3.第一章第四节条件概率与全概率公式
- 格式:ppt
- 大小:265.00 KB
- 文档页数:19
第四节一、条件概率 二、乘法公式条件概率三、全概率公式与贝叶斯公式一、条件概率在许多问题中,我们往往会遇到事件 B 已经出 现的条件下求事件A的概率. 这时由于有了附加条 件, 因此称这种概率为事件B发生的条件下,事件 A的条件概率,记作 P(A|B) 同理P(B|A)表示:事件A发生的条件下,事件 B发生的概率例1 一个家庭中有两个小孩,已知两个小孩其中一个 是女孩,问两个小孩都是女孩的概率是多少? (假定生男生女是等可能的) 解 由题意,样本空间为Ω = { (男,男), (男,女), (女,男), (女,女) }A 表示事件“至少有一个是女孩”, B 表示事件“两个都是女孩”,则有 A={ (男,女), (女,男), (女,女) } B = { (女,女) } 由于事件A已经发生,所以这时试验的所有可能结果 只有三种,而事件B包含的基本事件只占其中的一 1 种, 所以有 P ( B A) =3(1)在这个例子中,若不知道事件A已经发生的信息,那 么事件B 发生的概率为 这里1 P( B) = 4 P( B)≠ P( B A)其原因在于事件 A的发生改变了样本空间,使它由原 来的Ω 缩减为Ω A = A,而 P( B A)是在新的样本空间 Ω A 中由古典概率的计算公式而得到的.上例中计算 P(B|A)的方法并不普遍适用.如果回 到原来的样本空间Ω 中考虑,显然有3 P( A) = 4从而即1 P ( AB) = 4 1 1 P ( B A) = = 4 3 3 4 P ( AB) P( B A ) = P ( A)(2)关系式(2)不仅对上述特例成立,对一般的古典概 型和几何概型问题,也可以证明它是成立的.定义1 设A, B是两个事件,且P( A) > 0,称P ( AB) P( B A ) = P ( A)(3)事件A发生的条件下事件B 发生的条件概率 性质: 设A是一事件,且P(A)>0,则 (1) 对任一事件B,0≤P(B|A)≤1; (2) P(Ω| A) =1 ; 1 1 非负性 非负性 2 2 规范性 规范性 3 3 可列可加性 可列可加性(3) 设B1, B2 ,··· 两两互不相容,则 P[(B1∪B2∪ ···)| A] = P(B1|A)+P(B2|A) + ···(4) P (φ A) = 0.(5) P(B1 ∪ B2 A) = P(B1 A) + P(B2 A) − P(B1 B2 A);(6) P ( B A) = 1 − P ( B A).条件概率的计算根据具体的情况,可选用下列两种方法之一来计算 条件概率P(B|A) (1)在缩减后 ΩA 的样本空间中计算; (2)在原来的样本空间Ω 中,直接由定义计算.条件概率 P(B|A)的样本空间ΩABAB样本空间ΩP( AB) P( B A ) = P( A)缩减的样本空间(即事件A)P( B | A)例2 一袋中有10 个球,其中3个黑球,7个白球, 依次从袋中不放回取两球. ( 1 )已知第一次取出的是黑球,求第二次取出的 仍是黑球的概率; ( 2 )已知第二次取出的是黑球,求第一次取出的 也是黑球的概率. 解 记 Ai = { 第 i 次取到黑球 } ( i = 1, 2) (1)可以在缩减的样本空间 ΩA 上计算。
第一章随机事件与概率第一节随机事件及其运算1、随机现象:在一定条件下,并不总是出现相同结果的现象2、样本空间:随机现象的一切可能基本结果组成的集合,记为Ω={ω},其中ω表示基本结果,又称为样本点。
3、随机事件:随机现象的某些样本点组成的集合常用大写字母A、B、C等表示,Ω表示必然事件,∅表示不可能事件.4、随机变量:用来表示随机现象结果的变量,常用大写字母X、Y、Z等表示。
5、时间的表示有多种:(1)用集合表示,这是最基本形式(2)用准确的语言表示(3)用等号或不等号把随机变量于某些实属联结起来表示6、事件的关系(1)包含关系:如果属于A的样本点必属于事件B,即事件 A 发生必然导致事件B发生,则称A被包含于B,记为A⊂B;(2)相等关系:若A⊂B且B⊃A,则称事件A与事件B相等,记为A=B。
(3)互不相容:如果A∩B=∅,即A与B不能同时发生,则称A与B互不相容7、事件运算(1)事件A与B的并:事件A与事件B至少有一个发生,记为 A∪B。
(2)事件A与B的交:事件A与事件B同时发生,记为A∩ B或AB。
(3)事件A对B的差:事件A发生而事件B不发生,记为 A-B。
用交并补可以表示为。
(4)对立事件:事件A的对立事件(逆事件),即“A不发生”,记为.对立事件的性质:。
8、事件运算性质:设A,B,C为事件,则有(1)交换律:A∪B=B∪A,AB=BA(2)结合律:A∪(B∪C)=(A∪B)∪C=A∪B∪C A(BC)=(AB)C=ABC(3)分配律:A∪(B∩C)=(A∪B)∩(A∪C)、A(B∪C)=(A∩B)∪(A∩C)= AB∪AC(4)棣莫弗公式(对偶法则):9、事件域:含有必然事件Ω,并关于对立运算和可列并运算都封闭的事件类ξ称为事件域,又称为σ代数。
具体说,事件域ξ满足:(1)Ω∈ξ;(2)若A∈ξ,则对立事件∈ξ;(3)若A n∈ξ,n=1,2,···,则可列并ξ。
《概率论与数理统计》教学大纲教学目的概率论与数理统计是研究随机现象数量规律、统计规律的学科,在高等学校教学计划中是重要的基础理论课。
概率论与数理统计作为现代数学的重要组成部分,不仅理论严谨,而且应用极其广泛。
由于它的介入,改变了经济、金融和管理科学传统的研究方式,是经济、管理中数量分析的基础,是经济管理工作者不可缺少的有力工具。
通过本课程的教学,使学生初步掌握处理随机现象和抽样数据的基本理论和方法,为解决有关实际问题以及后继课程的学习打下良好的基础。
考虑到初学者往往对一些重要的概率统计概念的实质的领会感到困难,以及概率统计应用性很强的特点,在讲授本课程时,以介绍基本概念、基本理论和方法为主,尽量使用较少的数学知识,避免过于数学化的论证,但仍保持系统的严谨性。
在讲授内容的同时,应配备一定数量的习题,以培养学生的基本技能。
预备知识高等数学、线性代数等知识教材指定教材:【1】《概率论与数理统计》参考书目:【1】《概率论与数理统计学习指导与习题全解》教学基本内容第一章事件与概率第一节样本空间与随机事件第二节频率、古典概率及几何概率第三节概率的公理化定义与性质第四节条件概率与独立性第五节全概率公式与贝叶斯公式本章教学要求:1.了解随机现象、样本空间的概念。
理解随机事件的概念,掌握事件之间关系与运算。
2.了解频率稳定性的概念。
掌握古典概型及概率的计算方法。
掌握几何概率及其计算方法。
3.理解概率的公理化定义的必要性和三条基本性质。
掌握概率的五条性质,并熟练应用。
4.理解条件概率及事件独立性的概念,掌握用事件的独立性进行概率的计算。
理解伯努利概型,掌握独立重复试验中有关事件概率的计算方法。
5.会熟练运用概率的乘法公式、全概率公式及贝叶斯公式进行事件概率的计算。
第二章随机变量及其分布第一节随机变量及其分布函数第二节散型随机变量及其分布第三节连续性随机变量及其分布第四节随机变量函数的分布本章教学要求:1.了解随机变量的概念,理解分布函数的概念和性质。
1963.3条件概率及全概率公式教学要求本节要求学生正确理解条件概率的概念及其运算公式, 学会运用概率的乘法定理. 对于全概率公式不但要求能深刻理解其内在含义,而且要求学生会熟练运用此公式去解决实际问题. 要求学生掌握两个事件独立的概念,了解多个事件相互独立的条件.知识点1. 条件概率2. 概率的乘法定理3. 全概率公式4. 两个事件的独立性5. 多个事件的独立性 *6.贝叶斯(Bayes )公式 *7.贝努里(Bernoulli )概型3.3.1 条件概率在实际问题中, 除了要知道事件A 的概率P (A )外, 有时还需要知道在事件B 已发生的条件下,事件A 发生的概率, 这就是我们所要讲的条件概率, 将它记为P (A |B ).我们先通过一个例子来引入条件概率的概念. 掷一颗骰子, 观察其出现点数, 令事件A 表示“出现点数小于4”, 则P (A )=1/2, 如果已知事件B 表示“出现偶数点”, 且B 已发生, 这时只剩下三种可能, 即“2点”,“4点”或“6点”. 从而在B 已发生的条件下, A 发生的概率为P (A |B )=1/3, 注意P (B )=1/2, P (AB )=1/6, 此时有)()()()|(A P B P AB P B A P ≠=. 定义.设A ﹑B 是随机试验E 的二个事件, 且P (B )>0, 则称 )()()|(B P AB P B A P =为事件B 发生条件下事件A 发生的条件概率.不难验证, 条件概率P (A |B )也是一种概率, 它符合概率的三个条件. 由前面的条件概率的定义, 我们可以知道, 计算条件P (A |B )有两种方法: (1)在样本空间Ω的缩减后的样本空间ΩB (事件B 发生时的样本空间)上计算A 发生的(无条件)概率, 就可以得到P (A |B ).(2)样本空间Ω中, 先计算P (AB ) ﹑P (B ), 然后由定义公式求得P (A |B ).197例3.3.1 全年级100名学生中, 有男生(以事件A 表示)80人, 女生20人; 来自北京的(以事件B 表示)有20人, 其中男生12人, 女生8人; 免修英语的(用事件C 表示)40人中有32名男生, 8名女生. 试写出P (A )、P (B )、P (B |A )、 P (A |B ) 、P (AB )、P (C )、P (C |A )、)|(B A P 、P (AC ).解.根据题意有P (A )=80/100=0.8; P (B )=20/100=0.2; P (B |A )=P (AB )/P (A )=12/80=0.15; P (A |B )=P (AB )/P (B )=12/20=0.6 ;P (AB )=12/100=0.12; P (C )=40/100=0.4; P (C |A )=P (AC )/P (A )=32/80=0.4; )|(B A P )()(B P B A P ==15.08012=;P (AC )=32/100=0.32.例3.3.2 8个乒乓球中有5个新的,3个旧的. 第一次比赛时, 同时取出2个, 用完后放回去; 第二次比赛时又取出2个球, 求第一次取到1个新球的条件下, 第二次取到2个新球的概率.解. 设事件A =“第一次取到1个新球”;事件B =“第二次取到2个新球”.由于第一次比赛后, 球被放回去, 因此在A 已发生的条件下, 再取2个球时, 总球数仍为8. 但是, 因第一次比赛所用的一个新球已变成旧球,其新旧比例已变化为: 新球4个, 旧球4个, 所以所求的概率为: 143)|(2824==C C A B P . 由条件概率,我们可以得到概率的乘法定理及两个事件的独立性.3.3.2 概率的乘法定理由前面的条件概率的定义公式,可得到下面的定理.概率的乘法定理. 设A ﹑B 为随机试验E 中的两个事件,且P (B )>0,则有 P (AB )=P (A |B )P (B ).198这个公式称为概率的乘法公式. 同样地,概率的乘法公式还有另一种形式:若P (A )>0, P (AB )=P (B |A )P (A ).例3.3.3. 设在一盒子中装有4个蓝色球和6个红色球, 取球两次, 一次取1个, 取后不放回, 问两次都取到红球的概率是多少? 解. 设事件A =“第一次取到红球”, 事件B =“第二次取到红球” ∵ P (A )=6/10, P (B |A )=5/9,因此 P (AB )=P (B |A )P (A )=1/3.我们还可以将概率的乘法公式推广到3个事件的情形: P (A 1A 2A 3)=P (A 1)P (A 2|A 1)P (A 3|A 1A 2).我们已经学习了条件概率和概率的乘法定理,由此我们可以得到下面的全概率公式.3.3.3 全概率公式前面我们学习了条件概率和概率乘法定理,下面我们介绍一个重要的公式--全概率公式.定理(全概率定理). 如果事件A 1, A 2, …, A n 构成一个完备事件组, 且P (A i )>0,(i =1,2,…,n ). 则对任一事件B , 有 ∑==ni i i A A B P P B P 1)|()()(这个公式称为全概率公式.证明. A 1, A 2,…,A n 是一个完备事件组, 从而A i (i =1,2,…,n )是两两互斥的, 且P (A i )>0, 由于B 被分成n 个部分A i B (i =1,2,…,n )之和, 且A i B (i =1,2,…,n )也是两两互斥的, 于是 B A A B B ni i ni i ∑∑====11.由概率的可加性及概率乘法定理得到:∑∑====ni i ni i B A P B A P B P 11)()()(=∑=ni i i A A P B P 1)()|(.全概率公式应用较广, 它的基本思路是将一个比较复杂的事件分解成若干个较简单且199两两互斥事件的和, 即要找一个完备事件组, 然后利用概率的可加性及概率乘法定理来计算.例3.3.4 设袋中装有5件同样的产品, 其中3件正品, 2件次品, 每次从袋中取1件,无放回地连续取2次, 求第2次取到正品的概率.解. 设事件A 表示“第1次取到正品”, 则A 表示“第1次取到次品”;事件B 表示“第2次取到正品”.事件A A ,构成一个完备事件组, A B BA B +=(即第2次取正品的可能性是与第1次取到正品或次品有关).因A B BA , 互不相容, 则有)()()()(A B P BA P A B BA P B P +=+= )|()()|()(A B P A P A B P A P += =(3/5)×(2/4)+(2/5)×(3/4)=3/5.例3.3.5 某厂有甲﹑乙﹑丙三个车间生产同一种产品,其产量分别占总产量的25%﹑35%﹑40%. 各自的废品率为5%﹑4%﹑2%, 今从总产品中任取一件, 求所取出的产品为废品的概率.解.设A 1=“所取产品为甲车间生产的”; A 2=“所取产品为乙车间生产的”; A 3=“所取产品为丙车间生产的”; B =“所取产品为废品”. 则A i (i =1,2,3)构成一个完备事件组, 且P (A 1)=0.25, P (A 2)=0.35, P (A 3)=0.4, P (B |A 1)=0.05, P (B |A 2)=0.04, P (B |A 3)=0.02, 由全概率公式有∑==31)|()()(i i i A A B P P B P=0.25×0.05+0.35×0.04+0.4×0.02=0.0345.由全概率公式我们可以求出,从总产品中任取一件,其为废品的概率是0.0345;反之,若已知从总产品取出一件,其为废品,反过来求它是甲车间(或乙车间﹑丙车间)生产的可能有多大,即为我们后面要讲的贝叶斯公式.3.3.4 两个事件的独立性前面我们讨论了条件概率P(A|B), 一般说来P(A|B)≠P(A)即事件B的发生对事件A发生的概率是有影响. 但当P(A|B)=P(A), 即B的发生对A发生的概率没有影响,此时即说事件A独立于事件B, 此时由概率乘法定理得到P(AB)=P(A|B)P(B)=P(A)P(B). 由此我们可给出两个事件独立的定义.定义. 设A﹑B是试验E的两个事件, 若有P(AB)=P(A)P(B)则称事件A﹑B为相互独立的事件.由概率乘法定理, 容易得出: 当事件A独立于事件B时, 事件B也独立于事件A, 即独立是一个对称性概念.例如, 从具有次品的一批产品中,有放回的连抽取二次, 每次抽取一件. 这样,事件A(第一次抽得正品)的出现并不影响事件B(第二次抽得正品)的概率, 即事件A与事件B是相互独立的两个事件.定理. 设A﹑B是试验E的两个事件, 且有P(B) >0, 则A与B相互独立的充分必要条件为:P(A|B)=P(A).证明. 必要性. 若A﹑B相互独立,则当P(B)>0时,由概率乘法公 式有:P(B)P(A|B)=P(AB)=P(A)P(B)从而 P(A|B)=P(A).充分性. 若P(A|B)=P(A),由概率乘法公式有:P(AB)=P(B)P(A|B)=P(B)P(A)即A﹑B相互独立.在实际问题中, 往往是通过对问题性质的分析来判断事件间是否独立.例3.3.6 甲﹑乙两人同时射击某一目标.设甲击中目标的概率为0.8,乙击中目标的概率为0.5,求目标被击中的概率.解.设事件A=“甲击中目标”,事件B=“乙击中目标”,事件C=“目标被击中”.从题意可知: C=A+B,且200201P (C )=P (A +B )=P (A )+P (B )-P (AB ).由于甲﹑乙射击是相互独立的, 因此可以认为甲﹑乙互不干扰, 从而A 与B 是相互独立的.P (AB )=P (A )P (B )=0.8×0.5=0.4,所以 P (C )=0.8+0.5-0.4=0.9. 例3.3.7 试证A ﹑B 相互独立与以下每一条件等价:(1)事件A 与B 独立;(2)事件A 与B 独立;(3) 事件A 与B 独立.证明.我们在这里只证由A 和B 相互独立,推出A 与B 独立,对于其它情形,由两个事件独立的对称性,同样可以推出.若A 与B 相互独立,则P (AB )=P (A )P (B ).由概率的性质,得到: )(B A P =P (A -AB )=P (A )-P (AB )=P (A )-P (A )P (B )=P (A )(1-P (B )) =)()(B P A P . 故A 与B 相互独立. 此例的结论,我们可用下表来表示: 表3.3.1表中任意一种情形成立, 都可以推出其它情形成立.由两个事件的独立性的概念,我们可以推出多个事件的独立性.3.3.5 多个事件的独立性前面我们学习了两个事件的独立性的概念﹑定理, 由此我们可以给出三个事件的独立性的概念.定义. 若A ﹑B ﹑C 是随机试验E 中的三个事件, 满足下列条件:(1) P (AB )=P (A )P (B ); (2)P (BC )=P (B )P (C );202(3) P (AC )=P (A )P (C ); (4)P (ABC )=P (A )P (B )P (C )。
概率论知识点总结第一章 随机事件及其概率第一节 基本概念随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。
随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。
不可能事件:在试验中不可能出现的事情,记为Ф。
必然事件:在试验中必然出现的事情,记为Ω。
样本点:随机试验的每个基本结果称为样本点,记作ω.样本空间:所有样本点组成的集合称为样本空间. 样本空间用Ω表示.一个随机事件就是样本空间的一个子集。
基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。
事件的关系与运算(就是集合的关系和运算)包含关系:若事件 A 发生必然导致事件B 发生,则称B 包含A ,记为A B ⊇或B A ⊆。
相等关系:若A B ⊇且B A ⊆,则称事件A 与事件B 相等,记为A =B 。
事件的和:“事件A 与事件B 至少有一个发生”是一事件,称此事件为事件A 与事件B 的和事件。
记为 A ∪B 。
事件的积:称事件“事件A 与事件B 都发生”为A 与B 的积事件,记为A∩ B 或AB 。
事件的差:称事件“事件A 发生而事件B 不发生”为事件A 与事件B 的差事件,记为 A -B 。
用交并补可以表示为B A B A =-。
互斥事件:如果A ,B 两事件不能同时发生,即AB =Φ,则称事件A 与事件B 是互不相容事件或互斥事件。
互斥时B A ⋃可记为A +B 。
对立事件:称事件“A 不发生”为事件A 的对立事件(逆事件),记为A 。
对立事件的性质:Ω=⋃Φ=⋂B A B A ,。
事件运算律:设A ,B ,C 为事件,则有 (1)交换律:A ∪B=B ∪A ,AB=BA(2)结合律:A ∪(B ∪C)=(A ∪B)∪C=A ∪B ∪C A(BC)=(AB)C=ABC(3)分配律:A ∪(B∩C)=(A ∪B)∩(A ∪C) A(B ∪C)=(A∩B)∪(A∩C)= AB ∪AC (4)对偶律(摩根律):B A B A ⋂=⋃ B A B A ⋃=⋂第二节 事件的概率 概率的公理化体系: (1)非负性:P(A)≥0; (2)规范性:P(Ω)=1(3)可数可加性: ⋃⋃⋃⋃n A A A 21两两不相容时++++=⋃⋃⋃⋃)()()()(2121n n A P A P A P A A A P概率的性质: (1)P(Φ)=0(2)有限可加性:n A A A ⋃⋃⋃ 21两两不相容时)()()()(2121n n A P A P A P A A A P +++=⋃⋃⋃当AB=Φ时P(A ∪B)=P(A)+P(B) (3))(1)(A P A P -=(4)P(A -B)=P(A)-P(AB)(5)P (A ∪B )=P(A)+P(B)-P(AB)第三节 古典概率模型1、设试验E 是古典概型, 其样本空间Ω由n 个样本点组成,事件A 由k 个样本点组成.则定义事件A 的概率为nk A P =)( 2、几何概率:设事件A 是Ω的某个区域,它的面积为 μ(A),则向区域Ω上随机投掷一点,该点落在区域 A 的概率为)()()(Ω=μμA A P 假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ理解为长度或体积即可.第四节 条件概率条件概率:在事件B 发生的条件下,事件A 发生的概率称为条件概率,记作 P(A|B).)()()|(B P AB P B A P =乘法公式:P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设n A A A ,,,21 是一个完备事件组,则P(B)=∑P(i A )P(B|i A ) 贝叶斯公式:设n A A A ,,,21 是一个完备事件组,则∑==)|()()|()()()()|(jj i i i i A B P A P A B P A P B P B A P B A P第五节 事件的独立性两个事件的相互独立:若两事件A 、B 满足P(AB)= P(A) P(B),则称A 、B 独立,或称A 、B 相互独立.三个事件的相互独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),P(ABC)= P(A) P(B)P(C),则称A 、B 、C 相互独立三个事件的两两独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),则称A 、B 、C 两两独立独立的性质:若A 与B 相互独立,则A 与B ,A 与B ,A 与B 均相互独立总结:1.条件概率是概率论中的重要概念,其与独立性有密切的关系,在不具有独立性的场合,它将扮演主要的角色。
条件概率与全概率公式
条件概率和全概率公式是概率论中的两个重要概念,也是解决实际问题时常用的工具。
条件概率是指在已知某一事件发生的条件下,另一事件发生的概率;全概率公式则是用来计算某一事件发生的总概率,其中考虑了所有可能的情况。
条件概率的计算方法是根据贝叶斯定理得出的,公式为:P(A|B) = P(A∩B)/P(B),其中P(A|B)表示在事件B发生的条件下,事件A
发生的概率,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表
示事件B发生的概率。
全概率公式的计算方法是将一个事件分解为若干个互不相交的
子事件,然后分别计算这些子事件的概率,再将它们相加得到总概率。
全概率公式的表达式为:P(A) = ∑[P(A|B_i)×P(B_i)],其中B_i
表示事件A的所有可能的子事件,P(A|B_i)表示在B_i发生的条件下,事件A发生的概率,P(B_i)表示B_i发生的概率。
条件概率和全概率公式在实际应用中经常用于解决复杂问题,如在医学诊断中,通过已知的临床表现和检验结果,利用条件概率计算某种疾病的概率;在市场调查中,通过对各种因素的分析,利用全概率公式计算某产品销售的总概率等。
熟练掌握条件概率和全概率公式,对于解决实际问题具有重要的意义。
- 1 -。