第五章贝塞尔函数ppt课件
- 格式:ppt
- 大小:719.00 KB
- 文档页数:45
第五章 Bessel 函数5.2 基础训练5.2.1例题分析例1 试用平面极坐标系把二维波动方程分离变量:2()0tt xx yy u a u u -+=(1)解 先把时间变量t 分离出来,令)(),(),,(t T U t u ϕρϕρ=,代入方程(1)22(,)''()(,)()0U T t a U T t ρϕρϕ-∇=两边同乘以21a UT并移项得 22''T Ua T U∇=上式左边仅是t 的函数;右边是ρ,t 的函数。
若要使等式成立,两边应为同一个常数,记为2k -,则有22''0T a k T +=(2)220U k U ∇+=(3)(3)式为二维亥姆霍兹方程,它在平面极坐标系下的表达式为:22110U U U k U ρρρϕϕρρ+++=进一步分离变量,令(,)()()U R ρϕρϕ=Φ,代入上式得2211'''''0R R R k R ρρΦ+Φ+Φ+Φ=两边同乘以2R ρΦ,并整理得222'''''R R k RRρρρΦ=+=-Φ同上讨论,等式两边应为同一常数,记为2m ,则有2''0m Φ+Φ=(4)2222'''()0R R k m R ρρρ++-=(5)对(5)式作代数变换x k ρ=后变为贝塞尔方程222'''()0x R xR x m R ++-=(6)其通解是()()()m m R AJ k BY k ρρρ=+ 其中,,m m A B J Y 为任意常数和为第一类和第二类Bessel 函数。
由周期条件,方程(4)的解为()c o s s i n 0,1,2m m m A mB m mϕϕΦ=+= 由波动问题及解在0ρ→有限的条件,方程(2)的解为cos sin n n n n n T C k at D k at =+例2 用()J x ν的级数表达式证明:(1) x x x J cos 2)(21π=-; (2) x x d x J sin cos )cos (200=⎰πθθθ证明:(1) 因为20(1)()()!(1)2k k v v k xJ x k k v ∞+=-=Γ++∑, 所以12221002220(1)()())122!(1)2k k kk k k kk k x x J x k k ∞∞--==∞∞==-==Γ-+==∑2k k k x ∞∞=====(2)2212202000(1)(cos )cos ()cos (!)2k kk k x J x d d k ππθθθθθ∞+=-=∑⎰⎰222200(1)(2)!!(1)2!sin ()()(!)2(21)!!(!)2(21)!!k k k k k k k x k x k xk k k k x ∞∞==--===++∑∑ 例3 利用Bessel 函数的递推公式: (1) 将)(3x J 用)(0x J 及)(1x J 表出;(2) 证明 )]()(2)([41)(''2''''2''x J x J x J x J n n n n +-+-=.(3) 证明 )]()([2)]([21212x J x J v xx J dx d v v v +--=.(4) 证明 )]()([)]()([212010x J x J x x J x xJ dxd -=.(5) 证明 ⎰+-=C x x xJ x x xJ xdx x J cos )(sin )(sin )(100. (1) 解 由 )()(2)(11x J xx mJ x J m m m -+-=得 )()(2)(012x J xx J x J -=021********()4()4()84()()8()(1)()()J x J x J x J x J x J x J x J x x x x x x=-=--=-- (2) 证明:由'111()[()()]2m m m J x J x J x -+=-得''''1122221()[()()]21111{[()()][()()]}[()2()()]2224m m m m m m m m m m J x J x J x J x J x J x J x J x J x J x -+-+-+=-=---=-+ (3) 证明: 由11()[()()2v v v x J x J x J x v +-=+,'111()[()()]2m m m J x J x J x -+=-得 '22112()()[()()]2v v v v xJ x J x J x J x v-+=-即22211[()][()()]2v v v d xJ x J x J x d v-+=- (4) 证明:用贝塞尔函数的递推公式,得:01011011002201()()[()()]()()()()()()[()()]dJ x dJ x dxJ x J x xJ x xJ x d dx dxJ x xJ x J x xJ x x J x J x =+=-+=-(5) 证明:用贝塞尔函数的递推公式,得:001001001001()sin ()sin [()cos ()sin ]()sin ()cos ()cos ()sin ()cos [()cos ()cos ]()sin ()cos Jx xdx xJ x x x J x x J x x dxxJ x x xJ x xdx xJ x d xxJ x x xJ x xdx xJ x x xJ x xdx xJ x x xJ x x C=--=--=---=-+⎰⎰⎰⎰⎰⎰例4 计算⎰dx ax J x )(03。
第五章-贝塞尔函数n阶第一类贝塞尔函数()J xn第二类贝塞尔函数,或称Neumann函数()Y xn第三类贝塞尔函数汉克尔(Hankel)函数,(1)()H xn第一类变形的贝塞尔函数()I xn开尔文函数(或称汤姆孙函数)n阶第一类开尔文(Kelvin)第五章贝塞尔函数在第二章中,用分离变量法求解了一些定解问题。
从§2.3可以看出,当我们采用极坐标系后,经过分离变量就会出现变系数的线性常微分方程。
在那里,由于只考虑圆盘在稳恒状态下的温度分布,所以得到了欧拉方程。
如果不是考虑稳恒状态而是考虑瞬时状态,就会得到一种特殊类型的常微分方程。
本章将通过在柱坐标系中对定解问题进行分离变量,引出在§2.6中曾经指出过的贝塞尔方程,并讨论这个方程解的一些性质。
下面将看到,在一般情况下,贝塞尔方程的解不能用初等函数表出,从而就导入一类特殊函数,称为贝塞尔函数。
贝塞尔函数具有一系列性质,在求解数学物理问题时主要是引用正交完备性。
§5.1 贝塞尔方程的引出下面以圆盘的瞬时温度分布为例推导出贝塞尔方程。
设有半径为R 的薄圆盘,其侧面绝缘,若圆盘边界上的温度恒保持为零摄氏度,且初始温度为已知,求圆盘内瞬时温度分布规律。
这个问题可以归结为求解下述定解问题:222222222222220(),,0, (5.1)(,),, (5.2)0, t x y R u u u a x y R t t x y u x y x y R u ϕ=+=∂∂∂=++<>∂∂∂=+≤= (5.3)⎧⎪⎪⎪⎨⎪⎪⎪⎩用分离变量法解这个问题,先令(,,)(,)()u x y t V x y T t =代入方程(5.1)得22222()V VVT a T x y∂∂'=+∂∂或22222 (0)V V T x y a T Vλλ∂∂+'∂∂==-> 由此得到下面关于函数()T t 和(,)V x y 的方程20T a T λ'+=(5.4)22220V VV x y λ∂∂++=∂∂ (5.5)从(5.4)得2()a t T t Ae λ-=方程(5.5)称为亥姆霍兹(Helmholtz )方程。