高压气体放电灯的典型电路分析
- 格式:pdf
- 大小:129.97 KB
- 文档页数:2
高强气体放电灯工作原理高压钠灯使用时发出金白色光,它具有发光效率高、耗电少、寿命长、透雾能力强和不诱虫等优点。
广泛应用于道路、高速公路、机场、码头、船坞、车站、广场、街道交汇处、工矿企业、公园、庭院照明及植物栽培。
高显色高压钠灯主要应用于体育馆、展览厅、娱乐场、百货商店和宾馆等场所照明。
1.1 工作原理当灯泡启动后,电弧管两端电极之间产生电弧,由于电弧的高温作用使管内的钠汞齐受热蒸发成为汞蒸气和钠蒸气,阴极发射的电在向阳极运动过程中,撞击放电物质有原子,使其获得能量产生电离激发,然后由激发态回复到稳定态;或由电离态变为激发态,再回到基戊无限循环,多余的能量以光辐射的形式释放,便产生了光。
高压钠灯中放电物质蒸气压很高,也即钠原子密度高,电子与钠原子之间碰撞次数频繁,使共振辐射谱线加宽,出现其它可见光谱的辐射,因此高压钠灯的光色优于低压钠灯。
高压钠灯是一种高强度气体放电灯泡。
由于气体放电灯泡的负阻特性,如果把灯泡单独接到电网中去,其工作状态是不稳定的,随着放电过程继续,它必将导致电路中电流无限上升,最后直至灯光或电路中的零、部件被过流烧毁。
1.1.1 伏—安特性高压钠灯同其他气体放电灯泡一样,工作是弧光放电状态,伏—安特性曲线为负斜率,即灯泡电流上升,而灯泡电压却下降。
在恒定电源条件下,为了保证灯泡稳定地工作,电路中必须串联一具有正阻特性的电路无件来平衡这种负阻特性,稳定工作电流,该元件称为镇流器或限流器。
电阻器、电容器、电感受器等均肯有限流作用。
电阻性镇流器体积小,价格便宜,与高压钠灯配套使用会发生启动困难,工作时电阻产生很高的热量,需有较大的散热空间、消耗功率很大,将会使电路总照明效率下降。
它一般在直流电路中使用,百交流电路中使用灯光有明显所闪烁现象。
电容性镇流器虽然不象电阻性镇流器自身消耗功率很大,温升低,在电源频率较低时,电容器充电时,会产生脉冲峰值电流,对电极造成极大损害,灯光闪烁,影响灯泡使用寿命;在高频电路中工作,电压波动能达到理想状态,成为理想的镇流器。
典型的高压闪光灯电路图
1.高压闪光灯电路
高压闪光灯是经振荡电路与升压变压器产生高电压,由大电容器储存能量,在需要的瞬间释放并感应出高压,激发惰性气体发出脉冲光源,从而获得极强的瞬时功率的。
图1是一个闪光灯的原型,该闪光灯是由一个充满氙气的玻璃罩构成的,其负极和正极全都浸入在氙气内,而触发极与灯表面相连,没有浸没在氙气内。
图1 闪光灯的原型
当氙气的阻抗值降到一个很低的数值时,一股强大的电流从正极流至负极,产生很强的可见光。
完成这项功能的是触发极,它会产生一个很高的峰值电压(几千伏),从而使氙气被离子化,并进入低阻抗状态。
目前常用的闪光灯电路大多是高压闪光灯电路,它由振荡电路、升压变压器、储能大电容器、高压线圈、惰性气体闪光灯组成,典型电路图如图2所示。
图2 典型的高压闪光灯电路图
闪光灯的输出光线很强,覆盖面很广。
闪光灯的色温大约为5500~6000K,十分接近自然光的色温,所以无须彩色校正。
另外,因为输出光线需用很高的电能(在阳极上需要几百伏),所以把电池电压提高到闪光灯所需的电压需要一些时间。
通常情况下s两次连续闪光的间隔在1~5s之间s时间长短取决于输入功率、电容、充电电路特性和所需电能。
闪光灯只能是脉冲式的,所以它是一个很好的照相辅助光源解决方案,但不适合应用于运动图像的摄像。
此外,氙气闪光灯管及其相关的驱动电子组件会占用很大的空间,而移动电话的可用空间十分有限。
而且因为点燃氙气、提供正确的能量,以及保证光输出都需要很高的电压,都需要一个精确的成本昂贵的驱动器,这些因素都限制了高压闪光灯在移动电话上的应用。
高强度气体放电灯的热启动电路Heat start circuit of the high intensity gas discharge (HID) Iamp 大家知道,高压钠灯和金属卤化物灯,这类高强度气体放电(HID)灯比较难启动。
特别当灯点亮后,工作足够长时间,灯的温度上升后,如果突然断电,紧接着又再启动,就需要专门的启动电路,这就叫做热启动。
对此,灯两端需加较高的脉冲电压(它比电网电压高得多)。
为热启动这种灯并使之正常工作,已有许多电路形式。
这些电路都工作得十分满意。
但是,这些电路中,除了所用的普通镇流器外,通常都带电阻和脉冲变压器,才能完成启动工作。
这里的电阻,一般是低阻值大功率的,它要发热。
为防止这些发热元件危及电路其他元件,就采用特殊的设计,或者把热排走,或者把其他元件用隔热材料隔离起来。
另外,用了大瓦数的电阻和脉冲变压器,也增加了电路和成本。
为克服上述电路的这些缺点,介绍一种新型电路,如图1所示。
该电路无大瓦数电阻和脉冲变压器,其线路连接关系如下:接线端子1及2接到交流电网上,(220V或110V),C1为功率因数校正电容,接在电源输入端子1及2之间。
L1为电感镇流器,其一端连到电源输入端子1,另一端接到灯Lp,灯的另一端接到电网输入端2。
这样,镇流器和灯串接起来跨接在电源两端子上。
镇流器L1有一个抽头E,它把镇流器线圈分为两部分,BE为第一绕组,也叫初级绕组,AE为第二绕组,也叫次级绕组,绕组AE的匝数N2,比绕组BE的匝数N 1大得多,一般取≤5%。
可控硅SCR接在镇流器L1的B端和储能电容C2之间。
电容C2的另一端器连接器抽头E。
触发二极管D3接在SCR的控制极和阳极之间。
如有必要在触发二极管和SCR的控制极之间接一个限流电阻R2,以保护触发二极管。
从电路中SCR、电容C2及D3的连接关系可看出:如果电容C2上的电压增加达到或超过触发二极管D3的击穿电压,D3就导通,SCR就处于导通状态,电容C2就通过绕组EB放电。