08-反常积分课件
- 格式:pptx
- 大小:235.33 KB
- 文档页数:32
第十一章 反常积分1 反常积分概念一、问题提出定积分 1) 积分区间的有穷性2) 被积函数的有界性如果函数(被积函数)的积分区间为无穷区间或被积函数在积分区间上无界,应如何讨论它们的积分,这类积分称为反常积分(或广义积分,Cauchy-Riemann 积分, C-R 积分), 而上一章的定积分称为正常积分.例 1 (第二宇宙速度) 例 2 (流水时间)二、两类反常积分的定义定义1 设函数f 定义在无穷区间[,)a +∞上, 且在任何有限区间[,]a u 上可积, 如果存在极限lim()uau f x dx J →+∞=⎰, 那么称极限J 为函数f 在[,)a +∞上的无穷限反常积分(无穷积分),记作()aJ f x dx +∞=⎰,并称()af x dx +∞⎰收敛, 有时也称f 在[,)a +∞上(Cauchy-Riemann )可积; 反之,若上述极限不存在, 则称()af x dx +∞⎰发散.注 1()af x dx +∞⎰收敛的几何意义:若f 在[,)a +∞上为非负连续函数,则介于曲线()y f x =,直线x a =及x 轴之间一块向右无限延伸的区域有面积J .注 2 类似可定义()lim()aauu f x dx f x dx -∞→-∞=⎰⎰()()()aaf x dx f x dx f x dx +∞+∞-∞-∞=+⎰⎰⎰lim()lim()uaauu u f x dx f x dx →+∞→-∞=+⎰⎰例 3 1) 讨论积分211dx x +∞+⎰,0211dx x -∞+⎰,211dx x +∞-∞+⎰的敛散性.2) 计算积分20125dx x x +∞++⎰.例4 讨论下列积分的敛散性.1) 11pdx x +∞⎰; 2) 21(ln )pdx x x +∞⎰.注3 设f 在[,)a +∞上连续,F 为f 的一个原函数,则()lim ()lim ()()()()uaau u f x dx f x dx F u F a F F a +∞→+∞→+∞==-=+∞-⎰⎰例 5 讨论sin axdx +∞⎰的敛散性注 4 ()f x dx +∞-∞⎰为两个非正常积分之和,而非lim()uuu f x dx -→+∞⎰.定义 2 设函数f 定义在区间(,]a b 上,在点a 的任一右邻域内无界, 但在任意内闭区间[,](,]b a b α⊂上有界且可积. 如果存在极限lim ()bu u af x dx J +→=⎰,那么称此极限为无界函数f 在(,]a b 上的反常积分,记作()baJ f x dx =⎰,并称反常积分()baf x dx ⎰收敛,如果上述极限不存在,则称反常积分()baf x dx ⎰发散.在上述定义中函数f 在点a 的附近无界, 我们称a 为f 的瑕点, 而无界函数的反常积分()ba f x dx ⎰也称为瑕积分.注 5 1) 类似可定义瑕点为b 的瑕积分()lim ()buaau bf x dx f x dx -→=⎰⎰其中f 在b 的任一左邻域内无界,且在任何内闭区间[,][,)a a b β⊂上可积.2) 若,a b 都为f 的瑕点,且在任一内闭子区间[,](,)u v a b ⊂上可积,此时可定义瑕积分()()()bc b aacf x dx f x dx f x dx =+⎰⎰⎰lim ()lim ()c vucu av bf x dx f x dx +-→→=+⎰⎰其中c 为(,)a b 内的任一实数,当且仅当右式两个瑕积分都收敛时,左式的瑕积分收敛.3) 若f 的瑕点(,)c a b ∈,则定义瑕积分()()()bc b aacf x dx f x dx f x dx =+⎰⎰⎰lim ()lim ()u bavu cv cf x dx f x dx +-→→=+⎰⎰其中f 在[,)(,]a c c b ⋃上有定义,在c 的任一邻域内无界, 且在任何闭子区间[,][,)a u a c ⊂, [,](,]v b c b ⊂都可积,当且仅当右边两个瑕积分收敛时, 左边的瑕积分收敛.例 6 1) 计算瑕积分1⎰2) 讨论瑕积分1pdxx ⎰的敛散性(p >0)3) 讨论瑕积分0p dxx+∞⎰的敛散性(p >0) 4) 24=⎰5) 1⎰三、两类反常积分的关系设()f x 连续,b 为瑕点,则11211()()t b xbab af x dx f b dt t t=-+∞-=-⎰⎰瑕积分可转化为无穷积分设0a >,1121()()t xaadtg x dx g t t =+∞=-⎰⎰12011()a g dt t t =⎰无穷积分可转化为瑕积分由此可见,瑕积分与无穷积分可相互转化,因而它们有平行的理论和性质. 例 7 讨论下列反常积分是否收敛 1) 2x xe dx +∞--∞⎰2) cos x e xdx +∞--∞⎰3) 2⎰4) 1(1)(ln )pdxp x x >⎰5) 1⎰例 8 举例说明瑕积分()b af x dx ⎰收敛,2()baf x dx ⎰未必收敛.例 9 1) 证明:若()af x dx +∞⎰收敛,且lim ()x f x A →+∞=,则0A =;2) 举例说明: ()af x dx +∞⎰收敛,f 在[,)a +∞上连续,未必有lim ()0x f x →+∞=成立.例 10 若f 在[,)a +∞上可导,且()af x dx +∞⎰与()af x dx +∞'⎰收敛,则lim ()0x f x →+∞=.2 无穷积分的性质与收敛判别一、 无穷积分性质由()af x dx +∞⎰收敛lim ()lim()duau u F u f x dx →+∞→+∞⇔=⎰存在, 根据函数极限收敛的Cauchy 准则,我们有定理 1 (Cauchy 准则) 无穷积分()af x dx +∞⎰收敛⇔120,,,:G a u u G ε∀>∃≥∀>1221()()()u u u aau f x dx f x dx f x dx ε-=<⎰⎰⎰.性质1 (线性性质) 若1()af x dx +∞⎰和2()af x dx +∞⎰都收敛, 12,k k 为任意常数, 则1122[()()]ak f x k f x dx +∞+⎰也收敛,且11221122[()()]()()aaak f x k f x dx k f x dx k f x dx +∞+∞+∞+=+⎰⎰⎰.性质2 (区间可加性) 若f 在任何有限区间[,]a u 上可积,b a >,则()af x dx +∞⎰与()bf x dx +∞⎰同敛散,且()()()b aabf x dx f x dx f x dx +∞+∞=+⎰⎰⎰.定理2 无穷积分()af x dx +∞⎰收敛0,,:()uG a u G f x dx εε+∞⇔∀>∃≥><⎰当.性质 3 (绝对收敛) 若f 在任何有限区间[,]a u 上可积,且()af x dx +∞⎰收敛,则()af x dx +∞⎰也收敛,且()()aaf x dx f x dx +∞+∞≤⎰⎰.定义1 若()af x dx +∞⎰收敛, 则称()af x dx +∞⎰绝对收敛.性质3 说明绝对收敛的无穷积分其本身一定收敛,而反之未必成立. 我们称收敛而不绝对收敛的无穷积分为条件收敛的无穷积分.性质4 (换元) 设:[,)[,)a ϕα+∞→+∞是光滑严格单调映射,且()a ϕα=,lim ()t t ϕ→+∞=+∞. 若()af x dx +∞⎰收敛,则(())()f t t dt αϕϕ+∞'⎰收敛,且()(())()af x dx f t t dt αϕϕ+∞+∞'=⎰⎰.性质5 (分部积分) 设,f g 为[,)a +∞上的光滑函数, 且lim ()()x f x g x →+∞⋅存在, 则()()af xg x dx +∞'⋅⎰与()()af xg x dx +∞'⎰同敛散,且它们收敛时有等式()()()()()()aaaf xg x dx f x g x f x g x dx +∞+∞+∞''⋅=⋅-⋅⎰⎰其中()()lim ()()()()ax f x g x f x g x f a g a +∞→+∞⋅=-.二、 无穷积分判别法1、比较判别法 (绝对收敛判别法)定理 3 (比较法则) 设定义在[,)a +∞上的两个函数f 和g 在任何有限区间[,]a u 上可积,且()()f x g x ≤,[,)x a ∈+∞. 则i) 当()ag x dx +∞⎰收敛时, 必有()af x dx +∞⎰收敛;ii) 当()af x dx +∞⎰发散时, 必有()ag x dx +∞⎰发散.例 1 判断积分22sin(1)5x dx x+∞++⎰的敛散性.1) Cauchy 判别法推论1 设f 定义在[,)(0)a a +∞>上,且在任何有限区间[,]a u 上可积,则有i) 当1(),[,)1p f x x a p x≤∈+∞>且时,()a f x dx +∞⎰收敛. ii) 当1(),[,)1p f x x a p x≥∈+∞≤且时,()a f x dx +∞⎰发散.2) 比较原则的极限形式推论 2 设f 和g 都在任何区间[,]a u 上可积, ()0g x >, 且()lim ()x f x c g x →+∞=. i) 当0c <<+∞时,()af x dx +∞⎰与()ag x dx +∞⎰同敛散;ii) 当0c =时,若()ag x dx +∞⎰收敛,则()af x dx +∞⎰收敛;iii) 当c =+∞时,若()ag x dx +∞⎰发散,则()af x dx +∞⎰发散.推论 3 设f 定义在[,)(0)a a +∞>上,且在任何有限区间[,]a u 上可积,且lim ()p x x f x λ→+∞=,则有i) 当1p >,0λ≤<+∞时,()af x dx +∞⎰收敛; ii) 当1p ≤,0λ<≤+∞时,()af x dx +∞⎰发散.例 2 讨论下列无穷积分的敛散性:1) 1x x e dx α-⎰2)21+∞⎰2、 Dirichlet 和Abel 判别法定理4 (Dirichlet ) 若()()ua F u f x dx =⎰在[,)a +∞上有界, ()g x 在[,)a +∞上x →+∞时单调趋于0, 则()()a f x g x dx +∞⋅⎰收敛.定理5 (Abel ) 若()af x dx +∞⎰收敛, ()g x 在[,)a +∞上单调有界, 则()()af xg x dx +∞⋅⎰收敛.定理6 (Dirichlet- Abel ) 设无穷积分()()()aaf x dx u x dv x +∞+∞=⎰⎰, 其中()u x单调, 且(),()u x v x 中一个有界, 另一个在x →+∞时趋于0, 则()af x dx +∞⎰收敛.例 3 讨论无穷积分1sin p xdx x +∞⎰与1cos (0)px dx p x +∞>⎰的敛散性.例 4 证明下列积分条件收敛.1) 21sin x dx +∞⎰,21cos x dx +∞⎰;2) 41sin x x dx +∞⋅⎰;3)1+∞⎰. 例 5 若()af x dx +∞⎰绝对收敛. 且lim ()0x f x →+∞=,则2()af x dx +∞⎰必收敛.例6 设,,f g h 为[,)a +∞上三个连续函数,且()()()h x f x g x ≤≤. 证明:如果()ah x dx +∞⎰,()ag x dx +∞⎰收敛,那么()af x dx +∞⎰亦收敛.例 7 证明: 若f 在[,)a +∞上一致连续,且()af x dx +∞⎰收敛,则lim ()0x f x →+∞=.例 8 讨论下列无穷积分的敛散性1) 1ln n xdx x+∞⎰2) 31arctan 1x xdx x +∞+⎰3)21x edx +∞-⎰4) 1ln(1)px dx x +∞+⎰5) 0ln(1)px dx p x+∞+ (>0)⎰6) 0xdx ⎰7)21cos x e xdx +∞-⎰8) 0sin arctan xxdx x+∞⎰例9 证明:若f 是[,)a +∞上的单调函数,()af x dx +∞⎰收敛,则lim ()0x f x →+∞=, 且1()()f x o x x= , →+∞.注: 由()lim 1()x f x g x →+∞=, ()ag x dx +∞⎰收敛, 推不出()af x dx +∞⎰收敛.3 瑕积分的性质与判别法一、 瑕积分的性质 (瑕点为x a =)定理1 瑕积分()ba f x dx ⎰收敛0,0,εδ⇔∀>∃>当12,(,)u u a a δ∈+时,2121()()()bbu u u u f x dx f x dx f x dx ε-=<⎰⎰⎰.性质1 设函数1f , 2f 的瑕点同为a ,1k ,2k 为常数,则当瑕积分1()baf x dx ⎰,2()baf x dx ⎰都收敛时,瑕积分1122[()()]bak f x k f x dx +⎰必收敛,且11221122[()()]()()bb baaak f x k f x dx k f x dx k f x dx +=+⎰⎰⎰.性质2 设函数f 的瑕点为x a =,(,)c a b ∈, 则瑕积分()baf x dx ⎰与()caf x dx ⎰同敛散且()()()b c b aacf x dx f x dx f x dx =+⎰⎰⎰, 其中()bcf x dx ⎰为定积分.性质3 若f 的瑕点为a , f 在(,]a b 的任一闭子区间[,]u b 上可积, 则当()baf x dx ⎰收敛时,()baf x dx ⎰必收敛且()()bbaaf x dx f x dx ≤⎰⎰.当()baf x dx ⎰收敛时,称()baf x dx ⎰为绝对收敛; 而称本身收敛但不绝对收敛的瑕积分为条件收敛的瑕积分.二、瑕积分判别法定理2 (比较原则) 定义在(,]a b 上的两个函数,f g , 瑕点同为a , 在任闭子区间[,](,]u b a b ⊂上可积,且()()(,]f x g x x a b ≤ ∈,则i) 当()bag x dx ⎰收敛时,()baf x dx ⎰必收敛 (从而()baf x dx ⎰也收敛) ;ii) 当()baf x dx ⎰发散时,()bag x dx ⎰发散.推论1 设f 定义在(,]a b 上,瑕点为a ,且在任何闭子区间[,](,]u b a b ⊂上可积,则 i) 当1()01()pf x p x a ≤, <<-时, ()baf x dx ⎰收敛;ii) 当1()1()pf x p x a ≥, ≥-时, ()baf x dx ⎰发散.推论2 若()0g x >,且()lim ()x af x cg x +→=, 则 i) 当0c <<+∞时,()b af x dx ⎰与()bag x dx ⎰同敛散;ii) 当0c =,()b ag x dx ⎰收敛时,()baf x dx ⎰收敛;iii) 当c =+∞,()b ag x dx ⎰发散时, ()b af x dx ⎰发散.推论3 在推论2的条件下,若lim()()p x ax a f x λ+→-=, 则 i) 01,0p λ<<≤<+∞时, ()baf x dx ⎰收敛;ii) 1,0p λ≥<≤+∞时, ()baf x dx ⎰发散.定理 3 (Dirichlet- Abel ) 设瑕积分()()()b baaf x dx u x dv x =⎰⎰有唯一奇点a ,其中()u x 单调, 且(),()u x v x 中一个有界, 另一个在x a +→时趋于0, 则()baf x dx ⎰收敛.例 1 讨论下列瑕积分的敛散性.1) 10⎰2) 21ln dx x⎰3) 130arctan 1xdx x -⎰4) 201cos mxdx xπ-⎰5) 1⎰6) 10⎰7) 20(,0)sin cos p q dxp q x xπ>⎰例 2 讨论反常积分1()1x x dx xα-+∞Φ=+⎰的敛散性.例 3 证明瑕积分20ln(sin )J x dx π=⎰收敛,且ln 22J π=-,同时利用上述结果证明:1) 2ln(sin )ln 22d ππθθθ=-⎰2) 0sin 2ln 21cos d πθθθπθ=-⎰三、反常积分与正常积分的区别1、 Riemann 积分 f 在[,]a b 上可积,则f 在[,]a b 上有界. 无穷积分 f 在[,)a +∞上可积(()af x dx +∞⎰收敛) f ⇒在[,)a +∞上有界.如4()sin f x x x =⋅ 或者 ,()0,n x nf x x n =⎧=⎨≠⎩.2、Riemann 积分 f 在[,]a b 上可积⇒()f x 在[,]a b 上可积,但反之未必, 故Riemann 积分是绝对型积分,而无穷积分 ()f x 在[,)a +∞上可积⇒f 在[,)a +∞上可积,但反之未必, 故Cauchy-Reimann 积分是非绝对型积分, 如sin (),[1,)xf x x x=∈+∞.3、Riemann 积分 ,f g 在[,]a b 上可积⇒f g ⋅在[,]a b 上可积, 而无穷积分 ,f g 在[,)a +∞上可积⇒f g ⋅在[,)a +∞上可积.例4 证明:1) 11111p p x x dx dx x x --+∞=++⎰⎰2) 12π<<⎰3) 设f 在[,)a +∞上连续0a b <<,若lim ()x f x k →+∞=,则()()((0))ln f ax f bx adx f k x b+∞-=-⎰例5 证明: 1) 设f 在[,)a +∞上非负连续, 若0()xf x dx +∞⎰收敛, 则0()f x dx +∞⎰也收敛.2) 设f 在[,)a +∞上连续可微且当x →+∞时,()f x 递减趋于0, 则()f x dx +∞⎰收敛⇔0()xf x dx +∞'⎰收敛.习 题 课例 1 论述题:1) 设f 在(,)-∞+∞上连续,且()f x dx +∞-∞⎰收敛,则()(),()()x x d d f t dt f x f t dt f x dx dx +∞-∞==-⎰⎰. 2) 积分0()f x dx +∞⎰收敛,则lim ()0x f x →+∞=.3) 积分()baf x dx ⎰收敛,则此积分可用和式公式01lim ()ni i T i f x ξ→=∑来计算.4) 若lim ()x f x A →+∞=存在,()af x dx +∞⎰收敛,则0A =.5) 若0()f x dx +∞⎰收敛,lim ()0x f x →+∞=,则2()af x dx +∞⎰必收敛.6) 若()af x dx A +∞=⎰,则lim()nan f x dx A →+∞=⎰,但反之不成立.7) 若()af x dx +∞⎰收敛,g 有界, 则()()af xg x dx +∞⎰收敛.8) 若lim ()AAA f x dx -→+∞⎰存在,则()f x dx +∞-∞⎰收敛.例 2 计算下列无穷积分: 1) 0()x n n I e x dx n N +∞-=∈⎰2) 21dxx x+∞++⎰3) (1)(ln )padxa x x +∞>⎰4) 24011x dx x +∞++⎰5) 31⎰6)1+∞⎰例 3 1) 设1()(2)x x x x ϕ+=-,求321()1()x dx x ϕϕ'+⎰;2) 已知01()cos x x dt tϕ=⎰,求(0)ϕ'.例 4 证明: 0cos 1xdx x+∞+⎰收敛, 且0cos 11xdx x+∞≤+⎰.例 5 讨论下列积分收敛性 1)2301dx x x x +∞+++⎰2)0cos (0)kx e xdx k +∞->⎰3)0ln(1)m x dx x +∞+⎰4)1+∞⎰5)20sin mx dx x +∞⎰6) 01m n x dx x +∞+⎰ 7) 10p x x e dx +∞--⎰ 8) 0cos (0)1n ax dx n x+∞≥+⎰。
第十一章反常积分教学要点:反常积分收敛和发散的概念及敛散性判别法。
教学内容:§1 反常积分的概念(4学时)反常积分的引入,两类反常积分的定义反常积分的计算。
§2 无穷积分的性质与收敛判别(4学时)无穷积分的性质,非负函数反常积分的比较判别法,Cauchy判别法,反常积分的Dirichlet判别法与Abel判别法。
§3 瑕积分的性质与收敛判别瑕积分的性质,绝对收敛,条件收敛,比较法则。
教学要求:掌握反常积分敛散性的定义,奇点,掌握一些重要的反常积分收敛和发散的例子,理解并掌握绝对收敛和条件收敛的概念,并能用反常积分的Cauchy收敛原理、非负函数反常积分的比较判别法、Cauchy判别法,以及一般函数反常积分的Abel、Dirichlet判别法判别基本的反常积分。
1.反常积分的收敛性及其收敛性的判别法是本章的重点.2.两类反常积分的性质及其收敛性判别法有很多相似之处,应引导学生加以类比。
§1 反常积分概念教学目标:掌握反常积分的定义与计算方法.教学内容:无穷积分;瑕积分.教学建议:讲清反常积分是变限积分的极限. 教学过程: 一、 问题的提出1、为什么要推广Riemann 积分定积分()ba f x dx ⎰有两个明显的缺陷:其一,积分区间[a,b]必须是有限区间;其二,若[,]f R a b ∈,则0M ∃>,使得对于任意的[,]x a b ∈,|()|f x M ≤(即有界是可积的必要条件)。
这两个缺陷限制了定积分的应用,因为在许多实际问题和理论问题中涉及到积分区间是无穷区间或被积函数出现无界的情形。
例1(第二宇宙速度问题)、在地球表面初值发射火箭,要是 火箭克服地球引力,无限远离地球,问初速度至少多大?解: 设地球半径为,火箭质量为,地面重力加速度为,有万有引力定理,在距地心处火箭受到的引理为于是火箭上升到距地心处需要做到功为当时,其极限就是火箭无限远离地球需要作的功在由能量守恒定律,可求得处速度至少应使例2、 从盛满水开始打开小孔,问需多长时间才能把桶里水全部放完?解: 由物理学知识知道,(在不计摩擦情况下),桶里水位高度为时,水从小孔里流出的速度为设在很短一段时间内,桶里水面降低的高度为,则有下面关系:由此得所以流完一桶水所需的时间应为但是,被积函数在上是无界函数,,所一我们取相对于以前学习的定积分(正常积分),我们把这里的积分叫做反常积分。