柴油机工作过程燃烧过程
- 格式:ppt
- 大小:1.45 MB
- 文档页数:23
柴油机的物理知识点总结一、柴油机的工作原理柴油机的工作原理主要包括四个基本过程:进气、压缩、燃烧和排气。
这些过程也称为柴油机的四冲程,分别对应柴油机的一次循环。
下面我们来逐一介绍这四个过程。
1. 进气:首先是进气过程。
柴油机进气门打开,活塞向下运动,气缸内的压力降低,空气被吸入气缸内。
这时燃油喷射器喷射一定量的柴油,与进入气缸内的空气混合。
2. 压缩:接着是压缩过程。
活塞向上运动,将混合气体压缩至高压。
在高压下,混合气体的温度也会升高,使混合气体更容易燃烧。
3. 燃烧:压缩结束后,喷油嘴向气缸内喷射高压柴油,柴油遇到高温高压气体瞬间着火,产生爆炸。
爆炸产生的高压气体推动活塞向下运动,驱动曲轴旋转,从而传递动力。
4. 排气:最后是排气过程。
气缸内的废气通过排气门排出,为下一个循环的进气过程做准备。
以上四个过程构成了柴油机的一个完整工作循环,也称为柴油机的四冲程。
二、柴油机的原理结构柴油机包括外部部分和内部部分。
外部部分包括机壳、缸盖、气门、进气管、排气管等,主要起到保护和连接的作用。
内部部分主要包括曲轴、连杆、活塞、气缸、燃油喷射器等。
以下我们逐一介绍柴油机的主要部件。
1. 气缸:气缸是柴油机中存放燃气的空间,根据气缸数量不同,柴油机可以分为单缸、多缸等类型。
气缸通常由高强度金属材料制成,具有耐高温、耐磨损的特点。
2. 活塞:活塞是气缸内的活动部件,负责压缩混合气体和转换爆炸能量。
活塞通常由铝合金或铸铁制成,具有良好的导热性能和耐磨损性能。
3. 曲轴:曲轴是柴油机的主要旋转部件,是由几节连杆构成的转轴。
曲轴可将活塞的上下往复运动转换为旋转运动,驱动柴油机的输出轴。
4. 连杆:连杆连接活塞和曲轴,起到传递动力的作用。
连杆承受着来自活塞的冲击力和扭矩,需要具有足够的强度和刚度。
5. 燃油喷射器:燃油喷射器是柴油机的关键部件,负责在适当的时机将高压柴油喷射到气缸内与空气混合。
燃油喷射器的喷油量和喷油时间由电控系统控制,从而控制燃烧的时机和效果。
柴油机的燃烧过程
COMBUSTION IN DIESEL ENGINE
1 滞燃期(AB 段)
从燃料喷入气缸到压力线脱离压缩压力线开始急剧升高这一段燃前准备时间。
◆ 滞燃期过长,压力升高率和最高燃烧压力高,柴油机工作粗暴。
◆ 滞燃期过短,扩散燃烧增加,易恶化柴油机性能和颗粒排放。
2 急燃期 BC 段
柴油机的预混燃烧期
在上止点附近快速进行,压力升高率大。
形成第一峰放热。
平均压力升高率不宜超过0.6 MPa/︒CA
3 缓燃期 CD 段
柴油机的扩散燃烧期
◆ 缸内温度和压力高,扩散燃烧速度快。
◆ 气缸工作容积不断增加,缸压变化缓。
◆ 缓燃期对应于放热规律曲线的第二峰。
4 后燃期 DE 段
少量柴油的后续燃烧
◆ 过浓混合气未燃烧的燃料、尾喷燃料、碳烟等的燃烧。
膨胀行程的中后期,膨胀比低,做功能力小。
◆ 增加排温和向冷却水的散热损失,使发动机的热负荷增加,经济性下降。
柴油机燃烧缸内p -Φ图 )
()(B C B C p p p ϕϕϕ--=∆∆
滞燃期速燃期缓燃期后燃期
柴油机燃烧放热规律图。
第六章柴油机的着火过程第一节燃烧化学反应动力学的基础理论一.分子运动和碰撞柴油机的着火过程是复杂的物理化学过程,化学过程是激烈的热——链化学反应,要进行化学反应,必须经过它们分子之间的相互碰撞,并且符合碰撞要求才可实现。
燃烧化学反应中分子运动和碰撞的基本理论归纳如下:A.参加化学反应的物质,分子必须相互碰撞。
B.分子的碰撞是杂乱无章的。
C.合适的方向上碰撞才有可能起化学作用。
D.运动能量超过最低能量。
E.最低能量称为活化能。
F.温度越高,化学反应速度越大。
G.压力与密度越大,碰撞频率越高,反应速度加快。
二.活化络合物理论活化络合物理论(过渡态理论)的基本内容是:进行化学反应时候,分子不仅需要相互撞击,还需要适当能量,在适当的方位上撞击,以便获得形成一个不稳定,过度的,瞬态活化络合物。
活化能E就是把初态反应物提高到络合物所需能量。
反应关系表达为:反应物——活化络合物——终产物三.键能及其在化学反应中的作用。
物质内部相邻原子间或离子间产生的相互结合或相互作用的称为化学键。
可分为离子键,共价键,和金属键等几种类型。
正负离子通过静电引力形成的化学键为离子键。
物质内部相邻原子或者原子团通过共用电子对形成的称为共价键。
由自由电子及排列成晶格状的金属离子之间的静电吸引力组合而成金属键。
物质起化学变化时,需要从外界吸收能量,达到破坏原子间或者离子间所必须吸收的能量,这种能量称为键能。
第二节着火前燃料的物理——化学过程(焰前反应)一。
着火的分类和含义按照火源性质,分为压缩自然和外源点火。
按化学反应性质分为热式着火,链式着火,和热—链式着火。
链式着火通过支链反应而自身积累活性中心并积聚能量。
按着火阶段分,有高温单阶段着火和中低温多阶段着火。
多阶段着火指历经冷焰,蓝焰到热焰的几个阶段着火。
二.着火前的物理过程必须先将反应物质(空气和烃类)能互相充分气相混合,并相互撞击,同时,需要一定的初始能量。
这就需要有进气过程,喷射过程,喷注的破碎和雾化过程,以至形成可燃混合气,并达到足够温度和压力的过程。
6b燃机柴发工作过程6B燃机柴发工作过程燃机柴发是一种常见的动力装置,广泛应用于船舶、发电厂等领域。
下面将以人类视角,生动地描述6B燃机柴发的工作过程。
一、引言6B燃机柴发是一种高效能的燃烧设备,通过燃烧柴油来产生机械能。
它由多个部件组成,如燃烧室、喷油器、发动机控制系统等,每个部件都扮演着重要角色。
二、点火当操作员启动6B燃机柴发时,首先进行点火操作。
点火器会向燃烧室喷洒细小的柴油颗粒,并通过电火花点燃。
这个过程需要一个精确的时间点和适当的燃油量。
三、燃烧一旦点火完成,柴油开始燃烧。
燃烧过程中,燃烧室内的空气与喷入的柴油混合,形成可燃气体。
这些可燃气体在高温的作用下膨胀,推动活塞向下运动。
四、动力输出活塞的向下运动产生机械能,通过连杆传递给曲轴。
曲轴将这种线性运动转化为旋转运动,从而驱动发电机或其他设备。
五、排放处理在燃烧过程中,除了产生机械能外,还会产生废气。
这些废气含有一些有害物质,需要通过排气系统进行处理,以减少对环境的影响。
常见的处理方法包括催化转化器和颗粒捕集器。
六、发动机控制为了确保6B燃机柴发的正常运行,需要有一个发动机控制系统。
这个系统监测并调整燃油供给、点火时间等参数,以保持发动机的稳定性和高效性。
七、维护保养6B燃机柴发的正常运行需要定期的维护保养。
这包括更换燃油滤清器、清洁冷却系统、检查和更换磨损的零部件等。
维护保养的目的是延长设备的使用寿命,并确保其高效可靠地工作。
八、结论通过以上描述,我们可以清晰地了解6B燃机柴发的工作过程。
从点火到燃烧,再到动力输出,每个步骤都扮演着重要的角色。
合理的控制系统和维护保养是保证设备正常运行的关键。
6B燃机柴发的应用范围广泛,它的高效性和可靠性使其成为现代工业中不可或缺的一部分。
柴油火车头的工作原理柴油机的工作原理与汽油机类似,都是内燃机的一种。
柴油机的主要工作过程包括进气、压缩、燃烧和排气四个过程。
进气过程:柴油机通过进气门吸入空气,空气经过滤清除杂质后进入缸体。
压缩过程:柴油机的活塞在运动过程中,将进入缸体的空气压缩至较高的压力和温度。
燃烧过程:当活塞接近顶死点时,喷油器向气缸内喷射燃油,燃油与高温高压的压缩空气混合,发生自燃燃烧。
燃烧产生的高温高压气体推动活塞向下运动。
排气过程:活塞下行推出废气,同时打开排气门将燃烧产物排出缸体。
柴油机的燃烧过程是按照一定的时间先后顺序依次在各个缸内进行的,可以实现连续的工作。
柴油机的工作节奏由喷油系统和气门控制系统控制。
柴油机产生的旋转动力需要通过传动系统传递给驱动轴,进而将火车推动前进。
传动系统包括离合器、变速器和传动轴。
变速器可以根据运行状态和列车需要选择合适的档位和转向方式。
转向系统主要是通过转向齿轮通过链条或万向节来驱动轮轴进行转向。
转向系统能够实现火车头的转弯和转向,进而调整车轴与轨道之间的角度,使火车能够顺利行驶通过曲线轨道。
制动系统是为了保证列车行驶的安全性。
柴油火车头的制动系统主要包括气压制动和手动制动两种方式。
气压制动通过压缩空气驱动制动器夹紧车轮,提供制动效果。
手动制动则需要操作员手动控制刹车装置实现制动。
制动系统在列车减速和停车过程中发挥重要作用。
总结:柴油火车头工作原理是通过柴油机将燃料的化学能转化为机械能,然后通过传动系统将机械能传递给驱动轴,推动列车行驶。
同时,转向系统和制动系统的运行保证了列车的转向和安全性。
柴油火车头以其高效可靠的性能,在铁路运输中发挥着重要的作用。
柴油机做功原理柴油机是一种利用柴油燃烧产生高温高压气体,驱动活塞进行往复运动,从而做功的内燃机。
它以柴油为燃料,在高温高压条件下燃烧,将化学能转化为机械能,实现能量的转换。
柴油机的工作过程可以分为四个基本过程:进气、压缩、燃烧和排气。
进气过程。
柴油机通过进气门吸入新鲜空气,进入气缸内。
进气门打开时,活塞正在下行,汽缸内的压力低于大气压,空气通过进气道和进气门进入气缸。
进气门关闭后,活塞开始上升,气缸内的空气被压缩。
接下来是压缩过程。
当活塞上升时,气缸内的空气被压缩,使其体积减小,同时温度和压力升高。
柴油机的压缩比一般较高,一般为16:1到20:1,这意味着气缸内的空气被压缩到较小的体积,使其温度升高到燃烧柴油的点火温度。
然后是燃烧过程。
在压缩末期,柴油喷油器将柴油喷入气缸,并与高温高压空气混合。
由于柴油具有较高的点火温度,不需要使用火花塞点火,而是依靠高温高压气体的作用,使柴油自燃。
柴油的自燃会产生大量的热能,使气缸内的温度和压力迅速增加,产生高压高温的气体。
最后是排气过程。
燃烧后的废气通过排气门排出气缸。
排气门打开时,活塞正在下行,废气随着活塞的运动被排出气缸。
排气门关闭后,活塞开始上升,准备进入下一个工作循环。
柴油机的功率主要取决于燃烧过程的热能转化效率。
高效的燃烧能够使燃料充分燃烧,释放更多的热能,从而提高功率输出。
为了提高燃烧效率,柴油机采用了一系列的技术手段,如喷油系统、进气增压系统和冷却系统等。
喷油系统通过控制柴油的喷射时间、喷射量和喷射角度,使柴油能够充分燃烧。
进气增压系统可以增加气缸内的进气密度,提高燃烧效率。
冷却系统可以降低气缸的温度,减少热损失。
总结一下,柴油机以柴油为燃料,通过进气、压缩、燃烧和排气四个基本过程,将化学能转化为机械能。
它具有高效、可靠、经济的特点,在汽车、船舶、发电等领域得到广泛应用。
随着技术的不断进步,柴油机正朝着更高效、更环保的方向发展,为人们提供更加便捷和可靠的动力来源。
柴油发机电工作原理引言概述:柴油发机电是一种常见的发电设备,通过柴油机驱动发机电产生电能。
其工作原理是将燃料燃烧产生的热能转化为机械能,再由发机电将机械能转化为电能。
下面将详细介绍柴油发机电的工作原理。
一、燃料供给系统1.1 燃油箱:柴油发机电的燃料来源于燃油箱,燃油箱通常位于发机电机组的底部,用于存储柴油。
1.2 燃油泵:燃油泵负责将燃油从燃油箱输送到发动机的燃油喷射器中,保证燃油供给充足。
1.3 燃油喷射器:燃油喷射器将高压的燃油喷入发动机的燃烧室,与空气混合后进行燃烧。
二、柴油机工作原理2.1 进气过程:柴油机通过进气门吸入空气,空气经过滤清后进入气缸。
2.2 压缩过程:活塞向上运动,将空气压缩至高温高压状态,为燃油的点火提供条件。
2.3 燃烧过程:燃油喷射器喷入燃油,燃油在高温高压状态下瞬间燃烧,产生高温高压气体推动活塞向下运动。
三、发机电工作原理3.1 机械能转换:柴油机的活塞运动带动曲轴旋转,曲轴与发机电连接,将机械能传递给发机电。
3.2 磁场产生:发机电内部的转子旋转产生磁场,通过定子线圈感应电流。
3.3 电能输出:感应电流通过导线输出,形成交流电,经过整流器转换为直流电,供给外部电路使用。
四、冷却系统4.1 水冷系统:柴油发机电通常采用水冷系统进行散热,通过水循环带走发动机产生的热量。
4.2 散热器:散热器将冷却水循环并通过风扇散热,保持发动机在适宜的工作温度。
4.3 温度控制:发机电配备温度传感器,监测发动机温度并控制冷却系统的运行,保证发动机正常工作。
五、维护保养5.1 定期更换机油:柴油发机电需要定期更换机油,保持发动机内部润滑良好。
5.2 清洁空气滤清器:定期清洁或者更换空气滤清器,保证发动机进气通畅。
5.3 定期检查电路:定期检查发机电的电路连接是否良好,避免电路故障影响发电效率。
结论:柴油发机电的工作原理是一个复杂的系统工程,通过燃油供给、柴油机工作、发机电工作、冷却系统和维护保养等多个环节协同工作,最终实现电能的生产。
柴油机燃烧过程分哪几个阶段?各阶段有什么特点?一. 进气冲程第一冲程——进气,它的任务是使气缸内充满新鲜空气。
当进气冲程开始时,活塞位于上止点,气缸内的燃烧室中还留有一些废气。
当曲轴旋转肘,连杆使活塞由上止点向下止点移动,同时,利用与曲轴相联的传动机构使进气阀打开。
随着活塞的向下运动,气缸内活塞上面的容积逐渐增大:造成气缸内的空气压力低于进气管内的压力,因此外面空气就不断地充入气缸。
进气过程中气缸内气体压力随着气缸的容积变化的情况如动画所示。
图中纵坐标表示气体压力P,横坐标表示气缸容积Vh(或活塞的冲S),这个图形称为示功图。
图中的压力曲线表示柴油机工作时,气缸内气体压力的变化规律。
从土中我们可以看出进气开始,由于存在残余废气,所以稍高于大气压力P0。
在进气过程中由于空气通过进气管和进气阀时产生流动阻力,所以进气冲程的气体压力低于大气压力,其值为0.085~0.095MPa,在整个进气过程中,气缸内气体压力大致保持不变。
当活塞向下运动接近下止点时,冲进气缸的气流仍具有很高的速度,惯性很大,为了利用气流的惯性来提高充气量,进气阀在活塞过了下止点以后才关闭。
虽然此时活塞上行,但由于气流的惯性,气体仍能充人气缸。
二. 压缩冲程第二冲程——压缩。
压缩时活塞从下止点间上止点运动,这个冲程的功用有二,一是提高空气的温度,为燃料自行发火作准备:二是为气体膨胀作功创造条件。
当活塞上行,进气阀关闭以后,气缸内的空气受到压缩,随着容积的不断细小,空气的压力和温度也就不断升高,压缩终点的压力和湿度与空气的压缩程度有关,即与压缩比有关,一般压缩终点的压力和温度为:Pc=4~8MPa,Tc=750~950K。
柴油的自燃温度约为543—563K,压缩终点的温度要比柴油自燃的温度高很多,足以保证喷入气缸的燃油自行发火燃烧。
喷入气缸的柴油,并不是立即发火的,而且经过物理化学变化之后才发火,这段时间大约有0.001~0.005秒,称为发火延迟期。
船用柴油机的工作原理过程船用柴油机是一种常见的船舶动力装置,它通过燃烧柴油燃料产生的能量来驱动船舶进行推进。
下面将详细介绍船用柴油机的工作原理过程。
1. 进气过程:船用柴油机的进气过程是指空气从外部环境进入柴油机内部。
通常,柴油机采用自然进气方式,即通过活塞的下行运动使气缸内的气门打开,外部空气通过进气道进入气缸内。
2. 压缩过程:进气过程结束后,柴油机的活塞开始上升,将进入气缸内的空气压缩。
在压缩过程中,柴油机内部的压力和温度逐渐升高,使空气更加紧凑。
3. 燃烧过程:当活塞达到顶点位置时,柴油机的燃烧过程开始。
在这个阶段,柴油燃料通过喷油器喷入气缸内,同时喷油器将柴油雾化成微小的颗粒。
这些细小的柴油颗粒与高温高压的空气混合,形成可燃混合物。
然后,柴油机的火花塞产生火花,引燃混合物,从而产生爆炸,推动活塞向下运动。
4. 排气过程:在燃烧过程结束后,活塞再次上升,将燃烧产生的废气排出。
废气通过排气门进入排气管,最终排出柴油机。
5. 冷却过程:船用柴油机在工作过程中会产生大量的热量,为了保证柴油机的正常运行,需要进行冷却。
通常,柴油机采用水冷方式进行冷却,通过循环水冷却系统将热量带走,保持柴油机的温度在合适的范围内。
6. 润滑过程:船用柴油机的各个零部件在工作过程中会产生摩擦,为了减少摩擦损失和磨损,需要进行润滑。
柴油机通常采用油润滑方式,通过油泵将润滑油送至各个摩擦部位,形成一层润滑膜,减少零部件之间的接触,降低摩擦。
7. 动力输出:船用柴油机通过上述工作过程产生的能量将转化为机械动力输出,用于推动船舶的运行。
柴油机的动力输出通常通过曲轴传递给船舶的推进装置,如螺旋桨,从而产生推力,推动船舶前进。
总结:船用柴油机的工作原理过程包括进气、压缩、燃烧、排气、冷却、润滑和动力输出等环节。
通过这些过程,船用柴油机能够将柴油燃料的化学能转化为机械能,驱动船舶进行推进。
船用柴油机的工作原理过程是一个复杂而精密的系统,需要各个零部件的协同工作,确保柴油机的高效运行。
柴油机的工作原理和组成柴油机是一种内燃机,它以柴油作为燃料进行燃烧,通过将燃料喷射到高温高压环境中使其自燃,从而释放能量并驱动发动机运转。
下面将介绍柴油机的工作原理和组成。
一、工作原理:1. 进气:柴油机的进气系统主要由进气口、滤清器、增压器、中冷器等部件组成。
在工作过程中,活塞向下运动、气缸放大、减小气压使空气进入进气道,并经过滤清器进行过滤,然后通过增压器和中冷器增压并冷却,最终进入气缸。
2. 压缩:活塞向上运动时,气缸缩小,气体被压缩。
柴油机的压缩比较高,通常在16:1到22:1之间,使燃料充分混合,并提高燃烧温度和压力。
3. 燃烧:燃料喷射系统通过喷油器将柴油喷入预燃室或气缸内,高温高压使燃油雾化,并与空气充分混合。
然后,在活塞达到顶点时,喷油器将柴油高压喷射进入压缩气体中,在这个高温高压环境中,柴油受热自燃,形成高温高压的气体。
4. 排气:随着活塞向下运动,排气门打开,废气在气缸内排出,然后通过排气管排出柴油机。
二、组成部分:1. 气缸:柴油机通常有多个气缸,每个气缸内都有活塞运动。
气缸通常由铸铁或铝合金制成,具有耐高温、耐高压的特点。
2. 曲轴连杆机构:曲轴与连杆机构是柴油机的动力传递装置,将活塞的上下运动转化为转动运动。
曲轴由整体钢锻件制成,具有良好的强度和刚性。
连杆由曲轴与活塞之间的连接杆组成,起到传递力和转动的作用。
3. 润滑系统:柴油机的润滑系统主要包括油底壳、曲轴箱、曲轴、连杆、活塞、气缸等部分。
润滑系统通过提供润滑油,减少零部件之间的摩擦,降低磨损。
同时,还能冷却发动机,清除异物和有害残留物。
4. 燃油系统:柴油机的燃油系统主要由燃油箱、滤清器、燃油泵、喷油器等组成。
燃油泵将柴油从燃油箱中抽取,通过滤清器进行过滤,然后将燃油喷射到气缸中。
喷油器将燃油雾化和喷射时间控制在适当范围内,以实现高效燃烧。
5. 冷却系统:柴油机的冷却系统主要由水泵、水箱、散热器等组成。
冷却系统通过将冷却液循环引流,吸热并冷却发动机。
柴油机工作过程燃烧过程
柴油机是一种常见的内燃机,通过柴油的燃烧产生动力。
柴油机燃烧过程分为四个主要阶段:进气、压缩、燃烧和排气。
进气阶段:柴油机的进气阶段是通过曲轴箱上的气阀和排气阀来完成的。
气阀在进气冲程期间打开,让外部空气进入气缸。
这些空气将与后续注入的燃油混合以供燃烧使用。
压缩阶段:在压缩冲程期间,曲轴将活塞向上移动,压缩进入气缸的空气燃料混合物。
由于柴油机的高压缩比,气体被压缩得非常高。
这种高压缩能够提高燃烧的效率和功率输出。
燃烧阶段:柴油机的燃烧是通过喷射燃油来完成的。
在压缩冲程接近结束时,喷油器会喷射一定的燃油到气缸中。
燃油喷射进入高温高压的气缸内,会迅速蒸发形成可燃气体,并与气缸中的空气混合。
然后,放电器通过在燃烧室中产生的火花来点燃燃料混合物,引发燃烧。
这种燃烧产生的高温高压气体推动活塞向下运动,并驱动曲轴转动。
排气阶段:在曲轴的第二个转向点之后,排气阀会打开,将燃烧后的废气排出到大气中。
然后,气阀再次关闭,活塞向上移动,将剩余的废气推出排气口。
在柴油机的工作过程中,燃烧是最关键的部分。
与汽油机不同,柴油机的燃烧是通过压缩空气来引发的,而不是通过火花塞点燃混合物。
因为柴油的自燃温度较高,所以不需要点火来引燃燃料。
这使得柴油机具有更高的热效率和燃油经济性。
总结起来,柴油机的工作过程可以简述为:进气-压缩-燃烧-排气。
这四个阶段相互配合,形成了柴油机内部循环的运转。
通过控制燃油注入的时间和量,柴油机可以调节其功率和转速。