页,考试时间120分钟,考试结束后,将答题卡和试题卷一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条 形码、姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案 的标号;非选择题答案必须使用0.5毫米黑色字迹的签字笔书写,字体工整、 笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案 无效。
4. 作图可先用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5. 保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮 纸刀。
一、选择题:本大题共12题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求。
1. 已知全集1234534523{}{,,},{,}U M N ===,,,,,,则集合()U N M =ðA . {2}B . {13},C. {25},D . {45},2. 函数()sin()(0)6f x x πωω=+>的最小正周期为π,则ω=A.12B. 2C. 1D. π3. 在ABC ∆中,角,,A B C 的对边分别为,,a b c .已知45a b A ===︒,则角B 大 小为A . 60︒B . 120︒C . 60︒或120︒D .15︒或75︒ 4. 如果平面向量(2,0),(1,1)a b ==,那么下列结论中正确的是A. ||||a b =B. 22a b =C.()a b b -⊥D. a ∥b5. 等差数列{}n a 的首项10a >,公差0d <,{}n a 的前n 项和为n S ,则以下结论中一定正确的是A. n S 单调递增B.n S 单调递减C. n S 有最小值D. n S 有最大值6. 给出两个条件:(1)定义域为R 的奇函数;(2)在R 上为增函数. 则同时满足这两 个条件的函数是A .()1f x x =+B .()tan f x x =C .1()f x x=D .22,0(),0x x f x x x ⎧≥⎪=⎨-<⎪⎩7. 已知,αβ为锐角,且54cos ,cos()135ααβ=+=-, 则cos β= A . 5665- B . 1665- C . 1665 D . 56658. 已知,a b 是不共线的向量,,(,),AB a b AC a b R λμλμ=+=+∈若,,A B C 三点共线,则,λμ的关系一定成立的是A .1λμ=B .1λμ=-C .1λμ-=D .2λμ+=9. 已知函数()(0,1)x f x a b a a =+>≠的定义域和值域都是[1,0]-,则a b +=A. 32-B.52C. 2D. 32-或1 10. 函数xe y x=的图像大致是A.B.C.D.11. 如图,在ABC ∆中,0AB BC =, 1,30BC BAC =∠=︒, BC 边 上有10个不同点1210,,,P P P , 记(1,2,i i m AB AP i == 则1210m m m +++=A.B.10C.D. 3012. 若函数5()sin (0)2f x x a x π=-≤≤有三个零点,且这三个零点成等比数列,则a =C 1210A.B.C.12D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置. 13. 设函数311log (2),1()3,1x x x f x x -+-<⎧=⎨≥⎩,则(7)(1)f f -+= .14. 已知向量,a b 满足:||||1a b ==且,a b 的夹角为3π,则|2|a b -= .15.为:(1)(2)1,()(1)(2)(2,*)F F F n F n F n n n N ===-+->∈,若此数列每项被416. 已知函数()f x 的定义域为D ,若对于任意的1x D ∈,存在唯一的2x D ∈,使 得12()()2f x f x A +=成立,则称()f x 在D 上的算术平均数为A ,已知函数()1,[0,2]g x x x =+∈,则()g x 在区间[0,2]上的算术平均数是 .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分) 已知各项都为正数的等比数列{}n a 满足12354a a a +=,且123a a a =.(1)求数列{}n a 的通项公式;(2)求数列{}n a 的前n 项和n S .18.(12分)海上某货轮在A 处看灯塔B 在货轮的北偏东75︒,距离为在A 处看灯塔C在货轮的北偏西30︒,距离为货轮向正北由A 处行驶到D 处时看灯塔B 在货轮的北偏东120︒. (1)画出示意图并求A 处与D 处之间的距离;(2)求灯塔C 与D 处之间的距离.19.(12分)已知()1xf x x =+,数列{}n a 满足111,()(*)n n a a f a n N +==∈ (1) 求证:1{}na 是等差数列;(2) 设1n n n b a a +=,记数列{}n b 的前n 项和为n S ,求证:1n S <20.(12分)已知函数()2sin cos()3f x x x π=++(1)求函数()f x 的单调递减区间;(2)求函数()f x 在区间[0,]2π上的最大值及最小值.21.(12分)已知函数321()2f x ax x =-在1x =处的切线平行于直线20x y -=(1)求实数a 的值; (2)求函数()f x 在[0,1]上的最大值与最小值.22.(12分) 已知函数21()(1)ln ()2f x a x x a R =-+∈. (1)若当2x =时,函数()f x 取得极值,求a 的值;(2)若在区间(1,)+∞上,不等式()f x ax <恒成立,求a 的取值范围.吉林市普通中学2017—2018学年度高中毕业班第一次调研测试文科数学参考答案与评分标准一、选择题:二、填空题: 13. 4;;15. 1 ;16. 2三、解答题: 17.(10分)解:(1)设等比数列的公式比为q ,由题意知0q >,∴2111211154a a q a q a a q a q⎧+=⎪⎨⋅=⎪⎩,解得15a q ==,故5nn a =. ---------------------5分(2)125(15)555551544n n nn S +-=+++==-- -------------------------------------10分18.(12分)解:由题意画出示意图,如图所示 .-----------------2分 (1)ABD ∆中,由题意得60,45ADB B ∠=︒∠=︒,由正弦定理得sin4524sin60ABAD ︒==︒(海里). -------7分(2)在ACD ∆中,由余弦定理,2222222cos302422483CD AD AC AD AC =+-⨯︒=+-⨯⨯=⨯故CD =海里).所以A 处与D 处之间的距离为24海里;灯塔C 与D 处之间的距离为. --12分19.(12分)解:(1)由已知得1111111(),1,11n n n n n n n na a f a a a a a a +++==∴=+∴-=+ ---------------4分 ∴⎩⎨⎧⎭⎬⎫1a n 是公差为1的等差数列. --------------------------------------------6分 (2)因为111a =,所以111(1)1,n n n n a a n=+-⨯=∴= --------------------------------8分 1111(1)1n n n b a a n n n n +∴===-++ ------------------------------------------10分111111111112233411n S n n n =-+-+-++-=-<++即1n S <-----------------------------------------12分20.(12分)解;(1)1()2sin cos()2sin (cos )32f x x x x x x π=+=2sin cos x x x =+1cos2)sin2222x x -=-+=1sin222x x +=sin(2)3x π+-------------------------------------------5分 由3222,232k x k k Z πππππ+≤+≤+∈得71212k x k ππππ+≤≤+ 所以()f x 的单调递减区间是7[,],1212k k k Z ππππ++∈ -----------------8分(2)由02x π≤≤得42333x πππ≤+≤,所以sin(2123x π-≤+≤). ---------10分所以当2x π=时,()f x 取得最小值12x π=时,()f x 取得最大值1 ……12分21.(12分)解:(1)2()3f x ax x '=-,所以(1)2,312,1k f a a '==-== -------------------5分(2)由(1)得a=1,32211(),()33()23f x x x f x x x x x '=-=-=- -----------7分 当1(0,)3x ∈时,()0;f x '<当1(,1)3x ∈时,()0f x '>所以当13x =时,函数()f x 有最小值11()354f =- ---------------------10分又1(0)0,(1)2f f ==,所以函数()f x 最大值为12综上:函数函数()f x 的[0,1]上的最大值为12,最小值为154- -------------------------12分 22.(12分)解:(1)1()(1),f x a x x'=-+13(2)0,2(1)0,24f a a '=∴-+== ------------3分 此时214(2)(2)()444x x x x f x x x x-+-'=-+==(0,2)x ∈时,()0;(2,)f x x '>∈+∞时,()0f x '<,所以2x =是极值点所以34a =-----------------------------------------------------------------------4分 (2)21(),(1)ln 02f x ax a x ax x <∴--+<在(1,)+∞上恒成立设21()(1)ln 2g x a x ax x =--+,x ∈(1,)+∞21(1)1(1)[(1)1]()(1)a x ax x a x g x a x a x x x--+---'=--+== --------------6分①当10a -≤即1a ≤时,在(1,)+∞上,()0g x '<,()g x 为减函数 1()(1)2a g x g +<=-,所以只须102a +-≤,1a ≥-所以11a -≤≤ ---------------------------------------------------------------------9分②当12a <<时,111a >-,1(1)(1)()(1)[(1)1]1()a x x x a x a g x x x -------'==所以当1(1,)1x a ∈-时,()0g x '<;当1(,)1x a ∈+∞-时,()0g x '>min 1()()1g x g a =-,1()[(),)1g x g a ∈+∞-,()0g x <不恒成立 -----------11分③当2a ≥时,1011a <≤-,()0g x '>在(1,)+∞上恒成立,()g x 为增函数所以1()(1)2a g x g +>=-,1()(,)2a g x +∈-+∞,()0g x <不恒成立综上:11a -≤≤ ------------------------------------------------12分。
吉林省长春市2017-2018学年高二数学上学期期末考试试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页。
考试结束后,将答题卡交回。
注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信 息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书 写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效; 在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5. 保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷一、选择题:本题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于13,则椭圆C 的方程是A . 19822=+y xB . 18922=+y xC . 15922=+y xD . 19522=+y x 2. 在直角坐标系xOy 中,点A (-2,2).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,点A 的极坐标为A . ⎪⎭⎫⎝⎛4,22π B .C . ⎪⎭⎫ ⎝⎛4,2π D . ⎪⎭⎫ ⎝⎛43,2π 3. 运行如图所示的程序框图,输出A ,B ,C 的一组数据为3,-1,2,则在两个判断框内的横线上分别应填(第3题图) (第5题图)A .垂直、相切B .平行、相交C .垂直、相离D .平行、相切4. 已知双曲线中心在原点且一个焦点为F 0),直线1y x =-与其相交于M 、N 两点,MN 中点的横坐标为23-,则此双曲线的方程是 A. 22134x y -= B. 22143x y -= C. 22152x y -= D. 22125x y -= 5. 根据下边框图,对大于2的整数N ,输出的数列的通项公式是A . n a n 2=B . )1(2-=n a nC .nn a 2= D .12-=n n a6. 在面积为S 的ABC ∆的边AB 上任取一点P ,则PBC ∆的面积大于2S的概率是A .14 B . 34 C . 12 D . 237. 在极坐标系中,点π23⎛⎫ ⎪⎝⎭‚到直线()cos 3sin 6ρθθ+=的距离为A . 2B . 23C . 1D . 21 8. 下列说法中正确的是①相关系数r 用来衡量两个变量之间线性关系的强弱, r 越接近于1,相关性越弱; ②回归直线y bx a =+一定经过样本点的中心(),x y ; ③随机误差e 的方差()D e 的大小是用来衡量预报的精确度;④相关指数2R 用来刻画回归的效果, 2R 越小,说明模型的拟合效果越好. A . ①② B . ③④ C . ①④ D . ②③ 9. 下列程序执行后输出的结果是A . 600B . 880C . 990D . 110010. 已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为(),0F c ,直线x a =与双曲线C 的渐近线在第一象限的交点为,A O 为坐标原点,若OAF ∆的面积为2163a ,则双曲线C 的离心率为 A .332 B .423 C .26 D .31311. 设不等式组⎩⎨⎧≤≤≤≤2020y x 表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是A .4πB . 22-πC . 6πD . 4-4π12. 已知直线35:132x t l y t ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos ρθ=,设点M 的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,||||MA MB ⋅的值为A . 16B . 18C . 8D . 10第Ⅱ卷二、填空题:本题共4小题,每小题5分。
吉林省吉林市2017-2018学年上学期期末考试高二数学(文)试题考试说明:(1)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分, 满分150分,考试时间为120分钟.(2)第I 卷,第II 卷试题答案均答在答题卡上,交卷时只交答题卡.第I 卷 (选择题, 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 抛物线y x 82=的焦点坐标是 A .)321,0( B .)0,321( C .)0,2( D .)2,0( 2. 已知直线024=-+y mx 与015-2=+y x 互相垂直,则m 的值为 A .10 B .20 C .0 D .-43. 10名工人某天生产同一种零件,生产的件数分别是15,17,14,10,15,17,17,16,14,12,设 其平均数为a ,中位数为b ,众数为c ,则有A .c b a >>B .a c b >>C .b a c >>D .a b c >>4. 某企业共有职工150人,其中高级职称15人,中级职称45人,初级职称90人.现 采用分层抽样抽取容量为30的样本,则抽取的各职称的人数分别为A .5,10,15B .3,9,18C .3,10,17D .5,9,165. 在区间]4,4[ππ-上任取一个数x ,则函数x x f 2sin )(=的值不小于21的概率为A .21B .31C .32D .3π6. 设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为 A .2 B .3 C .213+ D .215+7. 某赛季,甲、乙两名篮球运动员都参加了11 场比赛,他们每场比赛得分的情况用如图所示 的茎叶图表示,则甲、乙两名运动员的中位数分别为A .19、13B .13、19C .20、18D .18、208. 已知圆 0152:22=--+x y x C ,直线0743:=++y x l ,则圆C 上到直线l 距离等于2的点的个数为A .1B .2C .3D .4 9. 在区间]1,0[中随机取出两个数,则两数之和不小于45的概率是 A .825 B .925 C .2518 D .172510. 过椭圆)0(12222>>=+b a by a x 的左焦点F 作斜率为1的直线交椭圆于A ,B 两点.若向量+与向量)1,3(-=共线,则该椭圆的离心率为 A .33 B .36 C .43 D .32 11. 某著名纺织集团为了减轻生产成本继续走高的压力,计划提高某种产品的价格,为 此销售部在10月1日至10月5日连续五天对某个大型批发市场中该产品一天的销 售量及其价格进行了调查,其中该产品的价格x (元)与销售量y (万件)之间的数据如 下表所示: 已知销售量y 与价格x 之间具有线性相关关系,其回归直线方程为:y ^=-3.2x +a ^,若该集团提高价格后该批发市场的日销售量为7.36万件,则该产品的价格约为A .14.2元B .10.8元C .14.8元D .10.2元3 4 6 2 2 0 2 3 1 01412. 设直线l 与抛物线24y x =相交于B A ,两点,与圆()()22250x y r r -+=>相切 于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是 A .()13, B .()14, C .()23, D .()24,第Ⅱ卷 (非选择题, 共90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应位置上) 13. 某中学采用系统抽样方法,从该校高一年级全体800名学生中抽80名学生做牙齿 健康检查.现将800名学生从1到800进行编号.已知从31~40这10个数中取的 数是39,则在第1小组1~10中随机抽到的数是14. 从一个正方体的6个面中任取2个,则这2个面恰好互相平行的概率是 15. 已知下面四个命题:(1)从匀速传递的产品生产流水线上,质检员每15分钟从中抽取一件产品进行某项指标检测,这样的抽样是系统抽样;(2)两个随机变量相关性越强,则相关系数的 绝对值越接近于1;(3)对分类变量X 和Y 的随机变量2K 的观测值k 来说,k 越小, “X 与Y 有关系”的把握程度越大;(4)在回归直线方程y ^=0.4x +12中,当解释变量 x 每增加一个单位时,预报变量大约增加0.4个单位. 其中所有真命题的序号是16. 在平面直角坐标系中,B A ,分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与 直线042=-+y x 相切,则圆C 面积的最小值为三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17. (10分)一个袋中有4个大小相同的小球,其中红球1个,白球2个,黑球1个, 现从袋中取出2球.(Ⅰ)求取出2球都是白球的概率;;(Ⅱ)若取1个红球记2分,取1个白球记1分,取1个黑球记0分,求取出两球分 数之和为2的概率.18. 已知椭圆2222:1(0)x y C a b a b+=>>的长轴长是短轴长的2倍,直线1+-=x y 与椭圆C 相交于B A ,两点,且弦AB 的长为354,求此椭圆的方程.19.对一批零件的长度(单位:mm)进行抽样检测,检测结果的频率分布直方图如图所示.根据标准,零件长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.(Ⅰ)用频率估计概率,现从该批产品中随机抽取一件,求其为二等品的概率;(Ⅱ)已知检测结果为一等品的有6件,现随机从三等品中取两件,求取出的两件产品中恰有1件的长度在区间[30,35)上的概率.[20.气象部门提供了某地区今年六月份(30天)的日最高气温的统计表如下:六月份的日最高气温不高于32℃的频率为0.8.(Ⅰ)求X ,Y 的值;(Ⅱ)把日最高气温高于32℃称为本地区的“高温天气”,根据已知条件完成下面2×2 列联表,并据此推测是否有95%的把握认为本地区的“高温天气”与冷饮“旺销”有 关?说明理由.附:K 2=a +bc +d a +cb +d21. 抛物线2:4E y x =的焦点是F ,过点F 的直线l 与抛物线E 相交于A 、B 两点, 原点为O .[(Ⅰ)设l 的斜率为1,求⋅的值;(Ⅱ)设FB t AF =,若[2,4]t ∈,求直线l 的斜率的范围.[22. 已知抛物线2:2(0)C y px p =>的焦点为F ,P 为C 上异于原点的任意一点,过点P 的直线l 交C 于另一点Q ,交x 轴的正半轴于点S ,且有||||FP FS =.[当点P 的横坐标为3时,PF PS =.[ (Ⅰ)求C 的方程;(Ⅱ)若直线1//l l ,且1l 和C 有且只有一个公共点E ,(ⅰ)OPE ∆的面积是否存在最小值?若存在,求出最小值;若不存在,请说明理由; (ⅱ)证明直线PE 过定点,并求出定点坐标.吉林省吉林市2017-2018学年高二上学期期末考试数学(文)试题参考答案一、选择题二、填空题13. 9 14. 51 15. (1)(2)(4) 16. 54π三、解答题 17.(Ⅰ) 611=P …………..5分 (Ⅱ) 312=P …………..10分 18. 222b a = .…………..3分3824221-=-b x x ,35431342=-=b AB .…………..8分12422=+y x.…………..12分 19. 解:(1)由频率分布直方图可得产品数量在[10,15)频率为0.1,在[15,20) 频率为0.2, [20,25)之间的频率为0.3,在[30,35)频率为0.15,所以在[25,30)上的频率为0.25 ,所以样本中二等品的频率为0.45,所以该批产品中随机抽取一件, 求其为二等品的 概率0.45. …………..6分(2)因为一等品6件,所以在[10,15)上2件,在[30,35)上3件,令[10,15)上2件为a 1, (3)a 2,在[30,35)上3件b 1,b 2,b 3,所以一切可能的结果组成的基本事件空间 Ω={(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 1,b 3)……}由15个基本事件组成. 恰有1件的长度在区间[30,35)上的基本事件有6个.所以取出的两件产品中恰有1 件的长度在区间[30,35)上的概率P =52.…………..12分20. 解 (1)由题意,P (t ≤32℃)=0.8,∴P (t >32℃)=1-P (t ≤32℃)=0.2.∴Y =30×0.2=6,X =30-(6+12+6)=6. …………..5分 (2) ∴K 2=n ad -bc 2a +bc +d a +cb +d≈10.21∵10.21>3.841, …………..10分 ∴有95%的把握认为本地区的“高温天气”与冷饮“旺销”有关. …………..12分21. (Ⅰ)3-=⋅ ………….. 5分(Ⅱ)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--22,3434,22 …………..12分22. 解 (I )由题意知,02p F ⎛⎫⎪⎝⎭.3=P x ,则3=2p FP FS =+,则()3+,0S p ,或()3,0S -(舍)则FS 中点36,04p +⎛⎫⎪⎝⎭. 因为P F P S =,则3634p +=解得2p =.所以抛物线C 的方程为24y x =. …………..4分(II )(i)由(I )知()1,0F ,设()00,P x y ()000x y ≠,()(),00S S S x x >,因为FP FS =,则011S x x -=+,由0S x >得02S x x =+,故()02,0S x +.故直线PQ 的斜率02PQ y k =-. 因为直线1l 和直线PQ 平行,设直线1l 的方程为02y y x b =-+,代入抛物线方程 得200880b y y y y +-=,由题意20064320b y y ∆=+=,得02b y =-.设(),E E E x y ,则04E y y =-,20041=E x y x =,当204y ≠时,00001E PE E y y yk x x x -==--,可得直线PE 的方程为 ()00001y y y x x x -=--,则O 到直线PE 的距离为1)1(11002000000+=-+--=x y x y y x y x d ,020200200)1()4()1(x x y y x x PE +=++-= …………..6分 所以,OPE ∆的面积24)4()1(2100020000>+=+=+=⨯=∆y y y y x x y d PE S OPE当204y =时,2=∆OPE S所以,OPE ∆的面积有最小值,最小值为2. …………..9分(ii )由(i)知204y ≠时,直线PE 的方程()00001y y y x x x -=--,整理可得()020414y y x y =--,直线PE 恒过点()1,0F .当204y =时,直线PE 的方程为1x =,过点()1,0F . …………..12分。
吉林省长春市2017-2018学年高二上学期期末数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.1.命题“∀x∈R,2x2+1>0”的否定是()A.∀x∈R,2x2+1≤0 B.C.D.2.已知某公司现有职员150人,其中中级管理人员30人,高级管理人员10人,要从公司抽取30个人进行身体健康检查,如果采用分层抽样的方法,则职员中“中级管理人员”和“高级管理人员”各应该抽取的人数为()A.8,2 B.8,3 C.6,3 D.6,23.225与135的最大公约数是()A.5 B.9 C.15 D.454.命题“若x=2,则x2﹣3x+2=0”的否命题是()A.若x≠2,则x2﹣3x+2≠0 B.若x2﹣3x+2=0,则x=2C.若x2﹣3x+2≠0,则x≠2 D.若x=2,则x2﹣3x+2≠0相等的十进制数是()5.与二进制数110(2)A.6 B.7 C.10 D.116.曲线的极坐标方程ρ=4sinθ化为直角坐标为()A.x2+(y+2)2=4 B.x2+(y﹣2)2=4 C.(x﹣2)2+y2=4 D.(x+2)2+y2=47.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为()A.35 B.20 C.18 D.98.将一颗骰子先后抛掷2次,观察向上的点数,则所得的两个点数和不小于10的概率为()A.B.C.D.9.如图,矩形长为5,宽为3,在矩形内随机撒100颗黄豆,数得落在椭圆内的黄豆数为60颗,以此实验数据为依据可以估算椭圆的面积约为()A.11 B.9 C.12 D.1010.过点M(1,1)的直线与椭圆=1交于A,B两点,且点M平分弦AB,则直线AB的方程为()A.4x+3y﹣7=0 B.3x+4y﹣7=0 C.3x﹣4y+1=0 D.4x﹣3y﹣1=011.命题“对任意实数x∈[2,3],关于x的不等式x2﹣a≤0恒成立”为真命题的一个必要不充分条件是()A.a≥9 B.a≤9 C.a≤8 D.a≥812.设F 1,F 2分别是双曲线(a >0,b >0)的左、右焦点,若双曲线右支上存在一点P ,使得,其中O 为坐标原点,且,则该双曲线的离心率为( )A .B .C .D . 二、填空题:本大题共4小题,每小题5分,共20分.13.抛物线y=4x 2的准线方程为 .14.过点(3,1)作圆(x ﹣2)2+(y ﹣2)2=4的弦,其中最短的弦长为 .15.已知样本数据3,2,1,a 的平均数为2,则样本的标准差是 .16.已知圆O :x 2+y 2=1,点M (x 0,y 0)是直线x ﹣y+2=0上一点,若圆O 上存在一点N ,使得,则x 0的取值范围是 .三、解答题:本大题共6小题,共70分.17.在直角坐标系xOy 中,曲线C 1的参数方程为(其中α为参数),曲线,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(Ⅰ)求曲线C 1的普通方程和曲线C 2的极坐标方程;(Ⅱ)若射线与曲线C 1,C 2分别交于A ,B 两点,求|AB|.18.某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表:(Ⅰ)用最小二乘法计算利润额y 对销售额x 的回归直线方程;(Ⅱ)当销售额为4(千万元)时,估计利润额的大小.附:线性回归方程中,,.19.某校100名学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间如下:(Ⅰ)求图中a的值;(Ⅱ)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,若将该样本看成一个总体,从中随机抽取2名学生,求其中恰有1人的分数不低于90分的概率?20.已知圆C经过点A(2,0)、B(1,﹣),且圆心C在直线y=x上.(1)求圆C的方程;(2)过点(1,)的直线l截圆所得弦长为2,求直线l的方程.21.已知抛物线y=4x2,过点P(0,2)作直线l,交抛物线于A,B两点,O为坐标原点,(Ⅰ)求证:为定值;(Ⅱ)求△AOB面积的最小值.22.已知点A,B分别是椭圆的左,右顶点,长轴长为4,离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若点P为椭圆C上除长轴顶点外的任一点,直线AP,PB与直线x=4分别交于点M,N,已知常数λ>0,求的取值范围.吉林省长春市2017-2018学年高二上学期期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.1.命题“∀x∈R,2x2+1>0”的否定是()A.∀x∈R,2x2+1≤0 B.C.D.【考点】全称命题;命题的否定.【分析】根据全称命题的否定是特称命题即可得到结论.【解答】解:∵命题∀x∈R,2x2+1>0是全称命题,∴根据全称命题的否定是特称命题得命题的否定是:“”,.故选:C.2.已知某公司现有职员150人,其中中级管理人员30人,高级管理人员10人,要从公司抽取30个人进行身体健康检查,如果采用分层抽样的方法,则职员中“中级管理人员”和“高级管理人员”各应该抽取的人数为()A.8,2 B.8,3 C.6,3 D.6,2【考点】分层抽样方法.【分析】利用要抽取的人数除以总人数,得到每个个体被抽到的概率,用概率乘以各个层次的人数,得到结果.【解答】解:∵公司现有职员150人,其中中级管理人员30人,高级管理人员10人,∴从公司抽取30个人进行身体健康检查,每个个体被抽到的概率是=,∴中级管理人员30×=6人,高级管理人员10×=2人,故选:D.3.225与135的最大公约数是()A.5 B.9 C.15 D.45【考点】辗转相除法;用辗转相除计算最大公约数.【分析】利用两个数中较大的一个除以较小的数字,得到商是1,余数是90,用135除以90,得到商是1,余数45,…,所以两个数字的最大公约数是45,得到结果.【解答】解:∵225÷135=1…90,135÷90=1…45,90÷45=2,∴225与135的最大公约数是45,故选D.4.命题“若x=2,则x2﹣3x+2=0”的否命题是()A.若x≠2,则x2﹣3x+2≠0 B.若x2﹣3x+2=0,则x=2C.若x2﹣3x+2≠0,则x≠2 D.若x=2,则x2﹣3x+2≠0【考点】四种命题.【分析】若原命题的形式是“若p,则q”,它的否命题是“若非p,则非q”,然后再通过方程根的有关结论,验证它们的真假即可.【解答】解:原命题的形式是“若p,则q”,它的否命题是“若非p,则非q”,∴命题:“若x=2,则x2﹣3x+2=0”的否命题是“若x≠2则x2﹣3x+2≠0”.故选:A.5.与二进制数110(2)相等的十进制数是()A.6 B.7 C.10 D.11【考点】进位制.【分析】本题考查的知识点是算法的概念,由二进制转化为十进制的方法,我们只要依次累加各位数字上的数×该数位的权重,即可得到结果.【解答】解:110(2)=0+1×2+1×22=2+4=6(10)故选:A.6.曲线的极坐标方程ρ=4sinθ化为直角坐标为()A.x2+(y+2)2=4 B.x2+(y﹣2)2=4 C.(x﹣2)2+y2=4 D.(x+2)2+y2=4【考点】极坐标系和平面直角坐标系的区别;点的极坐标和直角坐标的互化.【分析】曲线的极坐标方称即ρ2=4ρsinθ,即 x2+y2=4y,化简可得结论.【解答】解:曲线的极坐标方程ρ=4sinθ即ρ2=4ρsinθ,即 x2+y2=4y,化简为x2+(y﹣2)2=4,故选:B.7.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为()A.35 B.20 C.18 D.9【考点】程序框图.【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量v的值,模拟程序的运行过程,可得答案.【解答】解:∵输入的x=2,n=3,故v=1,i=2,满足进行循环的条件,v=4,i=1,满足进行循环的条件,v=9,i=0,满足进行循环的条件,v=18,i=﹣1不满足进行循环的条件,故输出的v值为:故选:C8.将一颗骰子先后抛掷2次,观察向上的点数,则所得的两个点数和不小于10的概率为()A.B.C.D.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数n=6×6=36,再利用列举法求出所得的两个点数和不小于10包含的基本事件个数,由此能求出所得的两个点数和不小于10的概率.【解答】解:将一颗骰子先后抛掷2次,观察向上的点数,基本事件总数n=6×6=36,则所得的两个点数和不小于10包含的基本事件有:(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),共6个,∴所得的两个点数和不小于10的概率为p=.故选:D.9.如图,矩形长为5,宽为3,在矩形内随机撒100颗黄豆,数得落在椭圆内的黄豆数为60颗,以此实验数据为依据可以估算椭圆的面积约为()A.11 B.9 C.12 D.10【考点】几何概型.【分析】欲估计出椭圆的面积,可利用概率模拟,只要利用平面图形的面积比求概率即可.【解答】解:由题意,以面积为测度,则,∴S=15×=9,椭圆故选:B.10.过点M (1,1)的直线与椭圆=1交于A ,B 两点,且点M 平分弦AB ,则直线AB 的方程为( )A .4x+3y ﹣7=0B .3x+4y ﹣7=0C .3x ﹣4y+1=0D .4x ﹣3y ﹣1=0【考点】椭圆的简单性质.【分析】设A (x 1,y 1),B (x 2,y 2),代入椭圆的方程,两式相减,结合中点坐标公式和直线的斜率公式,即可解出直线AB 的斜率k ,由点斜式方程可得直线AB 的方程.【解答】解:设A (x 1,y 1),B (x 2,y 2),代入椭圆的方程可得:+=1, +=1,两式相减可得: +=0,又x 1+x 2=2,y 1+y 2=2, =k ,即为k=﹣=﹣,则直线AB 的方程为:y ﹣1=﹣(x ﹣1),化为3x+4y ﹣7=0.故选:B .11.命题“对任意实数x ∈[2,3],关于x 的不等式x 2﹣a ≤0恒成立”为真命题的一个必要不充分条件是( )A .a ≥9B .a ≤9C .a ≤8D .a ≥8【考点】必要条件、充分条件与充要条件的判断.【分析】命题“对任意实数x ∈[2,3],关于x 的不等式x 2﹣a ≤0恒成立”为真命题,可得a ≥[x 2]max .【解答】解:命题“对任意实数x ∈[2,3],关于x 的不等式x 2﹣a ≤0恒成立”为真命题, ∴a ≥[x 2]max =9.∴命题“对任意实数x ∈[2,3],关于x 的不等式x 2﹣a ≤0恒成立”为真命题的一个必要不充分条件是a ≥8.故选:D .12.设F 1,F 2分别是双曲线(a >0,b >0)的左、右焦点,若双曲线右支上存在一点P ,使得,其中O 为坐标原点,且,则该双曲线的离心率为( )A .B .C .D . 【考点】双曲线的简单性质.【分析】取PF 2的中点A ,利用,可得⊥,从而可得PF 1⊥PF 2,利用双曲线的定义及勾股定理,可得结论.【解答】解:取PF 2的中点A ,则∵,∴⊥ ∵O 是F 1F 2的中点∴OA ∥PF 1,∴PF 1⊥PF 2,∵|PF 1|=3|PF 2|,∴2a=|PF 1|﹣|PF 2|=2|PF 2|,∵|PF 1|2+|PF 2|2=4c 2,∴10a 2=4c 2,∴e=故选C .二、填空题:本大题共4小题,每小题5分,共20分.13.抛物线y=4x 2的准线方程为 . 【考点】抛物线的简单性质.【分析】先把抛物线方程整理成标准方程,进而求得p ,再根据抛物线性质得出准线方程.【解答】解:整理抛物线方程得x 2=y ,∴p= ∵抛物线方程开口向上,∴准线方程是y=﹣故答案为:.14.过点(3,1)作圆(x ﹣2)2+(y ﹣2)2=4的弦,其中最短的弦长为 2 .【考点】直线与圆的位置关系.【分析】由圆的方程找出圆心与半径,判断得到(3,1)在圆内,过此点最短的弦即为与过此点直径垂直的弦,利用垂径定理及勾股定理即可求出. 【解答】解:根据题意得:圆心(2,2),半径r=2,∵=<2,∴(3,1)在圆内,∵圆心到此点的距离d=,r=2,∴最短的弦长为2=2.故答案为:215.已知样本数据3,2,1,a 的平均数为2,则样本的标准差是 .【考点】极差、方差与标准差.【分析】先根据平均值求得a ,再利用方差、标准差的定义,求得样本的标准差.【解答】解:样本数据3,2,1,a 的平均数为2=,∴a=2,样本的方差S 2= [1+0+1+0]=,∴标准差为,故答案为:.16.已知圆O :x 2+y 2=1,点M (x 0,y 0)是直线x ﹣y+2=0上一点,若圆O 上存在一点N ,使得,则x 0的取值范围是 [﹣2,0] .【考点】直线与圆相交的性质.【分析】过M作⊙O切线交⊙C于R,则∠OMR≥∠OMN,由题意可得∠OMR≥,|OM|≤2.再根据M(x0,2+x),|OM|2=x2+y2=2x2 +4x+4,求得x的取值范围.【解答】解:过M作⊙O切线交⊙C于R,根据圆的切线性质,有∠OMR≥∠OMN.反过来,如果∠OMR≥,则⊙O上存在一点N使得∠OMN=.∴若圆O上存在点N,使∠OMN=,则∠OMR≥.∵|OR|=1,OR⊥MR,∴|OM|≤2.又∵M(x0,2+x),|OM|2=x02+y2=x2+(2+x)2=2x2 +4x+4,∴2x02+4x+4≤4,解得,﹣2≤x≤0.∴x的取值范围是[﹣2,0],故答案为:[﹣2,0].三、解答题:本大题共6小题,共70分.17.在直角坐标系xOy中,曲线C1的参数方程为(其中α为参数),曲线,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求曲线C1的普通方程和曲线C2的极坐标方程;(Ⅱ)若射线与曲线C1,C2分别交于A,B两点,求|AB|.【考点】参数方程化成普通方程;简单曲线的极坐标方程;平面直角坐标轴中的伸缩变换.【分析】(Ⅰ)利用三种方程的互化方法,求曲线C1的普通方程和曲线C2的极坐标方程;(Ⅱ)将代入曲线C1的极坐标方程得ρ2﹣2ρ﹣3=0,解得ρ1=3,同理将曲线C2的极坐标方程得ρ2=1.可得|AB|=|ρ1﹣ρ2|=2.【解答】(1)由,有曲线C1的普通方程为(x﹣2)2+y2=7.把x=ρcosθ,y=ρsinθ,代入(x﹣1)2+y2=1,得(ρcosθ﹣1)2+(ρsinθ)2=1,化简得,曲线C2的极坐标方程ρ=2cosθ.﹣﹣﹣﹣﹣﹣(2)依题意可设.因为曲线C1的极坐标方程为ρ2﹣4ρcosθ﹣3=0,将代入曲线C1的极坐标方程得ρ2﹣2ρ﹣3=0,解得ρ1=3.同理将曲线C2的极坐标方程得ρ2=1.所以|AB|=|ρ1﹣ρ2|=2.﹣﹣﹣﹣﹣﹣18.某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表:(Ⅰ)用最小二乘法计算利润额y对销售额x的回归直线方程;(Ⅱ)当销售额为4(千万元)时,估计利润额的大小.附:线性回归方程中,,.【考点】线性回归方程.【分析】(Ⅰ)求出回归系数,即可求出利润额y对销售额x的回归直线方程;(Ⅱ)x=4代入,即可得出结论.【解答】解:(Ⅰ)设回归直线的方程是:,,∴==0.5, =0.4,∴y对销售额x的回归直线方程为: =0.5x+0.4;﹣﹣﹣﹣﹣﹣(Ⅱ)当销售额为4(千万元)时,利润额为: =0.5×4+0.4=2.4(千万元).﹣﹣﹣19.某校100名学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间如下:(Ⅰ)求图中a的值;(Ⅱ)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,若将该样本看成一个总体,从中随机抽取2名学生,求其中恰有1人的分数不低于90分的概率?【考点】频率分布直方图;分层抽样方法.【分析】(1)由频率分布图中小矩形面积和为1,能求出a的值.(2)由直方图,得第3组人数为30人,第4组人数为20人,第5组人数为10人,利用分层抽样在60名学生中抽取6名学生,第3、4、5组分别抽取3人、2人、1人.由此利用列举法能求出第4组的2位同学至少有一位同学入选的概率.【解答】解:(1)由题意得10a+0.01×10+0.02×10+0.03×10+0.035×10=1,所以a=0.005.﹣﹣﹣﹣﹣﹣(2)由直方图,得:第3组人数为:0.3×100=30人,第4组人数为:0.2×100=20人,第5组人数为:0.1×100=10人,所以利用分层抽样在60名学生中抽取6名学生,每组分别为:第3组:人,第4组:人,第5组:人,所以第3、4、5组分别抽取3人、2人、1人.设第3组的3位同学为A1,A2,A3,第4组的2位同学为B1,B2,第5组的1位同学为C1,则从六位同学中抽两位同学有15种可能如下:(A1,A2),(A1,A3),(A1,A3),(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A1,C1),(A2,C1),(A3,C1),(B1,C1),(B2,C1),其中恰有1人的分数不低于9的情形有:(A1,C1),(A2,C1),(A3,C1),(B1,C1),(B2,C1),共5种,所以其中第4组的2位同学至少有一位同学入选的概率为.﹣﹣﹣﹣﹣﹣20.已知圆C经过点A(2,0)、B(1,﹣),且圆心C在直线y=x上.(1)求圆C的方程;(2)过点(1,)的直线l截圆所得弦长为2,求直线l的方程.【考点】直线与圆相交的性质.【分析】(1)求出圆心坐标与半径,即可求圆C的方程;(2)设出直线方程,利用点到直线的距离以及半径半弦长求解即可.【解答】解:(1)AB的中点坐标(,),AB的斜率为.可得AB垂直平分线为x+6y=0,与x﹣y=0的交点为(0,0),圆心坐标(0,0),半径为2,所以圆C的方程为x2+y2=4;(2)直线的斜率存在时,设直线l的斜率为k,又直线l过(1,),∴直线l的方程为y﹣=k(x﹣1),即y=kx+﹣k,则圆心(0,0)到直线的距离d=,又圆的半径r=2,截得的弦长为2,则有,解得:k=﹣,则直线l 的方程为y=﹣x+.当直线的斜率不存在时,直线方程为x=1,满足题意.直线l 的方程:x=1或y=﹣x+.21.已知抛物线y=4x 2,过点P (0,2)作直线l ,交抛物线于A ,B 两点,O 为坐标原点,(Ⅰ)求证:为定值;(Ⅱ)求△AOB 面积的最小值.【考点】直线与抛物线的位置关系;平面向量数量积的运算.【分析】(Ⅰ)设过点P (0,2)的直线l :y=kx+2,联立直线与抛物线方程,令A (x 1,y 1),B (x 2,y 2),利用韦达定理,求解为定值.(Ⅱ)由(Ⅰ)知,利用弦长公式以及原点到直线l 的距离,表示三角形的面积,然后求解最小值即可.【解答】证明:(Ⅰ)设过点P (0,2)的直线l :y=kx+2,由得,4x 2﹣kx ﹣2=0,令A (x 1,y 1),B (x 2,y 2),∴,y 1y 2=k 2x 1x 2+2k (x 1+x 2)+4=4∴=x 1x 2+y 1y 2=4﹣=为定值.﹣﹣﹣﹣﹣﹣解:(Ⅱ)由(Ⅰ)知, =,原点到直线l 的距离∴当k=0时,三角形AOB 的面积最小,最小值是﹣﹣﹣﹣﹣﹣22.已知点A,B分别是椭圆的左,右顶点,长轴长为4,离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若点P为椭圆C上除长轴顶点外的任一点,直线AP,PB与直线x=4分别交于点M,N,已知常数λ>0,求的取值范围.【考点】椭圆的简单性质.【分析】(Ⅰ)由题意可知:2a=4,a=2,离心率为e==,c=1,b2=a2﹣c2=3,即可求得椭圆C的标准方程;(Ⅱ)设点P(x0,y),分别求得AP和BP的直线方程,求得M和N点坐标,=,设函数,定义域为(﹣2,2),由函数的单调性即可求得的取值范围.【解答】解:(Ⅰ)由题意得,A(﹣a,0),B(a,0),且长轴长为2a=4,a=2,离心率为e==,c=1,b2=a2﹣c2=3,则a2=4,b2=3.则椭圆方程为.﹣﹣﹣﹣﹣﹣(Ⅱ)设点P(x0,y)(x≠±2).直线AP的方程为,令x=4,,∴点M坐标为.直线BP的方程为,令x=4,,∴点N坐标为.∵,,∴.∵,,∴.∴=.设函数,定义域为(﹣2,2),当时,即λ≥1时,f(x0)在(﹣2,2)上单调递减,f(x)的取值范围为(λ,9λ),当时,即0<λ<1时,f(x)在上单调递减,在上单调递增,f(x)的取值范围为.综上,当λ≥1时,的取值范围为(λ,9λ),当0<λ<1时,的取值范围为.﹣﹣﹣﹣﹣﹣。
2017-2018学年吉林省吉林市船营区毓文中学高二(上)期末数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分)1.在等差数列{a n}中,a2=2,a3=4,则a10=()A.12 B.14 C.16 D.182.下列说法正确的是()A.a>b⇒ac2>bc2B.a>b⇒a2>b2C.a>b⇒a3>b3D.a2>b2⇒a>b3.函数f(x)=(2πx)2的导数是()A.f′(x)=4πx B.f′(x)=4π2x C.f′(x)=8π2x D.f′(x)=16πx4.若p:∀x∈R,2x2﹣1>0,则该的否定是()A.∀x∈R,2x2﹣1<0 B.∀x∈R,2x2﹣1≤0 C.∃x∈R,2x2﹣1≤0 D.∃x ∈R,2x2﹣1>05.已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,且椭圆G上一点到其两个焦点的距离之和为12,则椭圆G的方程为()A. +=1 B. +=1 C. +=1 D. +=16.抛物线y2=8x的焦点到直线的距离是()A. B.2 C.D.17.曲线y=x3+x+1在点(1,3)处的切线方程是()A.4x﹣y﹣1=0 B.4x+y﹣1=0 C.4x﹣y+1=0 D.4x+y+1=08.若双曲线上的一点P到它的右焦点的距离为8,则点P到它的左焦点的距离是()A.4 B.12 C.4或12 D.69.下面四个条件中,使a>b成立的充分而不必要的条件是()A.a>b+1 B.a>b﹣1 C.a2>b2D.a3>b310.下列有关的说法正确的是()A.“若x2=1,则x=1”的否为:“若x2=1,则x≠1”B.若p∨q为真,则p,q均为真C.“存在x∈R,使得x2+x+1<0”的否定是:“对任意x∈R,均有x2+x+1<0”D.“若x=y,则sinx=siny”的逆否为真11.已知双曲线中心在原点且一个焦点为F(,0),直线y=x﹣1与其相交于M、N两点,MN中点的横坐标为﹣,则此双曲线的方程是()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=112.若关于x的不等式2x2﹣8x﹣4﹣a>0在1<x<4内有解,则实数a的取值范围是()A.a<﹣4 B.a>﹣4 C.a>﹣12 D.a<﹣12二.填空题(每题5分,共20分)13.方程+=1表示椭圆,则k的取值范围是.14.设x、y∈R+且=1,则x+y的最小值为.15.设D是不等式组表示的平面区域,则D中的点P(x,y)到直线x+y=10距离的最大值是.16.已知函数f(x)=+lnx(a>0),若函数f(x)在区间(1,+∞)上为增函数,则正实数a的取值范围是.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.已知p:﹣2≤x≤10;q:x2﹣2x+1﹣m2≤0(m>0),若p是q的必要不充分条件,求实数m的取值范围.18.已知等差数列{a n}满足:a2=5,a5+a7=26,数列{a n}的前n项和为S n.(Ⅰ)求a n及S n;(Ⅱ)设{b n﹣a n}是首项为1,公比为3的等比数列,求数列{b n}的前n项和T n.19.已知双曲线C:=1(a>0,b>0)的渐近线方程为:y=±x,右顶点为(1,0).(Ⅰ)求双曲线C的方程;(Ⅱ)已知直线y=x+m与双曲线C交于不同的两点A、B,且线段AB的中点为M(x0,y0).当x0≠0时,求的值.20.设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x ﹣6y﹣7=0垂直,导函数f′(x)的最小值为﹣12.(Ⅰ)求a,b,c的值;(Ⅱ)求函数f(x)的单调递增区间,并求函数f(x)在[﹣1,3]上的最大值和最小值.21.已知椭圆的离心率,过点A(0,﹣b)和B(a,0)的直线与原点的距离为.(1)求椭圆的方程;(2)已知定点E(﹣1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点,问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.22.已知函数f(x)=6ln x(x>0)和g(x)=ax2+8x﹣b(a,b为常数)的图象在x=3处有公共切线.(1)求a的值;(2)求函数F(x)=f(x)﹣g(x)的极大值和极小值;(3)若关于x的方程f(x)=g(x)有且只有3个不同的实数解,求b的取值范围.2015-2016学年吉林省吉林市船营区毓文中学高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.在等差数列{a n}中,a2=2,a3=4,则a10=()A.12 B.14 C.16 D.18【考点】等差数列的通项公式.【分析】根据所给的等差数列的两项做出等差数列的公差,写出等差数列的第十项的表示式,用第三项加上七倍的公差,代入数值,求出结果.【解答】解:∵等差数列{a n}中,a2=2,a3=4,∴d=a3﹣a2=4﹣2=2,∴a10=a3+7d=4+14=18故选D.2.下列说法正确的是()A.a>b⇒ac2>bc2B.a>b⇒a2>b2C.a>b⇒a3>b3D.a2>b2⇒a>b【考点】的真假判断与应用.【分析】由不等式的性质,对各个选项逐一验证即可得,其中错误的可举反例.【解答】解:选项A,当c=0时,由a>b,不能推出ac2>bc2,故错误;选项B,当a=﹣1,b=﹣2时,显然有a>b,但a2<b2,故错误;选项C,当a>b时,必有a3>b3,故正确;选项D,当a=﹣2,b=﹣1时,显然有a2>b2,但却有a<b,故错误.故选C3.函数f(x)=(2πx)2的导数是()A.f′(x)=4πx B.f′(x)=4π2x C.f′(x)=8π2x D.f′(x)=16πx【考点】导数的运算.【分析】利用复合函数的求导法则:外函数的导数乘以内函数的导数,求出f′(x).【解答】解:f′(x)=2(2πx)(2πx)′=8π2x故选C4.若p:∀x∈R,2x2﹣1>0,则该的否定是()A.∀x∈R,2x2﹣1<0 B.∀x∈R,2x2﹣1≤0 C.∃x∈R,2x2﹣1≤0 D.∃x ∈R,2x2﹣1>0【考点】的否定.【分析】根据否定的定义进行求解,注意对关键词“任意”的否定;【解答】解:p:∀x∈R,2x2﹣1>0,则其否为:∃x∈R,2x2﹣1≤0,故选C;5.已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,且椭圆G上一点到其两个焦点的距离之和为12,则椭圆G的方程为()A. +=1 B. +=1 C. +=1 D. +=1【考点】椭圆的标准方程.【分析】设椭圆G的方程为+=1(a>b>0),根据椭圆的定义得2a=12,算出a=6.再由离心率的公式建立关于a、b的等式,化简为关于b的方程解出b2=9,即可得出椭圆G的方程.【解答】解:设椭圆G的方程为+=1(a>b>0),∵椭圆上一点到其两个焦点的距离之和为12,∴根据椭圆的定义得2a=12,可得a=6.又∵椭圆的离心率为,∴e==,即=,解之得b2=9,由此可得椭圆G的方程为=1.故选:C6.抛物线y2=8x的焦点到直线的距离是()A. B.2 C.D.1【考点】抛物线的简单性质;点到直线的距离公式.【分析】由抛物线y2=8x得焦点F(2,0),再利用点到直线的距离公式可得点F(2,0)到直线的距离.【解答】解:由抛物线y2=8x得焦点F(2,0),∴点F(2,0)到直线的距离d==1.故选D.7.曲线y=x3+x+1在点(1,3)处的切线方程是()A.4x﹣y﹣1=0 B.4x+y﹣1=0 C.4x﹣y+1=0 D.4x+y+1=0【考点】利用导数研究曲线上某点切线方程.【分析】求出导函数,将x=1代入求出切线的斜率,利用点斜式求出直线的方程.【解答】解:∵y=x3+x+1,∴y′=3x2+1令x=1得切线斜率4,∴切线方程为y﹣3=4(x﹣1),即4x﹣y﹣1=0故选A.8.若双曲线上的一点P到它的右焦点的距离为8,则点P到它的左焦点的距离是()A.4 B.12 C.4或12 D.6【考点】双曲线的简单性质.【分析】利用双曲线的定义,结合P到它的右焦点的距离为8,可求点P到它的左焦点的距离.【解答】解:设点P到它的左焦点的距离是m,则由双曲线的定义可得|m﹣8|=2×2∴m=4或12故选C.9.下面四个条件中,使a>b成立的充分而不必要的条件是()A.a>b+1 B.a>b﹣1 C.a2>b2D.a3>b3【考点】充要条件.【分析】利用不等式的性质得到a>b+1⇒a>b;反之,通过举反例判断出a>b推不出a>b+1;利用条件的定义判断出选项.【解答】解:a>b+1⇒a>b;反之,例如a=2,b=1满足a>b,但a=b+1即a>b推不出a>b+1,故a>b+1是a>b成立的充分而不必要的条件.故选:A.10.下列有关的说法正确的是()A.“若x2=1,则x=1”的否为:“若x2=1,则x≠1”B.若p∨q为真,则p,q均为真C.“存在x∈R,使得x2+x+1<0”的否定是:“对任意x∈R,均有x2+x+1<0”D.“若x=y,则sinx=siny”的逆否为真【考点】的真假判断与应用.【分析】A.利用否的定义即可判断出;B.利用“或”的定义可知:若p∨q为真,则p与q至少有一个为真;C.l利用的否定即可判断出;D.由于“若x=y,则sinx=siny”为真,而逆否与原是等价,即可判断出.【解答】解:对于A.“若x2=1,则x=1”的否为“若x2≠1,则x≠1”,因此不正确;对于B.若p∨q为真,则p与q至少有一个为真,因此不正确;对于C.“存在x∈R,使得x2+x+1<0”的否定是:“对任意x∈R,均有x2+x+1≥0”,因此不正确对于D.由于“若x=y,则sinx=siny”为真,因此其逆否为真,正确.故选:D.11.已知双曲线中心在原点且一个焦点为F(,0),直线y=x﹣1与其相交于M、N两点,MN中点的横坐标为﹣,则此双曲线的方程是()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【考点】双曲线的标准方程.【分析】先设出双曲线的方程,然后与直线方程联立方程组,经消元得二元一次方程,再根据韦达定理及MN中点的横坐标可得a、b的一个方程,又双曲线中有c2=a2+b2,则另得a、b的一个方程,最后解a、b的方程组即得双曲线方程.【解答】解:设双曲线方程为﹣=1.将y=x﹣1代入﹣=1,整理得(b2﹣a2)x2+2a2x﹣a2﹣a2b2=0.由韦达定理得x1+x2=,则==﹣.又c2=a2+b2=7,解得a2=2,b2=5,所以双曲线的方程是.故选D.12.若关于x的不等式2x2﹣8x﹣4﹣a>0在1<x<4内有解,则实数a的取值范围是()A.a<﹣4 B.a>﹣4 C.a>﹣12 D.a<﹣12【考点】一元二次不等式的应用.【分析】先将原不等式2x2﹣8x﹣4﹣a>0化为:a<2x2﹣8x﹣4,设y=2x2﹣8x﹣4,y=a,只须a小于y=2x2﹣8x﹣4在1<x<4内的最大值时即可,从而求得实数a的取值范围.【解答】解:原不等式2x2﹣8x﹣4﹣a>0化为:a<2x2﹣8x﹣4,只须a小于y=2x2﹣8x﹣4在1<x<4内的最大值时即可,∵y=2x2﹣8x﹣4在1<x<4内的最大值是﹣4.则有:a<﹣4.故选A.二.填空题(每题5分,共20分)13.方程+=1表示椭圆,则k的取值范围是.【考点】椭圆的定义.【分析】根据题意,方程+=1表示椭圆,则,解可得答案.【解答】解:方程+=1表示椭圆,则,解可得k>3,故答案]为k>3.14.设x、y∈R+且=1,则x+y的最小值为.【考点】基本不等式.【分析】将x、y∈R+且=1,代入x+y=(x+y)•(),展开后应用基本不等式即可.【解答】解:∵=1,x、y∈R+,∴x+y=(x+y)•()==10+≥10+2=16(当且仅当,x=4,y=12时取“=”).故答案为:16.15.设D是不等式组表示的平面区域,则D中的点P(x,y)到直线x+y=10距离的最大值是.【考点】简单线性规划的应用;点到直线的距离公式.【分析】首先根据题意做出可行域,欲求区域D中的点到直线x+y=10的距离最大值,由其几何意义为区域D的点A(1,1)到直线x+y=10的距离为所求,代入计算可得答案.【解答】解:如图可行域为阴影部分,由其几何意义为区域D的点A(1,1)到直线x+y=10的距离最大,即为所求,由点到直线的距离公式得:d==4,则区域D中的点到直线x+y=10的距离最大值等于4,故答案为:4.16.已知函数f(x)=+lnx(a>0),若函数f(x)在区间(1,+∞)上为增函数,则正实数a的取值范围是.【考点】函数的单调性与导数的关系.【分析】求f(x)的导数f′(x),利用f′(x)判定f(x)的单调性,求出f(x)的单调增区间,即得正实数a的取值范围.【解答】解:∵f(x)=+lnx(a>0),∴f′(x)=(x>0);令f′(x)=0,得x=;∴在(0,]上f′(x)≤0,在[,+∞)上f′(x)≥0,∴f(x)在(0,]上是减函数,在[,+∞)上是增函数;∵函数f(x)在区间[1,+∞)内是增函数,∴≤1,又a>0,∴a≥1;∴实数a的取值范围是[1,+∞).故答案为:[1,+∞).三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.已知p:﹣2≤x≤10;q:x2﹣2x+1﹣m2≤0(m>0),若p是q的必要不充分条件,求实数m的取值范围.【考点】必要条件.【分析】p与q是数的范围问题,所以“p是q的必要不充分条件”可以转化为集合间的包含关系解决.【解答】解:p:﹣2≤x≤10;q:x2﹣2x+1﹣m2≤0(m>0)⇔(x﹣(1﹣m))(x﹣(1+m))≤0⇔1﹣m≤x≤1+m,若p是q的必要不充分条件即“q⇒p”⇔{x|1﹣m≤x≤1+m}⊊{x|﹣2≤x≤10},∴,∴m≤3,又m>0所以实数m的取值范围是0<m≤3.18.已知等差数列{a n}满足:a2=5,a5+a7=26,数列{a n}的前n项和为S n.(Ⅰ)求a n及S n;(Ⅱ)设{b n﹣a n}是首项为1,公比为3的等比数列,求数列{b n}的前n项和T n.【考点】数列的求和;等差数列的前n项和.【分析】(I)利用通项公式列方程求出首项和公差,代入通项公式和求和公式即可;(II)根据等比数列的通项公式得出b n,使用分组求和得出T n.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,因为a2=5,a5+a7=26,所以,解得a1=3,d=2,所以a n=3+2(n﹣1)=2n+1,S n=3n+×2=n2+2n.(Ⅱ)∵{b n﹣a n}是首项为1,公比为3的等比数列,∴b n﹣a n=3n﹣1,所以b n=a n+3n﹣1,∴T n=S n+(1+3+32+33+…+3n﹣1)=n2+2n+.19.已知双曲线C:=1(a>0,b>0)的渐近线方程为:y=±x,右顶点为(1,0).(Ⅰ)求双曲线C的方程;(Ⅱ)已知直线y=x+m与双曲线C交于不同的两点A、B,且线段AB的中点为M(x0,y0).当x0≠0时,求的值.【考点】直线与圆锥曲线的关系;双曲线的标准方程.【分析】(Ⅰ)由双曲线的渐近线方程为:y=±x,得到=,又a=1,即可得到双曲线的方程;(Ⅱ)联立直线方程和双曲线方程,消去y,得到x的方程,再由判别式大于0,运用韦达定理,以及中点坐标公式,得到中点的横坐标,再由直线方程得到纵坐标,进而得到答案.【解答】解:(Ⅰ)双曲线C:=1(a>0,b>0)的渐近线方程为:y=±x,则由题意得,=,a=1,解得b=,则双曲线的方程为:x2﹣=1;(Ⅱ)联立直线方程和双曲线方程,得到,,消去y,得2x2﹣2mx﹣m2﹣3=0,设A(x1,y1),B(x2,y2),则判别式△=4m2+8(m2+3)>0,x1+x2=m,中点M的x0=,y0=x0+m=m,则有=3.20.设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x ﹣6y﹣7=0垂直,导函数f′(x)的最小值为﹣12.(Ⅰ)求a,b,c的值;(Ⅱ)求函数f(x)的单调递增区间,并求函数f(x)在[﹣1,3]上的最大值和最小值.【考点】利用导数研究函数的单调性;函数奇偶性的性质;利用导数研究函数的极值;两条直线垂直的判定.【分析】(Ⅰ)先根据奇函数求出c的值,再根据导函数f'(x)的最小值求出b的值,最后依据在x=1处的导数等于切线的斜率求出c的值即可;(Ⅱ)先求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求得区间即为单调区间,根据极值与最值的求解方法,将f(x)的各极值与其端点的函数值比较,其中最大的一个就是最大值,最小的一个就是最小值.【解答】解:(Ⅰ)∵f(x)为奇函数,∴f(﹣x)=﹣f(x)即﹣ax3﹣bx+c=﹣ax3﹣bx﹣c∴c=0∵f'(x)=3ax2+b的最小值为﹣12∴b=﹣12又直线x﹣6y﹣7=0的斜率为因此,f'(1)=3a+b=﹣6∴a=2,b=﹣12,c=0.(Ⅱ)f(x)=2x3﹣12x.,列表如下:∵f(﹣1)=10,,f(3)=18∴f(x)在[﹣1,3]上的最大值是f(3)=18,最小值是.21.已知椭圆的离心率,过点A(0,﹣b)和B(a,0)的直线与原点的距离为.(1)求椭圆的方程;(2)已知定点E(﹣1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点,问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.【考点】圆与圆锥曲线的综合;椭圆的标准方程.【分析】(1)直线AB方程为bx﹣ay﹣ab=0,依题意可得:,由此能求出椭圆的方程.(2)假设存在这样的值.,得(1+3k2)x2+12kx+9=0,再由根的判别式和根与系数的关系进行求解.【解答】解:(1)直线AB方程为bx﹣ay﹣ab=0,依题意可得:,解得:a2=3,b=1,∴椭圆的方程为.(2)假设存在这样的值.,得(1+3k2)x2+12kx+9=0,∴△=(12k)2﹣36(1+3k2)>0…①,设C(x1,y1),D(x2,y2),则而y1•y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4,要使以CD为直径的圆过点E(﹣1,0),当且仅当CE⊥DE时,则y1y2+(x1+1)(x2+1)=0,∴(k2+1)x1x2+(2k+1)(x1+x2)+5=0…③将②代入③整理得k=,经验证k=使得①成立综上可知,存在k=使得以CD为直径的圆过点E.22.已知函数f(x)=6ln x(x>0)和g(x)=ax2+8x﹣b(a,b为常数)的图象在x=3处有公共切线.(1)求a的值;(2)求函数F(x)=f(x)﹣g(x)的极大值和极小值;(3)若关于x的方程f(x)=g(x)有且只有3个不同的实数解,求b的取值范围.【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程.【分析】(1)先对两个函数求导,再由题目条件知,f′(3)=g′(3)从而建立关于a的方程,可求得a的值.(2)由(1)确定了函数及其导数的解析式,通过探讨导数的符号得函数的单调性,即可的函数的极大值和极小值.(3)根据题意,F(x)=f(x)﹣g(x)=6ln x+x2﹣8x+b的图象应与x轴有三个公共点.即方程f(x)=g(x)有且只有3个不同的实数解的充要条件为【解答】解:(1)因f′(x)=,g′(x)=2ax+8,依题意,得f′(3)=g′(3),解得a=﹣1.(2)F(x)=f(x)﹣g(x)=6ln x+x2﹣8x+b.则F′(x)=+2x﹣8=0,得x=1或x=3.∴当0<x<1时,F′(x)>0,F(x)单调递增;当1<x<3时,F′(x)<0,F(x)单调递减;当x>3时,F′(x)>0,F(x)单调递增.∴F(x)的极大值为F(1)=b﹣7;F(x)的极小值为F(3)=b﹣15+6ln 3.(3)根据题意,F(x)=f(x)﹣g(x)=6ln x+x2﹣8x+b的图象应与x轴有三个公共点.即方程f(x)=g(x)有且只有3个不同的实数解的充要条件为解得7<b<15﹣6ln 3.∴b的取值范围为(7,15﹣6ln 3)2016年10月13日。