初中趣味数学题,小心思维陷阱
- 格式:pdf
- 大小:68.57 KB
- 文档页数:3
初中数学常见的32个问题陷阱一、数学式陷阱1:在较复杂的运算中,因不注意运算顺序或者不合理使用运算律,致使运算出现错误。
常见陷阱是在实数的运算中符号层层相扣。
陷阱2:要求随机或者在某个范围内代入求值时,注意所代值必须要使式子有意义,常见陷阱是候选值里有一个会使分母为零。
陷阱3:注意分式运算中的通分不要与分式方程计算中的去分母混淆。
陷阱4:非负数的性质:若几个非负数的和为0,则每个式子都为0;常见非负数有:绝对值,非负数的算术平方根,完全平方式。
陷阱5:五个基本数的混合运算:0指数,基本三角函数,绝对值,负指数,二次根式的化简,这些需牢记。
陷阱6:科学计数法中,精确度和有效数字的概念要清楚。
二、方程(组)与不等式(组)陷阱1:运用等式性质解方程时,切记等式两边不能直接约去含有未知数的公因式,必须要考虑约去的含有未知数的公因式为零的情形。
陷阱2:常在考查不等式的题目时候埋设关于性质3的陷阱,许多人因忘记改变符号的方向而导致结果出错。
陷阱3:关于一元二次方程中求某参数的取值范围的题目中,埋设二次项系数包含参数这一陷阱,易忽视二次项系数不为0导致出错。
陷阱4:解分式方程时,首要步骤是去分母,分数相当于括号,易忘记最后对根的检验,导致运算结果出错。
陷阱5:关于一元一次不等式组有解无解的条件,易忽视相等的情况;利用函数图象求不等式的解集和方程的解时,注意端点处的取值。
三、函数陷阱1:关于函数自变量的取值范围埋设陷阱。
注意:①分母≠0,二次根式的被开方数≥0,0指数幂的底数≠0;②实际问题中许多自变量的取值不能为负数。
陷阱2:根据一次函数的性质(或者实际问题、动点问题等)判断函数的图象出错,一次函数图象性质与k、b之间的关系掌握不到位。
陷阱3:二次函数y=ax2+bx+c的图象位置和参数a,b,c的关系。
常在选择题中的压轴题来考查。
陷阱4:在有些函数或方程的表述形式上埋设陷阱,如表述为“函数y=ax2+bx+c”,这里因为没有特别注明是二次函数,所以一定要注意当a=0的情况,如表述为“方程ax2+ bx+c=0”,则该方程不一定为一元二次方程,故还要考虑当a=0的情况。
初中数学常见的32个问题陷阱一、数学式陷阱1:在较复杂的运算中,因不注意运算顺序或者不合理使用运算律,致使运算出现错误。
常见陷阱是在实数的运算中符号层层相扣。
陷阱2:要求随机或者在某个范围内代入求值时,注意所代值必须要使式子有意义,常见陷阱是候选值里有一个会使分母为零。
陷阱3:注意分式运算中的通分不要与分式方程计算中的去分母混淆。
陷阱4:非负数的性质:若几个非负数的和为0,则每个式子都为0;常见非负数有:绝对值,非负数的算术平方根,完全平方式。
陷阱5:五个基本数的混合运算:0指数,基本三角函数,绝对值,负指数,二次根式的化简,这些需牢记。
陷阱6:科学计数法中,精确度和有效数字的概念要清楚。
二、方程(组)与不等式(组)陷阱1:运用等式性质解方程时,切记等式两边不能直接约去含有未知数的公因式,必须要考虑约去的含有未知数的公因式为零的情形。
陷阱2:常在考查不等式的题目时候埋设关于性质3的陷阱,许多人因忘记改变符号的方向而导致结果出错。
陷阱3:关于一元二次方程中求某参数的取值范围的题目中,埋设二次项系数包含参数这一陷阱,易忽视二次项系数不为0导致出错。
陷阱4:解分式方程时,首要步骤是去分母,分数相当于括号,易忘记最后对根的检验,导致运算结果出错。
陷阱5:关于一元一次不等式组有解无解的条件,易忽视相等的情况;利用函数图象求不等式的解集和方程的解时,注意端点处的取值。
三、函数陷阱1:关于函数自变量的取值范围埋设陷阱。
注意:①分母≠0,二次根式的被开方数≥0,0指数幂的底数≠0;②实际问题中许多自变量的取值不能为负数。
陷阱2:根据一次函数的性质(或者实际问题、动点问题等)判断函数的图象出错,一次函数图象性质与k、b之间的关系掌握不到位。
陷阱3:二次函数y=ax2+bx+c的图象位置和参数a,b,c的关系。
常在选择题中的压轴题来考查。
陷阱4:在有些函数或方程的表述形式上埋设陷阱,如表述为“函数y=ax2+bx+c”,这里因为没有特别注明是二次函数,所以一定要注意当a=0的情况,如表述为“方程ax2+bx+ c=0”,则该方程不一定为一元二次方程,故还要考虑当a=0的情况。
初中数学常见的32个问题陷阱一、数学式陷阱1:在较复杂的运算中,因不注意运算顺序或者不合理使用运算律,致使运算出现错误。
常见陷阱是在实数的运算中符号层层相扣。
陷阱2:要求随机或者在某个范围内代入求值时,注意所代值必须要使式子有意义,常见陷阱是候选值里有一个会使分母为零。
陷阱3:注意分式运算中的通分不要与分式方程计算中的去分母混淆。
陷阱4:非负数的性质:若几个非负数的和为0,则每个式子都为0;常见非负数有:绝对值,非负数的算术平方根,完全平方式。
陷阱5:五个基本数的混合运算:0指数,基本三角函数,绝对值,负指数,二次根式的化简,这些需牢记。
陷阱6:科学计数法中,精确度和有效数字的概念要清楚。
二、方程(组)与不等式(组)陷阱1:运用等式性质解方程时,切记等式两边不能直接约去含有未知数的公因式,必须要考虑约去的含有未知数的公因式为零的情形。
陷阱2:常在考查不等式的题目时候埋设关于性质3的陷阱,许多人因忘记改变符号的方向而导致结果出错。
陷阱3:关于一元二次方程中求某参数的取值范围的题目中,埋设二次项系数包含参数这一陷阱,易忽视二次项系数不为0导致出错。
陷阱4:解分式方程时,首要步骤是去分母,分数相当于括号,易忘记最后对根的检验,导致运算结果出错。
陷阱5:关于一元一次不等式组有解无解的条件,易忽视相等的情况;利用函数图象求不等式的解集和方程的解时,注意端点处的取值。
三、函数陷阱1:关于函数自变量的取值范围埋设陷阱。
注意:①分母≠0,二次根式的被开方数≥0,0指数幂的底数≠0;②实际问题中许多自变量的取值不能为负数。
陷阱2:根据一次函数的性质(或者实际问题、动点问题等)判断函数的图象出错,一次函数图象性质与k、b之间的关系掌握不到位。
陷阱3:二次函数y=ax2+bx+c的图象位置和参数a,b,c的关系。
常在选择题中的压轴题来考查。
陷阱4:在有些函数或方程的表述形式上埋设陷阱,如表述为“函数y=ax2+bx+c”,这里因为没有特别注明是二次函数,所以一定要注意当a=0的情况,如表述为“方程ax2+ bx+c=0”,则该方程不一定为一元二次方程,故还要考虑当a=0的情况。
七年级上册数学坑题
七年级上册数学坑题,可能会涉及一些比较隐蔽或容易混淆的知识点,导致学生在解题时容易出错。
以下是一些例子:
1. 绝对值的坑题:
判断正误:如果 x = y,则 x = y。
答案:错。
例如,x = 2,y = -2,满足 x = y,但x ≠ y。
2. 代数式化简的坑题:
计算:a^2 + 2a - 2a^2 - 4a + 3a - 3a^2
答案:原式 = -3a^2 + a
提示:注意同类项的合并。
3. 角度计算的坑题:
如果一个角的余角是这个角的补角的1/4,求这个角的度数。
答案:设这个角为 x 度。
由余角的定义,其余角为 (90 - x) 度。
由补角的定义,其补角为 (180 - x) 度。
根据题意,(90 - x) = (1/4) × (180 - x)。
解得 x = 60。
4. 一元一次方程的坑题:
解方程:x + 1 = 2x。
答案:设x ≥ 0,则 x + 1 = 2x,解得 x = 1。
设 x < 0,则 -x + 1 = 2x,解得 x = -1/3。
综上,方程的解为 x = 1 或 x = -1/3。
这些题目主要是考察学生对基础知识的掌握程度和解题的细心程度,所以也可以视为一种训练学生思维严谨性的方法。
学生在做这些题目的时候一定要细心,避免因为一时的疏忽而做错。
数学坑人小题目中学时期,你是否也曾经遇到过被数学坑到的情况?那些看上去简单,实际上却让人头疼的小题目,是否让你也曾深感数学的神秘和魅力。
下面,让我们一起来回顾一下那些曾经坑人的小题目。
1. 时间问题假设现在是上午10点15分,那么3小时25分后是几点呢?看似简单的问题,但是你有没有想到,小时和分钟是两个不同的单位,需要将其转换成同样的单位才能进行计算。
2. 相似三角形在中学数学中,相似三角形是比较常见的一个问题。
但是有时候,题目会出现特殊的相似三角形,例如存在一条平行于底边的直线将三角形分成两个相似三角形,那么该如何求解呢?3. 平方根问题计算平方根也是经常出现的问题,但是当给定一个不是完全平方数的数时,该如何计算其平方根?这就需要用到牛顿迭代等高级方法了。
4. 随机事件概率随机事件概率也是中学数学中比较困难的一个问题,需要对概率、全集、事件等概念有很好的理解。
而有些问题中还需要考虑独立事件、联合概率等因素,更加考验学生的数学思维能力。
5. 函数图像问题函数图像问题是中学数学中相对简单的一个方面,但是有时候会出现一些复杂的函数图像,例如阶梯函数、绝对值函数等,需要学生注意观察和分析。
6. 极值问题极值问题同样是中学数学中经常出现的一个问题,需要学生能够熟练地运用导数的相关知识。
而有些问题中还需要考虑约束条件等因素,更加考验学生的数学能力。
7. 计算器问题虽然现在中学生可以使用计算器辅助计算,但是有时候计算器也会成为一个坑人的问题源。
例如计算器上没有特定的按钮,需要将大问题转化为小问题逐步计算。
此时,学生需要遵循计算规则,且需要认真核对结果。
以上就是中学数学中常见的坑人小题目,虽然这些问题看似简单,但是如果不注意细节和原则,就很容易出错。
而这也正是数学能够锻炼我们逻辑思维和细心的重要原因之一。
初中数学常见的32个问题陷阱一、数学式陷阱1:在较复杂的运算中,因不注意运算顺序或者不合理使用运算律,致使运算出现错误。
常见陷阱是在实数的运算中符号层层相扣。
陷阱2:要求随机或者在某个范围内代入求值时,注意所代值必须要使式子有意义,常见陷阱是候选值里有一个会使分母为零。
陷阱3:注意分式运算中的通分不要与分式方程计算中的去分母混淆。
陷阱4:非负数的性质:若几个非负数的和为0,则每个式子都为0;常见非负数有:绝对值,非负数的算术平方根,完全平方式。
陷阱5:五个基本数的混合运算:0指数,基本三角函数,绝对值,负指数,二次根式的化简,这些需牢记。
陷阱6:科学计数法中,精确度和有效数字的概念要清楚。
二、方程(组)与不等式(组)陷阱1:运用等式性质解方程时,切记等式两边不能直接约去含有未知数的公因式,必须要考虑约去的含有未知数的公因式为零的情形。
陷阱2:常在考查不等式的题目时候埋设关于性质3的陷阱,许多人因忘记改变符号的方向而导致结果出错。
陷阱3:关于一元二次方程中求某参数的取值范围的题目中,埋设二次项系数包含参数这一陷阱,易忽视二次项系数不为0导致出错。
陷阱4:解分式方程时,首要步骤是去分母,分数相当于括号,易忘记最后对根的检验,导致运算结果出错。
陷阱5:关于一元一次不等式组有解无解的条件,易忽视相等的情况;利用函数图象求不等式的解集和方程的解时,注意端点处的取值。
三、函数陷阱1:关于函数自变量的取值范围埋设陷阱。
注意:①分母≠0,二次根式的被开方数≥0,0指数幂的底数≠0;②实际问题中许多自变量的取值不能为负数。
陷阱2:根据一次函数的性质(或者实际问题、动点问题等)判断函数的图象出错,一次函数图象性质与k、b之间的关系掌握不到位。
陷阱3:二次函数y=ax2+bx+c的图象位置和参数a,b,c的关系。
常在选择题中的压轴题来考查。
陷阱4:在有些函数或方程的表述形式上埋设陷阱,如表述为“函数y=ax2+bx+c”,这里因为没有特别注明是二次函数,所以一定要注意当a=0的情况,如表述为“方程ax2+bx+c=0”,则该方程不一定为一元二次方程,故还要考虑当a=0的情况。
初中数学常见的32个问题陷阱一、数学式陷阱1:在较复杂的运算中,因不注意运算顺序或者不合理使用运算律,致使运算出现错误。
常见陷阱是在实数的运算中符号层层相扣。
陷阱2:要求随机或者在某个范围内代入求值时,注意所代值必须要使式子有意义,常见陷阱是候选值里有一个会使分母为零。
陷阱3:注意分式运算中的通分不要与分式方程计算中的去分母混淆。
陷阱4:非负数的性质:若几个非负数的和为0,则每个式子都为0;常见非负数有:绝对值,非负数的算术平方根,完全平方式。
陷阱5:五个基本数的混合运算:0指数,基本三角函数,绝对值,负指数,二次根式的化简,这些需牢记。
陷阱6:科学计数法中,精确度和有效数字的概念要清楚。
二、方程(组)与不等式(组)陷阱1:运用等式性质解方程时,切记等式两边不能直接约去含有未知数的公因式,必须要考虑约去的含有未知数的公因式为零的情形。
陷阱2:常在考查不等式的题目时候埋设关于性质3的陷阱,许多人因忘记改变符号的方向而导致结果出错。
陷阱3:关于一元二次方程中求某参数的取值范围的题目中,埋设二次项系数包含参数这一陷阱,易忽视二次项系数不为0导致出错。
陷阱4:解分式方程时,首要步骤是去分母,分数相当于括号,易忘记最后对根的检验,导致运算结果出错。
陷阱5:关于一元一次不等式组有解无解的条件,易忽视相等的情况;利用函数图象求不等式的解集和方程的解时,注意端点处的取值。
三、函数陷阱1:关于函数自变量的取值范围埋设陷阱。
注意:①分母≠0,二次根式的被开方数≥0,0指数幂的底数≠0;②实际问题中许多自变量的取值不能为负数。
陷阱2:根据一次函数的性质(或者实际问题、动点问题等)判断函数的图象出错,一次函数图象性质与k、b之间的关系掌握不到位。
陷阱3:二次函数y=ax2+bx+c的图象位置和参数a,b,c的关系。
常在选择题中的压轴题来考查。
陷阱4:在有些函数或方程的表述形式上埋设陷阱,如表述为“函数y=ax2+bx+c”,这里因为没有特别注明是二次函数,所以一定要注意当a=0的情况,如表述为“方程ax2+ bx+c=0”,则该方程不一定为一元二次方程,故还要考虑当a=0的情况。
初中数学常见的32个问题陷阱一、数学式陷阱1:在较复杂的运算中,因不注意运算顺序或者不合理使用运算律,致使运算出现错误。
常见陷阱是在实数的运算中符号层层相扣。
陷阱2:要求随机或者在某个范围内代入求值时,注意所代值必须要使式子有意义,常见陷阱是候选值里有一个会使分母为零。
陷阱3:注意分式运算中的通分不要与分式方程计算中的去分母混淆。
陷阱4:非负数的性质:若几个非负数的和为0,则每个式子都为0;常见非负数有:绝对值,非负数的算术平方根,完全平方式。
陷阱5:五个基本数的混合运算:0指数,基本三角函数,绝对值,负指数,二次根式的化简,这些需牢记。
陷阱6:科学计数法中,精确度和有效数字的概念要清楚。
二、方程(组)与不等式(组)陷阱1:运用等式性质解方程时,切记等式两边不能直接约去含有未知数的公因式,必须要考虑约去的含有未知数的公因式为零的情形。
陷阱2:常在考查不等式的题目时候埋设关于性质3的陷阱,许多人因忘记改变符号的方向而导致结果出错。
陷阱3:关于一元二次方程中求某参数的取值范围的题目中,埋设二次项系数包含参数这一陷阱,易忽视二次项系数不为0导致出错。
陷阱4:解分式方程时,首要步骤是去分母,分数相当于括号,易忘记最后对根的检验,导致运算结果出错。
陷阱5:关于一元一次不等式组有解无解的条件,易忽视相等的情况;利用函数图象求不等式的解集和方程的解时,注意端点处的取值。
三、函数陷阱1:关于函数自变量的取值范围埋设陷阱。
注意:①分母≠0,二次根式的被开方数≥0,0指数幂的底数≠0;②实际问题中许多自变量的取值不能为负数。
陷阱2:根据一次函数的性质(或者实际问题、动点问题等)判断函数的图象出错,一次函数图象性质与k、b之间的关系掌握不到位。
陷阱3:二次函数y=ax2+bx+c的图象位置和参数a,b,c的关系。
常在选择题中的压轴题来考查。
陷阱4:在有些函数或方程的表述形式上埋设陷阱,如表述为“函数y=ax2+bx+c”,这里因为没有特别注明是二次函数,所以一定要注意当a=0的情况,如表述为“方程ax2+ bx+c=0”,则该方程不一定为一元二次方程,故还要考虑当a=0的情况。
初中数学命题老师最爱出的32个陷阱函数陷阱1:关于函数自变量的取值范围埋设陷阱。
注意:①分母≠0,二次根式的被开方数≥0,0指数幂的底数≠0;②实际问题中许多自变量的取值不能为负数。
陷阱2:根据一次函数的性质(或者实际问题、动点问题等)判断函数的图象出错,一次函数图象性质与k、b之间的关系掌握不到位。
陷阱3:二次函数y=ax2+bx+c的图象位置和参数a,b,c的关系。
常在选择题中的压轴题来考查。
陷阱4:在有些函数或方程的表述形式上埋设陷阱,如表述为“函数y=ax2+bx+c”,这里因为没有特别注明是二次函数,所以一定要注意当a=0的情况,如表述为“方程ax2+bx+c=0”,则该方程不一定为一元二次方程,故还要考虑当a=0的情况。
陷阱5:在关于二次函数的应用题中,常见陷阱是当y取得最值时,自变量x不在其范围内。
陷阱6:根据反比例函数性质比较大小时,要注意看两点是否在同一分支上,若不在同一分支上,则直接利用正负情况比较大小;若在同一分支上,则利用增减性判断;若末明确点所在象限,要分类讨论。
4三角形陷阱1:三角形三边之间的不等关系,注意其中的“任何两边”。
最短距离的方法。
陷阱2:在论证三角形全等、三角形相似等问题时,对应点或者对应边容易出错。
注意边边角(SSA)不能证两个三角形全等。
陷阱3:关于等腰三角形的陷阱比较多,并且几乎每年必考,如在解决仅告诉某三角形是等腰三角形,而没有具体说明哪两条边是腰、那两个角是底角的计算与证明问题时,注意需分类讨论。
陷阱4:运用勾股定理及其逆定理计算线段的长、证明线段的数量关系、解决与面积有关的问题以及简单的实际问题时,注意先确定直角或者斜边,如不能确定,需分类讨论。
陷阱5:涉及三角形面积时,确定底边对应的高容易出错(特别拿钝角三角形为陷阱诱导考生出错)。
5四边形陷阱1:平行四边形的性质和判定,如何灵活、恰当地应用。
如利用性质“一组对边平行且相等的四边形是平行四边形”时,注意“同一组对边”这个关键词。
中考数学陷阱题汇总中考数学陷阱题汇总如下:1.陷阱题1:运用等式性质解方程时,切记等式两边不能直接约去含有未知数的公因式,必须要考虑约去的含有未知数的公因式为零的情形。
2.陷阱题2:关于一元二次方程中求某参数的取值范围的题目中,埋设二次项系数包含参数这一陷阱,易忽视二次项系数不为0导致出错。
3.陷阱题3:解分式方程时,首要步骤是去分母,分数相当于括号,易忘记最后对根的检验,导致运算结果出错。
4.陷阱题4:关于一元一次不等式组有解无解的条件,易忽视相等的情况;利用函数图象求不等式的解集和方程的解时,注意端点处的取值。
5.陷阱题5:关于函数自变量的取值范围埋设陷阱。
6.陷阱题6:根据一次函数的性质(或者实际问题、动点问题等)判断函数的图象出错,一次函数图象性质与k、b之间的关系掌握不到位。
7.陷阱题7:二次函数y=ax2+bx+c的图象位置和参数a、b、c的关系。
常在选择题中的压轴题来考查。
8.陷阱题8:四边形中的翻折、平移、旋转、剪拼等动手操作性问题,注意其中的不变与变化。
9.陷阱题9:对弧、弦、圆周角等概念理解不深刻,特别是弦所对的圆周角有两种情况要特别注意,两条弦之间的距离也要考虑两种情况。
10.陷阱题10:考查圆与圆的位置关系时,相切有内切和外切两种情况,包括相交也存在两圆圆心在公共弦同侧和异侧两种情况,许多人容易忽视其中的一种情况。
1/ 211.陷阱题11:图形的轴对称或旋转问题,要充分运用其性质解题,即运用图形的“不变性”,如在轴对称和旋转中角的大小不变,线段的长短不变。
12.陷阱题12:将轴对称与全等混淆,关于直线对称与关于轴对称混淆。
13.陷阱题13:判断是否公平的方法是判断概率是否相等,注意频率与概率的联系与区别。
2/ 2。
初中趣味数学题,小心思维陷阱
极客数学帮整理了几道初中趣味数学题,题干中隐藏了不少的陷阱,一个不小心就会掉进自己的思维陷阱当中。
所以审题、解题的过程中一定要当心。
接下来就一起来看看吧。
1.计算最多能吃几个桃
一毛钱一个桃,三个桃核换一个桃,请问1块钱最多能吃几个桃?
答案:1块钱买10个,吃完后剩10个核。
再换3个桃,吃完后剩4个核。
再换1个桃,吃完后剩2个核。
朝卖桃的赊1个,吃完后剩3个核。
把核都
给卖桃的,顶赊的那个。
所以,你一共吃了10+3+1+1=15个桃。
这是大家都知道的方法。
还有个方法:不要一次买十个,分开买,第一次三个,第二次
两个,第三次两个,这样…很简单,也是15个。
2.葱白和葱绿分开卖
有个人去买葱,问葱多少钱一斤?卖葱的人说1块钱1斤,这是100斤,
要完100元。
买葱的人又问:葱白跟葱绿分开卖不,卖葱的人说:卖,葱白
7毛,葱绿3毛。
买葱的人都买下了,称了称葱白50斤,葱绿50斤。
最后
一算葱白50*7等于35元,葱绿50*3等于15元,35+15等于50元。
买葱的人给了卖葱的人50元就走了。