还原试题四年级
- 格式:doc
- 大小:45.00 KB
- 文档页数:3
第三十一周还原问题专题简析:已知某个数经过加、减、乘、除运算后所得的结果,要求原数,这类问题叫做还原问题,还原问题又叫逆运算问题。
解决这类问题通常运用倒推法。
遇到比较复杂的还原问题,可以借助画图和列表来解决这些问题。
例1:小刚的奶奶今年年龄减去7后,缩小9倍,再加上2之后,扩大10倍,恰好是100岁。
小刚的奶奶今年多少岁?分析与解答:从最后一个条件恰好是100岁向前推算,扩大10倍后是100岁,没有扩大10倍之前应是100÷10=10岁;加上2之后是10岁,没有加2之前应是10-2=8岁;没有缩小9倍之前应是8×9=72岁;减去7之后是72岁,没有减去7前应是72+7=79岁。
所以,小刚的奶奶今年是79岁。
练习一1,在□里填上适当的数。
20×□÷8+16=262,一个数的3倍加上6,再减去9,最后乘上2,结果得60。
这个数是多少?3,小红问王老师今年多大年纪,王老师说:“把我的年纪加上9,除以4,减去2,再乘上3,恰好是30岁。
”王老师今年多少岁?例2:某商场出售洗衣机,上午售出总数的一半多10台,下午售出剩下的一半多20台,还剩95台。
这个商场原来有洗衣机多少台?分析与解答:从“下午售出剩下的一半还多20台”和“还剩95台”向前倒推,从图中可以看出,剩下的95台和下午多卖的20台合起来,即95+20=115台正好是上午售后剩下的一半,那么115×2=230台就是上午售出后剩下的台数。
而230台和10台合起来,即230+10=240台又正好是总数的一半。
那么,240×2=480台就是原有洗衣机的台数。
练习二1,粮库内有一批大米,第一次运出总数的一半多3吨,第二次运出剩下的一半多5吨,还剩下4吨。
粮库原有大米多少吨?2,爸爸买了一些橘子,全家人第一天吃了这些橘子的一半多1个,第二天吃了剩下的一半多1个,第三天又吃掉了剩下的一半多1个,还剩下1个。
四年级奥数还原、推理、合理安排、行程测试卷1、若干个面包分给甲乙丙三个人吃,甲吃了全部的一半多1个,乙吃了剩余的一半多1个,丙吃了最后剩余的一半多1个,丙吃了最后剩余的一半多1个,这样面包刚好全部吃完。
原来有几个面包?2、甲乙两班共有学生95人,从甲班调8名学生到乙班,再从乙班调35名学生到丙班,这时甲班的人数是乙班的2倍。
原来甲、乙两班各有多少人?3、 6只猫6分钟捉6只老鼠,请问100分内捉100只老鼠要多少只猫?4、从前,甲、乙、丙三人对一件古董作估价,甲说,它至少值500文,乙说,它的价值不到500文,丙说,它至少值一文。
后来知道,这三个人中,只有一个人说的是对的,问,这件古董到底值多少钱?5、张刚给客人烧水冲咖啡,洗水壶要用1分钟,烧开水要用15分钟,洗咖啡杯要用1分钟,拿咖啡要用2分钟,为了使客人早点喝上咖啡,最合理的安排需要多少分钟?6、小张骑在牛背上赶牛过河,共有 A、B、C、D四头牛,A牛过河需1分钟,B牛过河需2分钟,C牛过河需5分钟,D 牛过河需6分钟。
每次最多赶两头牛过河,而且小张每次骑在牛背上过河。
要把4头牛都赶到对岸去,最少需要几分钟?7、甲每小时行9千米,乙每小时比甲少行3千米,两人于相隔20千米的两地同时相背而行,几小时后两人相隔80千米?8、甲、乙两人同时分别从两地骑车相向而行,甲每小时行20千米,乙每小时行18千米,两人相遇时距全程中点3千米,求全程长多少千米?9、 A、B两地相距560千米,一辆货车和一辆客车分别从两地同时出发,相向而行,7小时后两车相遇。
已知货车每小时比客车多行10公里,问两车的速度各是多少?10、如果20只兔子可以换2只羊,9只羊可以换3头猪,8头猪可以换2头牛。
那么用5头牛可以换多少只兔子。
11、某人乘船从甲地到乙地,行了全程的一半多15千米时睡了觉,当他醒来时,发现船又行了睡觉前剩下路程的一半少10千米,此时离乙地还有30千米,问甲、乙两地相距多少千米?12、甲、乙、丙三人钱数各不相同,甲最多,他拿出一些钱给乙和丙,使乙和丙的钱数都比原来增加了两倍,结果乙的钱最多;接着乙拿出一些钱给甲和丙,使甲和丙的钱数都比原来增加了两倍,结果丙的钱最多;最后丙拿出一些钱给甲和乙,使甲和乙的钱数都比原来增加了两倍,结果三人钱数一样多了。
还原问题1、一家小工厂原来厂里有一些编制用的尼龙绳。
第一天用去总长的一半还多3米,第二天又买来一些尼龙绳,买来的是厂里剩下的1.5倍还多5. 2米,当天又用去尼龙绳总长的一半,还剩下14米,这个厂原有尼龙绳多少米?2、学校运来36棵树苗,小强和小平两人争者去栽,小强先拿了树苗若干棵,小平看到小强太多了就抢了10棵,小强不肯,又从小平那里抢回6棵。
这时小强拿的树苗棵数是小平的2倍,问最初小强准备拿几棵?3、三堆苹果共48个。
先从第一堆中拿出与第二堆个数相等的苹果并入第二堆;再从第二堆中拿出与第三堆个数相等的苹果并入第三堆;最后又从第三堆中拿出与这时第一堆个数相等的苹果并入第一堆。
这时,三堆苹果数恰好相等。
问:三堆苹果原来各有多少个?4、兄弟三人分24个桔子,每人所得个数分别等于他们三年前各自的岁数。
如果老三先把所得的桔子的一半平分给老大与老二,接着老二把现有的桔子的一半平分给老三与老大,最后老大把现有的桔子的一半平分给老二与老三,这时每人的桔子数恰好相同。
问:兄弟三人的年龄各多少岁?5、甲、乙、丙三只猴子各有桃子若干个.甲猴从乙猴手中抢来一半,吃掉一个;乙猴又从丙猴手中抢来一半,吃掉一个;丙猴又从甲猴手中抢来一半,也吃掉一个,最后三只猴子都有9个桃子.问原来它们各有桃子多少个?6、某人去银行取款,第一次取了存款的一半多50元,第二次取了余下的一半多100元。
这时他的存折上还剩1250元。
他原有存款多少元?、7、将24千克酒精分装在三个瓶子里,将甲瓶中的酒精倒入乙、丙瓶一些,使乙丙两瓶中的酒精比原来增加1倍,再把乙瓶中的酒精倒入甲、丙两瓶中一些,使甲丙两瓶中的酒精增加1倍,最后再把丙瓶中的酒精倒入甲、乙两瓶一些,使得甲、乙两瓶中的酒精增加1倍,这时三瓶中的酒精一样多,原来甲、乙、丙各瓶中的酒精各是多少千克?8、甲、乙两个港口各停有小船若干只,如果按下面的办法移动船只;第一次从甲港开出和乙港同样多的船只,第二次从乙港开出和甲港同样多的船只,那么照这样四次后,甲、乙两港所停的船只数都是48只,求甲、乙两港原来各停有多少只小船?9、服装店卖一种服装,看看难以售出,就按原订价打对折(原价的一半)销售,生意红火起来,又悄悄地每套加价14.5元出售,见顾客买的少了,又降价2.5元按现价96.4元出售,当初定价时又比进货价贵40.5元,问这种服装进货价每套多少元?10、小明、小刚、小英、小敏共有贺卡80张,小明给小刚两张,小刚给小英5张。
四年级奥数还原问题 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】第十二讲还原问题还原问题是指条件中只说明了中间的发展过程和最后结果,要求最初状态的一类问题。
解答这类问题逆向思维很重要,通常要运用倒推法(还原法),即从最后一步出发,一步一步倒着往前推算,逐步倒着往前推算,逐步靠拢已知条件,直到问题解决。
[例题与方法]例1某商场出售洗衣机,上午售出总数的一半多10台,下午售出剩下的一半多20台,还剩95台,这个商场原来有洗衣机多少台?试一试:粮库有一批大米,第一次运出总数的一半多3吨,第二次运出剩下的一半多5吨,还剩下4吨,问粮库原有大米多少吨?例2小明、小强和小勇三个人共有故事书60本,如果小强向小明借3本后,又借给小勇5本,结果三个人有的故事书的本数正好相等。
这三个人原来各有故事书多少本?试一试:甲、乙、丙三个小朋友共有贺年片90张,如果甲给乙3张后,乙又给丙5张,那么三个人的贺年片张数刚好相同。
问甲乙丙三个小朋友原来各有贺年片多少张?例3甲乙两桶油各有若干千克,如果要从甲桶中倒出和乙桶同样多的油放入乙桶,再从乙桶倒出和甲桶同样多的油放入甲桶,这时两桶油恰好都是36千克,问两桶油原来各有多少千克?试一试:王亮和李强各有画片若干张。
如果王亮拿出和李强同样多的画片送给李强,李强再拿出和王亮同样多的画片给王亮。
这时两个人都有24张,问王亮和李强原来各有画片多少张?例4两只猴子拿26个桃,甲猴眼急手快,抢先得到。
乙猴看甲猴拿得太多,就去抢一半,甲猴不服,又从乙猴那儿抢走一半,乙猴不肯,甲猴就还给乙猴5个,这时乙猴比甲猴多2个,问甲猴最初准备拿几个?试一试:学校运来36棵树苗,小强和小萍两人争着去栽,小强先拿了树苗若干棵,小萍看到小强拿太多了就抢了10棵,小强不肯,又从小萍那里抢了6棵。
这时小强拿的棵数是小萍的2倍,问最初小强准备拿多少棵?例5袋里有若干个球,小明每次拿出其中的一半再放回一个球,这样共操作了5次,袋中还有3个球。
四年级语文还原问题练习题.txt 四年级语文还原问题练题第一题读一读下面的句子,将后面各题中的字词按恰当的顺序填入括号内,补充未完整的句子。
1. ()见面,我们很高兴。
答案:我们一起2. 当妈妈下班回家看到我,她说:“孩子,()。
”答案:你回来了3. 妈妈问我:“吃不吃饭?”我说:“()。
”答案:我吃第二题阅读短文,将下列句子按正确的顺序排列。
短文:早晨,爷爷醒来,先去刷牙洗脸。
然后,他会给我和弟弟做早餐。
放学后,我们都会回到爷爷家,他会教我们做作业。
晚上,爷爷给我们讲故事,我们听得很入神。
最后,哥哥和我一起给爷爷洗脚。
1. ()早晨,爷爷醒来,先去刷牙洗脸。
2. ()放学后,我们都会回到爷爷家,他会教我们做作业。
3. ()晚上,爷爷给我们讲故事,我们听得很入神。
4. ()最后,哥哥和我一起给爷爷洗脚。
答案:1. 早晨,爷爷醒来,先去刷牙洗脸。
2. 放学后,我们都会回到爷爷家,他会教我们做作业。
3. 晚上,爷爷给我们讲故事,我们听得很入神。
4. 最后,哥哥和我一起给爷爷洗脚。
第三题将下列话语根据上下文补充完整。
1. 早晨,闹钟响了,爸爸喊道:“天亮了,()。
”答案:起床了2. 人的身体需要(),健康快乐成长。
答案:锻炼3. 地球是我们共同的()。
答案:家园4. 宝宝哭了,妈妈有时会说:“哭出来吧,()。
”答案:舒服点第四题阅读下面的短文,选择正确的词语填空。
短文:爸爸喜欢爬山,我也跟着爸爸一起去爬山。
爸爸说:“爬山能让我们的身体更(),也有助于我们的成长。
”在爬山的路上,我们看到了很多美丽的()。
我们还去爬了一座高山,站在山顶上,风很大,但我们感到很()。
1. A. 强壮 B. 快乐 C. 漂亮 D. 高兴答案:A. 强壮2. A. 山 B. 水 C. 花 D. 鸟答案:C. 花3. A. 轻松 B. 冷静 C. 新鲜 D. 舒服答案:D. 舒服第五题选出划线部分读音不同于其他三个的一项。
1. A. 午 B. 刀 C. 又 D. 少答案:C. 又2. A. 歌 B. 好 C. 高 D. 糕答案:D. 糕3. A. 多 B. 哭 C. 鸭 D. 车答案:B. 哭。
四年级数学还原问题练习题在四年级的数学学习中,还原问题是一个重要的练习题。
通过这种题型的练习,学生可以培养逻辑思维和解决问题的能力。
下面是一些四年级数学还原问题的练习题,供学生们锻炼和提升自己:1. 题目:还原数描述:某个两位数水果摊上的苹果被买走一些后,剩下的数量不足原来的一半,求原来有多少个苹果?解答:假设原来有x个苹果,剩下的数量不足一半,即剩下的数量小于x/2。
根据题意可得:x - 剩下的数量 < x/2化简得:2x - 2 * 剩下的数量 < x移项得:剩下的数量 > x/2所以,原来的苹果数量x应该满足:剩下的数量大于x/2。
2. 题目:还原图形描述:下图中的图形经过旋转和缩放后,得到了图2,请根据图2还原图1的形状。
解答:图形的还原过程需要注意旋转和缩放的方法:- 旋转:可以通过观察图2和图1的旋转角度来判断,然后按照相反的角度旋转回去。
- 缩放:可以通过观察图2和图1的大小比例来判断,然后按照相反的比例进行缩放。
这样,就可以还原出与图2相同形状的图1。
3. 题目:还原等式描述:下面的等式中,缺少了一些数字,请填写适当的数字,使等式成立。
解答:对于等式的还原,需要运用数学运算法则和逻辑推理来填写缺少的数字。
例如:4 + ? = 7,根据加法运算法则可知,4和?的和等于7,所以?的值为3。
通过类似的方法,可以还原出其他等式中缺少的数字,并使等式成立。
4. 题目:还原图案描述:下图中的图案被翻转后得到了图2,请根据图2还原图1的图案。
解答:图案的还原需要注意翻转的方向和方式:- 水平翻转:将图2上下颠倒即可得到图1的图案。
- 垂直翻转:将图2左右颠倒即可得到图1的图案。
- 对角线翻转:将图2沿对角线翻转即可得到图1的图案。
根据具体的题目,选择合适的翻转方式,即可还原出与图2相同的图案。
这些还原问题的练习题,可以帮助四年级的学生巩固数学知识,培养解决问题的能力,同时也提升他们的观察力和逻辑思维能力。
还原问题有些应用题的思考,是从应用题所叙述事情的最后结果出发,利用已知条件一步一步倒着推理,逐步靠拢所求,直到解决问题,这种思考问题的方法,通常我们把它叫做倒推法(还原法).下面看一组问题的解答:(1)某数加上1得10,求某数.某数+1﹦10,某数﹦10-1﹦9.(2)某数减去2得8,求某数.某数-2﹦8,某数﹦8+2﹦10.(3)某数乘以3得24,求某数.某数×3﹦24,某数﹦24÷3﹦8.(4)某数除以4得6,求某数.某数÷4﹦6某数﹦6×4﹦24例1 一棵石榴树上结有若干石榴,石榴数目减去6,乘以6,加上6,除以6,结果等于6.请你算一算,石榴树上一共有多少个石榴?例2 有一位老人说:“把我的年龄加上14后除以3,再减去26,最后用25乘,恰巧是100岁.”这位老人今年多少岁?随堂练习1(1)某数加上3,乘以5,再减去8,等于12.求某数.(2)耕一块地,第一天耕的比整块地的一半少5公顷,第二天耕的比余下的一半多2公顷,第三天耕了20公顷后还剩下5公顷,这块地有多少公顷?例3 联通公司出售手机,第一个月售出的比总数的一半多20部,第二个月售出的比第一个月剩下的一半多15部,还剩75部.原有手机多少部?例4 马小虎做一道整数减法题时,把减数个位上的1看成7,把减数十位上的7看成1,结果得出差是111.问:正确答案是几?随堂练习2(1)小芳在做一道加法试题时,由于粗心,把个位上的5看作9,把十位上的8看作3,结果所得的和是123.正确的答案应是多少?(2)一根电线,第一次用去的比全长的一半少3米,第二次用去的比余下的一半多5米,还剩下7米.这根电线原长多少米?例5 工人们修一段路,第一天修的公路比全长的一半还多2千米,第二天修的比余下的一半还少1千米,还剩20千米没有修.公路的全长是多少千米?例6 A、B、C三个油桶各盛油若干千克,第一次把A桶的一部分油倒入B、C两桶,使B、C两桶内的油分别增加到原来的2倍;第二次从B桶把油倒入C、A两桶,使C、A两桶油分别增加到第二次倒之前桶内油的2倍;第三次从C桶把油倒入A、B两桶,使A、B两桶内的油分别增加到第三次倒之前桶内油的2倍,这时各桶的油都为16千克.问:A、B、C三个油桶原来各有油多少千克?随堂练习3(1)仓库里有一批大米,第一天售出的重量比总数的一半少12吨,第二天售出的重量比剩下的一半多12吨,结果还剩下19吨.这个仓库原有大米多少吨?(2)树林中的三棵树上共停有48只鸟,如果有8只鸟从第一棵树上飞到第二棵树上,又有6只鸟从第二棵树上飞到第三棵树上,这时三棵树上鸟的只数相等.问:原来每棵树上各停有多少只鸟?课后题一、填空题1、某数加2,乘5,再减3得27.这个数是________.2、一个数加上2,乘以2,减去2,除以2,结果还是2,这个数是________.3、做一道整数加法题时,小刚把个位上的7看作1,把十位上的9看作6,结果得出和为136.那么正确的答案应该是_________.4、一根铁管,第1次截去2米,第2次截去剩下的一半,还剩5米.这根铁管原来长_________米.5、有一篮鸡蛋,第一次取出一半多2个,第二次取出余下的一半多2个,第三次取出8个,篮里还剩2个鸡蛋.篮里原来有__________个鸡蛋.6、一个数经过自加、自减、自乘、自除得到的四个数之和是100,这个数是_______.二、选择题7、有一个数乘以4,除以5,减去26,加上62,等于76.这个数是( ).(A)165 (B)50 (C) 32 (D)258、有一筐苹果,小文拿走全筐苹果数的,小静拿走余下部分的,小镭拿走再余下的,筐子里还剩下苹果32个.原来有苹果( ).(A)108个 (B)864个 (C) 96个 (D)64个9、甲、乙、丙共藏书240册,先从甲处取出与乙处同样多册书给乙,再从乙处取出与丙处同样多册书给丙,最后在从丙处取出与此时甲处同样多册书给甲.经过这样变动后,丙的藏书是甲的3倍,乙是甲的2倍.原来甲、乙、丙各有书的册数为( ).(A)75,70,95 (B)70,95,75 (C) 95,75,70 (D)95,70,7510、妈妈买来一批橘子,小刚第一天吃了这些橘子的一半多1个,第二天吃了剩下的一半多1个,第三天吃了第二天剩下的一半多1个,这时还剩1个橘子.妈妈买的橘子共( ).(A)20个 (B)24个 (C)18个 (D)22个三、简答题11、一个数减去8,加上10,除以7,乘以4,结果是56.这个数是多少?12、两棵树上共有麻雀25只,有5只从第一棵树上飞到第二棵树上,又从第二棵树上飞走7只,这时第一棵树上的麻雀是第二棵树上的2倍.问:原来每棵树上的麻雀各有几只?13、小丽看一本故事书,第一天看了这本书的一半多5页,第二天看了余下的一半多10页,还有8页没看.问:这本故事书共有多少页?14、甲、乙、丙、丁各有若干棋子,甲先拿出自己棋子的一部分给了乙、丙,使乙、丙每人的棋子数各增加一倍;然后乙也把自己棋子的一部分以同样的方式分给了丙、丁,丙也把自己棋子的一部分以这种方式给了甲、丁,最后丁也以这种方式将自己的棋子给了甲、乙,这时四人的棋子都是16枚.问:原来甲、乙、丙、丁四人各有棋子多少枚?。
平行线四年级还原问题(二)
【原创实用版】
目录
1.平行线四年级还原问题概述
2.解决平行线四年级还原问题的方法
3.具体解题步骤和示例
正文
【1.平行线四年级还原问题概述】
平行线四年级还原问题是指在平面几何中,已知两条平行线和其中一条上的一点,求在这个点作出的直线与另一条平行线的交点。
这个问题对于四年级的学生来说,是一个基础的几何题,可以帮助他们巩固和理解平面几何的基本概念和原理。
【2.解决平行线四年级还原问题的方法】
解决平行线四年级还原问题的方法主要有两种,一种是利用同位角相等,另一种是利用内错角相等。
这两种方法都可以快速求出直线与平行线的交点,但具体使用哪种方法,需要根据题目的具体情况来决定。
【3.具体解题步骤和示例】
以一条已知直线和一点在该直线上为例,我们首先画出这个点和这条直线,然后通过这个点作出一条与已知直线平行的直线。
接着,我们连接这个点和这条新作出的直线,这条连接线就是我们要求的直线。
最后,我们找出这条直线与另一条平行线的交点,这个交点就是我们要求的答案。
例如,已知直线 AB 和点 C 在直线 AB 上,求直线 CD 与直线 AB 的交点。
我们首先通过点 C 作出一条与直线 AB 平行的直线 CE,然后连接点 C 和直线 CE,得到直线 CC"。
接着,我们找出直线 CC"与直线 AB 的交点 D,这个交点就是我们要求的答案。
1学校运来36棵树苗,乐乐与欢欢两人争着去栽,乐乐先拿了若干树苗,欢欢看到乐乐拿得太多,就抢了10棵,乐乐不肯,又从欢欢那里抢回来6棵,这时乐乐拿的棵数是欢欢的2倍。
问:最初乐乐拿了多少棵树苗?
2甲、乙、丙三组共有图书90本,乙组向甲组借3本后,又送给丙组5本,结果三个组拥有相等数目的图书。
问:甲、乙、丙三个组原来各有多少本图书?
3一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米,这捆电线原有多少米?
2.某数加上6,乘以6,减去6,其结果等于36,求这个数。
3.在125×□÷3×8—1=1999中,□内应填入什么数?
4.小乐爷爷今年的年龄数减去15后,除以4,再减去6之后,乘以10,恰好是100。
问:小乐爷爷今年多少岁?
5.粮库内有一批面粉,第一次运出总数的一半多3吨,第二次运出剩下的一半少7吨,还剩4吨。
问:粮库里原有面粉多少吨?
6.有一筐梨,甲取一半又一个,乙取余下的一半又一个,丙再取余下的一半又一个,这时筐里只剩下一个梨。
这筐梨共值8.80元,那么每个梨值多少钱?
桔子。
问:树上原来有桔子多少个?
8.某人去银行取款,第1次取了存款的一半还多5元,第二次取了余下的一半还多10元,这时存折上还剩125元。
问:此人原有存款多少元?
3. 将某数的3倍减5,计算出答案,将答案再3倍后减5,计算出答案,这样反
复经过4次,最后计算的结果为691,那么原数是_____.
4. 小玲问一老爷爷今年多大年龄,老爷爷说:“把我的年龄加上17后用4
除,再减去15后用10乘,恰好是100岁”那么,这位老爷爷今年_____岁.
5. 李老师拿着一批书送给36位同学,每到一位同学家里,李老师就将所有
的书的一半给他,每位同学也都还她一本,最后李老师还剩下2本书,那么李
教师原来拿了_____本书.
6. 从某天起,池塘水面上的浮草,每天增加一倍,50天后整个池塘长满了浮草,第_____天时浮萍所占面积是池塘的4
1.
7. 一只猴子摘了一堆桃子,第一天它吃了这堆桃子的七分之一,第二天它吃了余下桃子的六分之一,第三天它吃了余下桃子的五分之一,第四天它吃了余下桃子的四分之一,第五天它吃了余下桃子的三分之一,第六天它吃了余下桃子的二分之一,这时还剩12只桃子,那么第一天和第二天猴子所吃桃子的总数是_____.
8. 某孩子付一角钱进入第一家商店,他在店里花了剩余的钱的一半,走出商店时,又付了一角钱.之后,他又付一角钱进入第二家商店,在这里他花了剩余的钱的一半,走出商店时又付了一角钱,接着他又用同样的方式进入第三和第四家商店.当他离开第四家商店后,这时他身上只剩下一角钱.那么他进入第一家商店之前身上有_____钱.
9. 有甲、乙两箱糖果,如果第一次从甲箱拿出和乙箱同样多块糖果放到乙箱里,第二次从乙箱拿出和甲箱剩下的同样多块糖果放入甲箱,这样拿4次后,甲、乙两箱糖果都是16块.甲、乙两箱各有糖果_____块.
10. 甲、乙、丙三人的钱数各不相同,甲最多,他拿出一些给乙和丙,使乙和丙的钱数都比原来增加了两倍,结果乙的最多;乙拿出一些给甲和丙,使甲和丙的钱数都比原来增加了两倍,结果丙的最多;丙又拿出一些给甲和乙,使他们的钱数各增加两倍,结果三人的钱数一样多.如果他们三人共有81元,则三人原有的钱数分别是____、____、____元.
二、解答题
11. 甲、乙、丙三个小孩分别带了若干块糖,甲带的最多,乙带的较少,丙带的最少.后来进行了重新分配,第一次分配,甲分给乙、丙,各给乙、丙所有数少4块,结果乙有糖块最多;第二次分配,乙给甲、丙、各给甲、丙所有数少4块,结果丙有糖块最多;第三次分配,丙给甲、乙,各给甲、乙所有数少4块,经三次重新分配后,甲、乙、丙三个小孩各有糖块44块,问:最初甲、乙、丙三个小孩各带糖多少块?
12. 一个车间计划用5天完成加工一批零件的任务,第一天加工了这批零件的51多120个,第二天加工了剩下的41少150个,第三天加工了剩下的31多80个,第四天加工了剩下的21少20个,第五天加工了最后的1800个.这批零件总数有多少个?
13. 有甲、乙两堆小球.甲堆小球比乙堆多,而且甲堆球数比560多,但不超过640,从甲堆拿出与乙堆同样多的球放入乙堆中;第二次,从乙堆拿出与甲堆剩下的同样多的球放到甲堆中;….如此继续下去,挪动五次以后,发现甲、乙两堆的小球一样多,那么,甲堆原有小球多少个?
14. 设有甲、乙、丙三个小组,现对这三组人员进行三次调整:第一次丙组不动,甲、乙两组中的一组调出7人给另一组;第二次乙组不动,甲、丙两组中的一组调出7人给另一组;第三次甲组不动,丙、乙两组中的一组调出7人给另一组.经过三次调整后,甲组有5人,乙组有13人,丙组有6人.问原来各组各。