高等传热传质学3
- 格式:ppt
- 大小:19.34 MB
- 文档页数:255
化学工程中的传热传质传热传质是化学工程中一个至关重要的主题,它涉及到物质的热量和物质的质量的传递。
在化学工程中,传热传质的控制、优化和设计是保证化学过程高效运行的关键。
本文将介绍传热传质的基本概念和常见的传热传质操作。
一、传热传质的基本概念传热传质是指热量和物质在系统中的传递过程。
热传递是指由于温度差引起的热量传递,物质传递是指由于浓度差引起的物质传递。
热传递和物质传递常常同时发生,相互影响。
热传递可分为三种基本方式:传导、对流和辐射。
传导是指热量通过固体或液体的直接接触传递。
对流是指热量通过流体的传递,流体可为气体或液体。
辐射是指热量通过电磁波的辐射传递。
在化学工程中,通常采用传导和对流来实现热传递。
物质传递是指在固体、液体或气体中由于浓度差异而产生的物质传递。
常见的物质传递方式包括扩散、对流、传质和吸附等。
扩散是指物质由浓度高的区域向浓度低的区域的自发传递。
对流是指通过流体传递物质,流体可为气体或液体。
传质是指物质在固体和液体之间的传递。
吸附是指物质在界面上的吸附作用。
二、传热传质的常见操作在化学工程中,传热传质操作被广泛应用于各个领域,如化学反应、蒸馏、吸附和萃取等。
下面将介绍几种常见的传热传质操作。
1. 蒸馏蒸馏是一种通过加热液体并将其蒸气重新冷凝来分离液体混合物的操作。
在蒸馏过程中,液体混合物首先加热,产生蒸汽,然后经过冷凝器冷凝成液体,从而实现物质的分离。
蒸馏操作中的传热传质是通过加热液体和冷却蒸汽来实现的。
2. 吸附吸附是指气体或溶液中的组分被固体颗粒或表面吸附的过程。
吸附操作通常用于分离和纯化物质。
在吸附过程中,物质从气体或溶液中被吸附剂吸附,随后通过加热或换吸附剂恢复物质。
吸附操作中的传热传质是通过加热吸附剂和冷却恢复剂来实现的。
3. 萃取萃取是一种通过液体相之间传递分离物质的过程。
在萃取过程中,一种或多种溶剂与待分离物质接触,物质会选择溶解在其中一种溶剂中,从而实现分离。
萃取操作中的传热传质是通过加热和冷却液体相来实现的。
化学反应中的传热和传质动力学研究第一章概论化学反应是化学工程中最基础和重要的过程之一。
传热和传质在化学反应中起着决定性作用。
传热和传质动力学的研究对于化学反应的理解和控制至关重要。
本文将从传热和传质动力学的基本概念入手,阐述其在化学反应中的应用。
第二章传热动力学传热动力学是传热学和动力学的结合。
在化学反应中,传热动力学主要用来描述热量在反应过程中的传递和影响。
化学反应中产生的热量通常需要扩散到周围环境中,并对反应体系的温度、反应速率等参数产生影响。
传热动力学中的主要概念包括:热传导方程、热传导系数、热阻和温度场。
热传导方程是描述热量在反应体系中扩散的基本方程。
其形式为:$\frac{\partial T}{\partial t}=\alpha\nabla^2T$其中,$\frac{\partial T}{\partial t}$为温度随时间的变化率,$\alpha$为热传导系数,$\nabla^2T$为温度场的拉普拉斯算子。
热传导系数描述的是物质中热能的传递速率。
该系数受许多因素的影响,如物质的热导率、密度、比热、温度等。
改善传热系数对反应速率的改善有很大的作用。
热阻描述的是反应体系中热量扩散的难易程度。
反应体系中的物理结构和热传导特性决定了热阻的大小。
热阻越小,热量扩散越快,反应速率也随之提高。
温度场描述的是反应体系内部和表面的温度分布情况。
它对于反应速率和产物分布有重要影响。
在反应过程中,控制温度场是非常重要的。
第三章传质动力学传质动力学主要用来描述物质在反应过程中的扩散和影响。
化学反应中产生的物质往往需要扩散到反应环境中,并对反应速率、反应产物分布等参数产生影响。
传质动力学中的主要概念包括:弥散方程、质量传递系数、质量阻力和浓度场。
弥散方程是描述物质在反应体系内部扩散的基本方程。
其形式为:$\frac{\partial C}{\partial t}=D\nabla^2C$其中,$\frac{\partial C}{\partial t}$为物质浓度随时间的变化率,$D$为扩散系数,$\nabla^2C$为浓度场的拉普拉斯算子。
机械工程中的传热学和传质学机械工程是一门涉及多个学科的工程学科,其中传热学和传质学是非常重要的部分。
传热学和传质学是研究热量、质量在流体中传递的学科,它们本质上都是关于流动的问题。
在机械工程中,掌握传热学和传质学的基本理论和实际应用,可以帮助我们进行系统的流体优化设计,提高机械系统的效率。
一、传热学传热学研究的是热量在流体中的传递现象,常见的传热方式有导热、对流热传和辐射传热。
在机械工程中,传热学的应用涉及许多领域,如汽车发动机中的散热问题、空调系统中的制冷问题、核反应堆中的冷却问题等。
1. 导热导热是指热量在固体内部的传递。
固体内部分子的热运动会把热量传导到邻近分子中,从而使固体内部热量传递。
在机械工程中,导热的应用范围广泛,例如发动机缸体和头部冷却塞、汽车排气管材料的选择、材料密度与切削温度的关系等。
2. 对流热传对流热传是指热量通过流体运动传递。
在机械工程中的常见应用有热管、冷却塞、洛伦兹力、湍流热传等。
例如,汽车散热系統中的水泵就是带动循环流体,并将热量传递到散热器中的常见方法。
3. 辐射传热辐射传热是指热量通过热辐射传递——产生热辐射的物体向周围传递能量。
在辐射传热中,其传热速度不受介质粒子的运动情况影响,因此它通常被用于真空中的传热——例如对于被广泛应用于热控制的卫星,便需要考虑机身与其环境的热交换问题的辐射传热。
二、传质学传质学研究的是物质在流体中的传递现象,主要是指质量传递在流体中迁移、分布、扩散等过程。
在机械工程中的传质学应用范围也非常广泛,例如化学反应过程中的催化剂的传质问题和过滤器中的物质传递问题等。
1. 扩散扩散是指物质由浓度高的地方向浓度低的地方自发移动的过程,扩散是由分子的热运动所引起的。
在机械工程中,扩散的应用包括油、气体和其他化学物质在管道中的运输,以及应用于涂料和塑料製造中。
2. 对流传质对流传质是指物质在流体中通过流体运动而被迫传输的现象。
在机械工程中,对流传质十分常见,例如通过向液体中注入小颗粒,均能够实现分布均匀的对流混合。