5轴加工刀轴控制方法讲解
- 格式:pdf
- 大小:202.72 KB
- 文档页数:23
Cimatron-E-五轴加工教程五轴加工教程--Cimatron China技术工程师胡志林使用5轴航空铣创建优化涡轮叶片刀路轨迹在该教程中将练习以下内容:1、为叶片创建不带干涉检查的高精度精加工,刀轴沿曲面法矢方向2、降低层间快速跳刀高度3、限制刀路轨迹使其在不能实现倒扣加工的机床上运行4、修改切削平面获得沿叶片轴向更加光顺的切削纹理5、使用边界样条线获得比单纯切削平面更加光顺的刀路轨迹6、应用起始点进入叶片顶端7、应用切向进退刀切削8、使用自动干涉检查删除刀尖可能切削涡轮叶片轴的位置9、使用自动干涉检查使刀具在干涉涡轮叶片的地方倾斜10、应用干涉检查在尖角处去处多余干涉11、使用笔式跟踪刀路不带刀尖干涉检查获得更光顺的刀路练习1–创建精加工路径加载叶片并导入Improt.elt到NC文档,检查物体的曲面方向,切换曲面法向向外的是黑色曲面。
进入方式:分析-曲面方向或工具条上的。
注释:为了使改变对模型有效,导入的数据应该和原始文档解除关联,为了反转某些面的法向,请使用“手动模式”修改曲面方向。
创建5X TP.创建所有曲面的零件并定义毛坯为所有曲面偏移1mm。
确认之后,进入5X航空铣刀路轨迹对话框。
在曲面路径页面,选择“等高”按钮然后选择“导动曲面”按钮,切换到选择导动曲面图标。
通用的零件曲面选择功能有效,选择绿色的曲面并退出(MMB)结束选择,返回界面。
选择确认,保存计算刀路,刀路显示如下图:可以看出退刀高度非常高,我们希望降低快速抬刀高度,编辑程序请选择连刀页面设置快速抬刀高度为54mm。
刀路显示如下:保存上面的程序。
练习2–精加工角度限制保障在某些机床上进行非倒扣切削一些机床轴在一定角度的范围内旋转,不能进行倒扣加工,我们将通过角度限制检查在5AxMSurf内的角度输出。
注释:一些机床倾斜角度为45度,这些机床一般不能超过90度(例如DMU70V,或DMU80P...)创建一个新的程序,刀轴控制选项按以下页面设置:激活在XZ平面内的角度范围设置为0到180度,在YZ平面内设置同样的角度。
五轴联动数控加工中的刀具轨迹控制算法五轴联动数控加工是一种高精度、高效率的加工方式,可以实现对复杂曲面的加工。
在五轴联动数控加工中,刀具轨迹控制算法起着至关重要的作用,决定了加工精度和效率。
本文将介绍几种常见的刀具轨迹控制算法,并对其原理和应用进行详细阐述。
1. 五轴联动数控加工概述五轴联动数控加工是指在数控加工机床上,通过同时控制五个坐标轴的运动,实现对工件的加工。
相比于传统的三轴加工,五轴联动可以更加灵活地加工复杂曲面,提高加工质量和效率。
2. 刀具轨迹控制算法的作用刀具轨迹控制算法是五轴联动数控加工中的关键技术之一。
它可以根据工件的三维模型和加工要求,计算出刀具在加工过程中的运动轨迹,从而实现精确的加工。
刀具轨迹控制算法的好坏直接影响加工精度和效率。
3. 刀具轨迹控制算法的分类刀具轨迹控制算法可以分为两类:离散点算法和曲线插补算法。
离散点算法是指将工件曲面离散化为一系列离散点,然后通过逐点加工来实现曲面加工。
常见的离散点算法有直线连接法、圆心法和切点法等。
这些算法简单直观,适用于加工简单曲面。
曲线插补算法是指根据工件的曲线方程和刀具半径,通过插补计算出刀具的运动轨迹。
常见的曲线插补算法有圆弧插补法、曲线插补法和样条插补法等。
这些算法可以实现对复杂曲面的高精度加工。
4. 圆弧插补算法圆弧插补算法是五轴联动数控加工中最常用的一种刀具轨迹控制算法。
它通过计算刀具半径和工件曲线的切向方向,确定刀具的圆弧插补路径。
圆弧插补算法具有计算简单、加工效率高的优点,适用于多数加工场景。
5. 曲线插补算法曲线插补算法是一种更加精细的刀具轨迹控制算法,可以实现对复杂曲面的高精度加工。
曲线插补算法通过计算刀具在曲线上的切向方向和曲率,确定刀具的插补路径。
与圆弧插补算法相比,曲线插补算法需要更复杂的计算和控制,但可以实现更高的加工精度。
6. 样条插补算法样条插补算法是一种基于数学样条曲线的刀具轨迹控制算法。
它通过计算曲面上的样条曲线,将刀具的运动路径进行插补。
五轴联动常用操作方法
1. 坐标系切换:在五轴加工中,常见的坐标系有世界坐标系、机床坐标系和工件坐标系。
通过操作界面或者控制器,可以实现在不同的坐标系下进行加工。
2. 坐标系旋转:通过旋转坐标系轴向,可以调整机床或工件在不同角度下的加工位置。
常见的坐标系旋转方式有欧拉角、四元数和旋转矩阵等。
3. 刀具路径优化:通过重构刀具路径,可以有效提高加工效率和精度。
常见的路径优化方法有刀补算法、前后刀衔接及去除重复路径等。
4. 刀具半径补偿:在五轴加工中,刀具补偿更为复杂,主要包括刀尖半径补偿、线性刀偏值补偿和径向刀偏值补偿等。
通过设置不同的补偿参数,可以保证加工精度和表面质量。
5. 自动检测功能:五轴数控机床通常配有自动检测功能,可以实现自动地检测工件及刀具等参数,以及进行自动报警、自动重试等功能,提高加工效率和安全性。
五轴数控加工3D刀具补偿及其后置处理方法五轴数控加工是一种高效、高精度的加工技术,可以实现复杂形状零件的加工。
但是,在加工过程中由于刀具的磨损和加工误差,会导致零件加工精度下降。
为了解决这一问题,需要对刀具进行补偿。
本文将介绍五轴数控加工中的3D刀具补偿及其后置处理方法。
一、3D刀具补偿原理3D刀具补偿是在五轴数控加工中,通过对刀具与工件的几何关系、刀具的运动轨迹以及数学模型进行研究,通过数学计算控制刀具运动轨迹,实现对零件形状误差的补偿,提高加工精度。
具体地说,3D刀具补偿可以分为两类:一类是基于机床坐标系的补偿方法,另一类是基于工件坐标系的补偿方法。
基于机床坐标系的补偿方法,是根据机床坐标系下的机器误差以及刀具在机床坐标系下的位置和姿态,利用数学模型对刀具运动轨迹进行计算,实现对零件加工误差的补偿。
基于工件坐标系的补偿方法,则是先采用编程加工零件的CAD模型,进行虚拟物理仿真,将仿真结果转化成机床加工指令,最后通过机床控制系统进行加工,实现对零件形状误差的补偿。
基于机床坐标系的3D刀具补偿,通常采用如下步骤:1.测量并记录刀具位置和姿态在加工之前,需要根据机床坐标系设置初始的刀具位置和姿态,并通过测量仪器进行精确的测量,记录刀具在机床坐标系下的位置和姿态。
2.建立刀具几何模型和数学模型针对不同类型的刀具,需要先建立其几何模型和数学模型。
几何模型可以通过三维建模软件来实现,而数学模型则是根据刀具所在位置、刀具直径、切削刃刃数、切削方向等参数进行计算。
3.计算刀具运动轨迹在进行加工时,通过数学模型将刀具的运动轨迹进行计算,并实时地对加工过程进行跟踪和监测,以便及时调整刀具的运动轨迹。
4.实施刀具补偿根据运动轨迹的计算结果,通过控制机床坐标系的变换关系,实施刀具补偿。
1.设置工件坐标系和CAD模型导入首先需要设置工件坐标系,然后导入工件的CAD模型,并进行虚拟物理仿真。
在仿真过程中,可以根据刀具与工件的碰撞及避让情况,进行刀具轨迹的计算和调整。
2. 定位刀具移动定位刀具移动设置定位刀具移动时,尤其需要注意防止刀具出现任何可能的碰撞,确认设置不超过机床旋转旋转行程行程极限。
为此建议使用以下三种方法:-1/ 在开始点和结束点表格中使用绝对坐标。
2/ 在NC 程序中插入策略性的用户坐标系。
3/ 在3D 空间中使用参考线精加工策略。
使用使用开始点和结束点开始点和结束点开始点和结束点控制控制控制刀具移动刀具移动可在开始点和结束点表格 中通过使用绝对值(指定XYZ 坐标),来控制定位刀具移动。
注:这个方法已在第一章:3+2轴加工中的第一个范例中使用。
以绝对坐标输入开始点和结束点,使刀具位于零件之上可安全旋转进行快进XY 移动的位置。
在NC 程序中由用户坐标系控制程序中由用户坐标系控制刀具移动刀具移动也可在NC 程序列表中的刀具路径间有意地增加一些用户坐标系来控制定位刀具移动。
如果需要,也可将NC 程序列表中的用户坐标系注册为一换刀点。
当刀具移动到某个用户坐标系位置后,如果需要即可进行旋转运动,使刀具对齐于用户坐标系的 Z 轴(移动、旋转是NC参数选择的缺省设置)。
下面的4个图演示了刀具在运行加工策略前移动到3个用户坐标系位置并做旋转运动的情况。
刀具位于MainDatum-Top 刀具移动到pkt1-top刀具移动到pkt1 刀具在pkt1 位置进行旋转注:使用用户坐标系控制刀具在零件周围运动时,通常可使用各个策略所涉及到的开始点和结束点表格中的第一点和最后一点。
在3D空间中使用参考线精加工控制的刀具移动可通过将某个参考线精加工策略作为3D空间中刀具运行的驱动曲线来控制定位刀具移动。
注:刀具位置变换过程中可使用一侧倾角来使刀具始终保持于某个方向。
范例我们将打开一个包含4个独立3+2轴精加工刀具路径的已有项目,并将这些刀具路径添加到NC程序,随后在NC程序中增加适当的刀具定位移动,以防止刀具在各个刀具路径间移动时,刀具和零件表面发生碰撞。
打开项目项目:-•打开D:\users\training\PowerMILL_Data\FiveAxis\PositionalMoves\AngledPockets-Start•保存项目为:-D:\users\training\COURSEWORK\PowerMILL_Projects\AngledPockets•右击PowerMILL 浏览器中的NC程序,从弹出菜单选取参数选择。
5轴联动数控车床工作原理
5轴联动数控车床是一种高精度加工设备,它采用了多轴联动控制技术,可以实现对复杂曲面零件的高效加工。
其工作原理如下:
1. 刀具控制定位:数控车床上的主轴可以控制刀具的旋转,通过准确定位和控制主轴的转速,可以实现对工件的不同位置进行加工。
2. 坐标系控制:数控车床采用了笛卡尔坐标系,通过XYZ三轴的移动来控制刀具在空间中的位置。
其中,X轴控制刀具在水平方向的移动,Y轴控制刀具在垂直方向的移动,Z轴控制刀具在纵向方向的移动。
3. 旋转轴的控制:数控车床还配备有旋转轴,可以控制刀具在不同角度进行旋转。
通常情况下,数控车床的旋转轴有两个,分别是C轴和B轴。
C轴控制刀具在水平方向进行旋转,B轴控制刀具在垂直方向进行旋转。
4. 高精度测量系统:为了保证加工的精度,数控车床还配备有高精度的测量系统,可以实时监测工件的位置和尺寸。
通过测量系统的反馈,数控系统可以做出相应的调整,从而保证加工的精度。
5. 数控系统控制:整个数控车床的工作都是由数控系统进行控制的。
数控系统根据预先编制好的加工程序,通过对各个轴的控制,实现对工件的加工。
同时,数控系统还可以监控加工过
程中的各种参数,并做出相应的调整,以保证加工的质量和稳定性。
综上所述,5轴联动数控车床通过刀具控制定位、坐标系控制、旋转轴的控制、高精度测量系统和数控系统的控制,实现了对复杂曲面零件的高效加工。
五轴加工教程--Cimatron China技术工程师胡志林使用5轴航空铣创建优化涡轮叶片刀路轨迹在该教程中将练习以下内容:1、为叶片创建不带干涉检查的高精度精加工,刀轴沿曲面法矢方向2、降低层间快速跳刀高度3、限制刀路轨迹使其在不能实现倒扣加工的机床上运行4、修改切削平面获得沿叶片轴向更加光顺的切削纹理5、使用边界样条线获得比单纯切削平面更加光顺的刀路轨迹6、应用起始点进入叶片顶端7、应用切向进退刀切削8、使用自动干涉检查删除刀尖可能切削涡轮叶片轴的位置9、使用自动干涉检查使刀具在干涉涡轮叶片的地方倾斜10、应用干涉检查在尖角处去处多余干涉11、使用笔式跟踪刀路不带刀尖干涉检查获得更光顺的刀路练习1–创建精加工路径加载叶片并导入Improt.elt到NC文档,检查物体的曲面方向,切换曲面法向向外的是黑色曲面。
进入方式:分析-曲面方向或工具条上的。
注释:为了使改变对模型有效,导入的数据应该和原始文档解除关联,为了反转某些面的法向,请使用“手动模式”修改曲面方向。
创建5X TP.创建所有曲面的零件并定义毛坯为所有曲面偏移1mm。
创建主选项为5X航空铣程序。
在程序设置中使用以下的设置:选择刀具按钮按照以下图示定义新的刀具确认之后,进入5X航空铣刀路轨迹对话框。
在曲面路径页面,选择“等高”按钮然后选择“导动曲面”按钮,切换到选择导动曲面图标。
通用的零件曲面选择功能有效,选择绿色的曲面并退出(MMB)结束选择,返回界面。
选择确认,保存计算刀路,刀路显示如下图:可以看出退刀高度非常高,我们希望降低快速抬刀高度,编辑程序请选择连刀页面设置快速抬刀高度为54mm。
刀路显示如下:保存上面的程序。
练习2–精加工角度限制保障在某些机床上进行非倒扣切削一些机床轴在一定角度的范围内旋转,不能进行倒扣加工,我们将通过角度限制检查在5AxMSurf内的角度输出。
注释:一些机床倾斜角度为45度,这些机床一般不能超过90度(例如DMU70V,或DMU80P...)创建一个新的程序,刀轴控制选项按以下页面设置:激活在XZ平面内的角度范围设置为0到180度,在YZ平面内设置同样的角度。
五轴加工中心工作原理
五轴加工中心是一种高精度的数控机床,具有多轴同时工作的能力,能够实现复杂零件的加工。
其工作原理是通过控制五个坐标轴的运动,使刀具在不同角度和方向上对工件进行加工,从而实现多面加工和多角度加工的要求。
五轴加工中心的五个坐标轴分别是X轴、Y轴、Z轴、A轴和C轴。
其中,X、Y、Z轴分别代表机床的三个线性坐标轴,用于控制刀具在水平、竖直和深度方向上的移动。
而A轴和C轴则是机床的两个旋转坐标轴,分别用于控制刀具在水平面和垂直面上的旋转角度。
在加工过程中,五轴加工中心通过数控系统控制各个坐标轴的运动,使刀具能够按照预先设定的加工路径对工件进行加工。
在进行五轴加工时,刀具可以同时在五个坐标轴上进行移动和旋转,从而实现对工件的多面加工和多角度加工。
这种同时控制多个坐标轴的加工方式,可以大大提高加工效率和加工精度,特别适用于复杂曲面零件的加工。
五轴加工中心还具有高速切削和高精度加工的优点。
由于刀具可以在多个方向上进行移动和旋转,可以更灵活地选择最佳的切削路径,减少切削阻力,提高切削效率。
同时,多轴加工中心的高精度传动装置和控制系统,可以保证刀具的精确定位和稳定加工,确保加工零件的精度和表面质量。
总的来说,五轴加工中心通过同时控制多个坐标轴的运动,实现了复杂零件的高效加工。
其工作原理是通过数控系统控制各个坐标轴的运动,使刀具在不同角度和方向上对工件进行加工。
五轴加工中心具有高速切削、高精度加工和多面加工的优点,适用于复杂曲面零件的加工,是现代制造业中不可或缺的重要设备。