金属材料焊后热处理
- 格式:ppt
- 大小:815.00 KB
- 文档页数:29
金属材料热处理方法有几种?各有什么特点?金属材料热处理方法有退火、谇火及回火,渗碳、氮化及氰化等。
(1) 退火处理退火处理按工艺温度条件的不同,可分为完全退火、低温退火和正火处理。
①完全退火是把钢材加热到Ac3 (此时铁素体开始溶解到奥氏体中,指铁碳合金平衡图中Ac3,即临界温度)以上20〜30℃,保温一段时间后,随炉温缓冷到400〜500(,然后在空气中冷却。
完全退火适用于含碳量小于0.83%的铸造、锻造和焊接件。
目的是为了通过相变发生重结晶,使晶粒细化,减少或消除组织的不均匀性,适当降低硬度,改善切削加工性,提高材料的韧性和塑性,消除内应力。
② 低温退火是一种消除内应力的退火方法。
对钢材进行低温退火时.先以缓慢速度加热升温至500〜600匸,然后经充分的保温后缓慢降温冷却。
低温退火(消除内应力退火)主要适用于铸件和焊接件,是为了消除零件铸造和焊接过程中产生的内应力,以防止零件在使用工作中变形。
采用这种退火方法,钢材的结晶组织不发生变化。
③ 正火是退火处理中的一种变态,它与完全退火不同之处在于零件的冷却是在静止的空气中,而不是随炉缓慢降温冷却。
正火处理后的晶粒比完全退火更细,增加了材料的强度和韧性,减少内应力,改善低碳钢的切削性能。
正火处理主要适合那些无需调质和淬火处理的一般零件和不能进行淬火和调质处理的大型结构零件。
正火时钢的加热温度为753〜900°C。
(2) 淬火及回火处理淬火可分整体淬火和表面淬火,淬火后的钢一般都要进行回火。
回火是为了消除或降低淬火钢的残余应力,以使淬火后的钢内纟且织趋于稳定。
钢材淬火后为了得到不同的硬度,回火温度可采用几种温度段。
① 淬火后低温回火目的是为了降低钢中残余应力和脆性、而保持钢淬火后的高硬度和耐磨性,硬度在HRC58〜64范围内。
适合于各种工具、渗碳零件和滚动轴承。
回火温度为150〜250匸。
② 淬火后中温回火目的是为了保持钢材有一定的韧性、在此基础上提高其弹性和屈服极限。
焊后热处理(PWHT)和焊后消除应力热处理的区别内容来源网络,由深圳机械展收集整理!后热处理(PWHT)工艺是指焊接工作完成后,将焊件加热到一定的温度,保温一定的时间,使焊件缓慢冷却下来,以改善焊接接头的金相组织和性能或消除残余应力的一种焊接热处理工艺。
焊后热处理工艺一般包括加热、保温、冷却三个过程,这些过程相互衔接,不可间断。
广义的焊后热处理包括下列各类热处理:消除应力;完全退火;固溶强化热处理;正火;正火加回火;淬火加回火;回火;低温消除应力;析出热处理等;另外,在避免焊接区急速冷却或者是去氢的处理方法中,采取后热处理也是焊后热处理的一种。
焊后热处理可采取炉内热处理,整体炉外热处理或局部热处理的方法进行。
焊后热处理1、焊接残余应力是由于焊接引起焊件不均匀的温度分布,焊缝金属的热胀冷缩等原因造成的,所以伴随焊接施工必然会产生残余应力。
消除残余应力的最通用的方法是高温回火,即将焊件放在热处理炉内加热到一定温度和保温一定时间,利用材料在高温下屈服极限的降低,使内应力高的地方产生塑性流动,弹性变形逐渐减少,塑性变形逐渐增加而使应力降低。
焊后热处理对金属抗拉强度、蠕变极限的影响与热处理的温度和保温时间有关。
焊后热处理对焊缝金属冲击韧性的影响随钢种不同而不同。
2、热处理方法的选择焊后热处理一般选用单一高温回火或正火加高温回火处理。
对于气焊焊口采用正火加高温回火热处理。
这是因为气焊的焊缝及热影响区的晶粒粗大,需要细化晶粒,故采用正火处理。
然而单一的正火不能消除残余应力,故需再加高温回火以消除应力。
单一的中温回火只适用于工地拼装的大型普通低碳钢容器的组装焊接,其目的是为了达到部分消除残余应力和去氢。
绝大多数场合是选用单一的高温回火。
热处理的加热和冷却不宜过快,力求内外壁均匀。
3、焊后热处理的加热方法⑴感应加热。
钢材在交变磁场中产生感应电势,因涡流和磁滞的作用使钢材发热,即感应加热。
现在工程上多采用设备简单的工频感应加热。
焊后热处理标准焊接是金属加工中常见的工艺,通过焊接可以将两个或多个金属材料连接在一起。
但是,在焊接过程中,金属材料的性能和组织结构可能会发生改变,这就需要进行焊后热处理来恢复材料的性能和结构。
焊后热处理是指在焊接完成后对焊接部位进行加热或冷却处理,以改善焊接部位的性能和组织结构的过程。
首先,焊后热处理的标准主要包括温度、时间和冷却速率。
在进行焊后热处理时,需要根据不同的金属材料和焊接工艺选择合适的温度和时间进行处理。
通常情况下,焊后热处理的温度会根据材料的类型和焊接工艺的要求而有所不同,而时间则取决于焊接部位的厚度和需要改善的性能。
此外,冷却速率也是焊后热处理的重要参数,不同的冷却速率会对焊接部位的组织结构产生不同的影响。
其次,焊后热处理的方法主要包括退火、正火、淬火和固溶处理。
退火是指将焊接部位加热至一定温度后缓慢冷却,以消除焊接应力和改善材料的塑性和韧性。
正火是将焊接部位加热至一定温度后保持一段时间,然后进行适当冷却,以提高材料的硬度和强度。
淬火是将焊接部位加热至一定温度后迅速冷却,以使材料达到较高的硬度和强度。
固溶处理是将焊接部位加热至固溶温度后保持一段时间,然后进行适当冷却,以溶解和再结晶金属中的固溶体和过共饱和固体溶体。
最后,焊后热处理的效果主要体现在性能和组织结构上。
通过焊后热处理,可以消除焊接应力,提高材料的塑性、韧性、硬度和强度,改善材料的组织结构,减少焊接缺陷,提高焊接接头的质量和可靠性。
因此,焊后热处理在金属加工中具有重要的意义,对于提高焊接部位的性能和延长材料的使用寿命具有重要作用。
总之,焊后热处理是焊接工艺中不可或缺的一部分,通过合理的焊后热处理可以改善焊接部位的性能和组织结构,提高焊接接头的质量和可靠性。
因此,在进行焊接时,需要根据具体情况选择合适的焊后热处理标准和方法,以确保焊接部位达到预期的性能要求。
不锈钢是否需要焊后热处理焊后热处理的作用:通过焊后热处理可以解决焊接残余应力,软化淬硬区,改善组织,减少含氢量,从而降低焊接接头的延迟裂纹倾向。
问题案例:既然焊后热处理可以解决焊接残余应力,那是否所有的金属材料都需要焊后进行热处理?某石化公司高温高压渣油加氢装置TP347厚壁管道(ø427×50)焊后经RT射线检测未发现超标缺陷,但经过稳定化热处理后却发现大量裂纹。
以下介绍两个定义:焊接热裂纹与再热裂纹。
定义①焊接热裂纹分为两种,其一为凝固裂纹(或叫结晶裂纹),结晶裂纹是焊接熔池在次结晶晶界的开裂,一般发生在凝固线温度(T,)区间,结晶裂纹只出现在焊缝中,尤其易出现在弧坑中,此时也叫弧坑裂纹;其二为液化裂纹,液化裂纹是紧靠熔合线的近焊缝区过热段的母材晶界被局部重熔、出现晶间液膜分离,在收缩应力的作用下产生的裂纹,液化裂纹常出现在近焊缝区。
无论是晶界裂纹还是液化裂纹,都具有沿晶开裂的特点。
热裂纹的微观特征表现为:晶粒有明显的树枝状突出,晶间面圆滑,断口有明显的氧化。
热裂纹一般比较细小,它既可能出现在焊缝表面,也可能出现在焊缝金属内部。
347/H比321/H等更容易出现热裂纹的主要原因:铌是强烈的氮化物和碳化物形成元素,可明显提高钢的室温性能和高温性能。
铌还是一种细化晶粒的元素,含微量的铌(例如0.03%)就能显著细化钢材的晶粒,并提高钢的室温抗拉强度。
而高的强度对抗热裂反而不利。
铌与铁、碳等元素易形成低熔点共晶物,增加焊缝金属的热裂纹倾向,工程上,347/H不锈钢中的Nb/C应不小于10,但铌含量不宜超过1%。
定义②再热裂纹是指焊后对焊接接头再次加热时所产生的开裂现象。
再热裂纹常发生在靠近再结晶温度的温度区间,它与液膜无关,而是由于再结晶导致的晶界韧性陡降,在焊接残余应力发生应力松弛时引起的应变超过晶界金属的变形能力而导致的开裂。
再热裂纹的产生有两个条件:(1)存在焊接残余应力或外载荷引起的应力集中。
焊前预热及焊后热处理施工方案(修)
一、简介
焊接是一种常见的金属连接方法,而焊前预热及焊后热处理是确保焊接质量的
重要步骤。
在焊接过程中,预热和热处理可以减少焊接变形和裂纹,提高焊缝的强度和韧性。
本文将针对焊前预热和焊后热处理的施工方案进行探讨和总结。
二、焊前预热方案
1. 钢结构预热
在焊接钢结构之前,必须严格执行预热的要求。
预热的目的是减缓冷却速度,
减少应力,避免冷脆,保证焊接接头的质量。
预热温度和时间应严格按照焊接工艺规程执行。
2. 铝合金预热
预热对铝合金的影响尤为重要,可以避免氧化皮的产生,减少热裂纹的风险,
并提高熔池的流动性。
预热温度应根据具体材料而定,通常在150°C至250°C之间。
三、焊后热处理方案
1. 延时冷却
焊接完成后,应立即对焊接接头进行冷却处理。
延时冷却可以减缓焊缝冷却速度,降低残余应力,减少裂纹的产生。
延时时间根据焊接材料和工艺规范确定。
2. 热处理
对于一些关键部位或特殊要求的焊缝,需要进行热处理以提高焊接接头的性能。
热处理可包括回火、时效处理等,具体热处理方案应根据实际情况确定。
四、总结
焊前预热及焊后热处理是确保焊接接头质量的关键步骤,必须严格执行相应的
施工方案和工艺要求。
只有在预热和热处理环节做到位,才能确保焊接接头的质量稳定和可靠,从而保障结构的安全性和可靠性。
各种金属材料的焊接特点及其热处理工艺焊接是一种将两个或多个金属材料通过熔化或变形并在熔融金属之间形成接头的加工方式。
在焊接过程中,金属材料经历了高温和冷却的过程,从而影响了焊接接头的性能和组织结构。
不同金属材料具有不同的焊接特点和热处理工艺。
下面将分别介绍常见金属材料的焊接特点及其热处理工艺。
1.钢材焊接特点及热处理工艺:钢材是最常见的金属材料之一,具有良好的可焊性。
其焊接特点如下:(1)钢材容易氧化,焊接时需要保护气体或保护剂以防止氧化。
(2)焊接速度快,热影响区较小,易形变。
(3)钢材焊接后易产生残余应力和变形。
钢材的热处理工艺包括退火、正火和淬火等。
退火可以减轻焊接残余应力,正火可提高焊接接头的硬度和强度,淬火可增加焊接接头的硬度。
2.铝材焊接特点及热处理工艺:铝材具有良好的导热性和导电性,但其可焊性较差。
其焊接特点如下:(1)容易产生氧化膜,焊接前需要对焊缝进行预处理。
(2)焊接速度快,热影响区较小。
(3)铝材焊接后容易产生变形。
铝材的热处理工艺主要包括固溶处理和时效处理。
固溶处理可使铝材中的合金元素均匀溶解,时效处理可提高焊接接头的硬度和强度。
3.铜材焊接特点及热处理工艺:铜材具有良好的导热性和导电性,但其可焊性较差。
其焊接特点如下:(1)容易产生氧化膜,焊接前需要对焊缝进行预处理。
(2)焊接速度较慢,热影响区较大。
(3)铜材焊接后容易产生变形和裂纹。
铜材的热处理工艺主要包括退火和时效处理。
退火可减轻焊接接头的残余应力,时效处理可提高焊接接头的硬度和强度。
4.镁合金焊接特点及热处理工艺:镁合金具有轻质高强度的特点,但其可焊性较差。
其焊接特点如下:(1)容易产生氧化膜,焊接前需要对焊缝进行预处理。
(2)焊接速度快,热影响区较小。
(3)焊接时易燃,需要采取安全措施。
镁合金的热处理工艺主要包括固溶处理和时效处理。
固溶处理可提高镁合金的强度和耐腐蚀性,时效处理可进一步提高焊接接头的硬度和强度。
q345r钢板焊接焊后热处理
摘要:
1.焊接概述
2.焊接后的热处理
3.q345r 钢板的特点
4.q345r 钢板焊接后的热处理方法
5.q345r 钢板焊接后热处理的效果
正文:
一、焊接概述
焊接是一种常见的金属连接方法,它通过加热、加压或两者并用,使两个同种或异种金属材料产生原子间结合。
在焊接过程中,由于热量的作用,焊缝及附近区域会产生相应的组织变化和性能变化,这就需要进行焊后热处理,以恢复和改善焊接接头的性能。
二、焊接后的热处理
焊接后的热处理,顾名思义,就是在焊接完成后,对焊接接头进行一定的温度处理,以改变焊接接头的组织结构和性能。
常见的热处理方法有退火、正火、调质等。
三、q345r 钢板的特点
q345r 钢板是我国常用的一种高强度钢板,其主要特点是强度高、韧性好、焊接性能良好。
由于强度高,焊接过程中易产生残余应力,因此,焊接后的热处理对于q345r 钢板来说尤为重要。
四、q345r 钢板焊接后的热处理方法
对于q345r 钢板焊接后的热处理,常见的方法有退火、正火和调质。
退火主要用于降低残余应力,正火主要用于提高强度,调质则可以同时提高强度和韧性。
具体采用哪种方法,需要根据焊接接头的性能要求和工艺条件来确定。
五、q345r 钢板焊接后热处理的效果
q345r 钢板焊接后的热处理,可以有效地改善焊接接头的性能,降低残余应力,提高强度和韧性,保证焊接接头的使用性能和使用寿命。
总的来说,焊接后的热处理是焊接工艺中不可或缺的一环,对于提高焊接接头的性能和使用寿命有着重要的作用。
焊后热处理硬度检测要求1.引言1.1 概述焊后热处理硬度检测是指对焊后经过热处理的金属材料进行硬度测量的一种方法。
在现代制造业中,焊接是一种常见的连接技术,但焊接过程会导致金属材料的组织结构和性能发生变化。
为了确保焊接后材料的质量和可靠性,需要对焊接过程进行热处理。
热处理可以改变焊缝区域的组织结构,提高材料的硬度和强度。
焊后热处理硬度检测的重要性不容忽视。
首先,硬度是评估金属材料性能的重要指标之一。
通过硬度测试,可以了解材料的硬度值,从而推断其强度和耐用性。
其次,焊后热处理硬度检测可以提供关于焊接和热处理工艺的有效信息。
通过监测焊接材料的硬度变化,可以判断热处理过程是否达到预期效果,进而指导焊接工艺的调整和改进。
此外,在一些特殊应用领域,如航空航天和核能工业,焊后热处理硬度检测更是必不可少的,因为这些领域对材料的强度和可靠性要求非常高。
综上所述,焊后热处理硬度检测是对焊接后材料进行质量评估和性能控制的重要手段。
通过对焊接材料的硬度进行检测和分析,可以评估焊接工艺的合理性,指导热处理工艺的优化,并最终确保焊接结构的强度和可靠性。
在未来的研究中,还需要进一步深入探索焊后热处理硬度检测的方法和技术,以满足不断发展的焊接工艺和材料需求。
1.2 文章结构本文将按照以下结构进行叙述和讨论焊后热处理硬度检测要求的相关内容:第一部分为引言,包括概述、文章结构和目的。
在引言部分,将简要介绍焊后热处理硬度检测问题的背景和重要性,并提出本文的研究目的。
第二部分为正文,主要分为两个小节。
第一个小节将详细阐述焊后热处理的概念和作用,介绍焊后热处理在材料加工中的重要性。
第二个小节将重点探讨焊后热处理硬度检测的重要性及相关要求,包括对硬度测试方法的介绍、检测流程和必要的设备要求等。
第三部分为结论,将总结焊后热处理硬度检测的要求,对焊后热处理进行全面的回顾和概括,并强调其在实际应用中的意义。
同时,还将展望未来的研究方向,探讨焊后热处理硬度检测可能存在的问题和需要进一步研究的方向。
管板与换热管焊后热处理热处理是指将金属材料加热至一定温度,然后进行冷却处理的过程。
热处理能够改变金属材料的组织结构和性能,提高其力学性能和耐腐蚀性能。
在管板与换热管的焊接后,热处理是一个必要的工序,有助于消除焊接产生的应力和组织缺陷,提高焊接接头的性能。
管板与换热管焊接是压力容器制造过程中的重要工艺环节。
焊接是将两个或多个金属零件通过加热熔化并连接在一起的方法。
在管板与换热管的焊接过程中,由于焊接热源的作用,焊接区域会受到局部加热和冷却的影响,从而引起组织和性能的变化。
焊接过程中,焊接材料和母材会发生熔化和凝固,形成焊缝。
焊缝的组织通常由母材、熔化区和热影响区组成。
熔化区是焊接过程中熔化并凝固的区域,其组织主要由焊接材料组成。
热影响区是焊接过程中未完全熔化的母材区域,其组织受到焊接热循环的影响,通常会发生晶粒长大、相变和残余应力的产生。
焊接过程中产生的应力和组织缺陷可能会降低焊接接头的力学性能和耐腐蚀性能,因此需要进行热处理来消除这些缺陷。
热处理是通过控制焊接接头的加热和冷却过程,使其组织和性能达到设计要求。
常用的热处理方法有退火、正火、淬火和回火等。
退火是将焊接接头加热至一定温度,然后缓慢冷却至室温的过程,可以消除应力和组织缺陷,提高焊接接头的韧性和塑性。
正火是将焊接接头加热至一定温度,保持一段时间后迅速冷却,可以使接头组织获得较高的硬度和强度。
淬火是将焊接接头加热至一定温度,然后迅速冷却,可以使接头组织变为马氏体,获得较高的硬度和强度。
回火是将淬火后的焊接接头加热至一定温度,保持一段时间后缓慢冷却,可以消除淬火应力和改善组织,获得较好的综合性能。
在管板与换热管焊接后,热处理的选择应根据具体情况进行。
一般情况下,退火处理是常用的热处理方法。
退火温度和时间的选择应根据焊接材料和焊接接头的要求来确定,以保证焊接接头的性能达到设计要求。
退火处理可以消除焊接接头中的残余应力和组织缺陷,提高其韧性和塑性。