当前位置:文档之家› 抗生素研究进展

抗生素研究进展

抗生素研究进展
抗生素研究进展

文献综述

抗生素发酵研究进展

专业年级13生物工程学院环资学院学生姓名王先府学号2013125142 指导教师常海军日期2016.4.30

抗生素发酵研究进展

王先府

(重庆工商大学环资学院2013级生物班2013125142)

摘要:抗生素是由微生物(包括细菌、真菌、放线菌属)或高等动植物在生活过程中所产生的具有抗病原体或

其它活性的一类次级代谢产物,能干扰其他生活细胞发育功能的化学物质,由于其在自然条件下不易获得,现可

利用发酵来生产抗生素,本文对抗生素发酵研究过程多方面进行综述。

关键词:抗生素;菌渣;过程优化

Advances in antibiotic fermentation

Jeff

(College of environment and resources, Industrial and Commercial University Of Chongqing,2013125142)Abstract:Antibiotics are by microorganisms,(including bacteria, fungi, actinomycetes spp.) or higher plants and animals produced in the process of life with resistance to pathogens or other activity of a class of secondary metabolites, can interfere with other living cells development function of chemical substances, due to its under natural conditions is not easy to get, is now available by fermentation to produce antibiotic, against the students ferment process research are reviewed.

Key words:antibiotics; mushroom residue; process optimization

采用发酵工程技术生产医药产品是制药工程的重要部分,其中抗生素是我国医药生产的大宗产品,随着基因工程技术的进展,基因工程药的比例逐渐增大,但抗生素在国计民生中所起的作用是不能完全替代的,特别是西方国家出于能源和环保的考虑,转产生产高附加值的药物,留出了抗生素的市场空间,为我国的抗生素生产发展提供了机遇,作为一个发展中的国家,可以说在相当长时间内, 我国抗生素生产在整个医药产品中仍占很大的比例。

1全发酵研发情况

中国最早生产的全发酵抗生素品种为饲用土霉素钙。世纪年代内蒙古金河生物科技公司等4家抗生素发酵企业开始生产全发酵金霉素产品,并以内蒙古金河生物科技公司的国内国际的市场占有量最大。目前国内有25家抗生素发酵生产企业生产全发酵抗生素产品,产品主要有黄霉素预混剂、饲用金霉素、那西肽预混剂、硫酸黏菌素预混剂、恩拉霉素预混剂、杆菌肽锌预混剂、亚甲基双水杨酸杆菌肽预混剂等由于含量规格不同,目前在我国共获得70多个产品批准文号。这些产品对我国的动物养殖发挥了重要作用主要体现在:①治疗某些动物疾病;②预防某些动物疾病尤其是对那些传染性疾病的预防,保证畜禽的健康生长;③促生长作用使畜禽生长速度加快,可使某些饲养动物缩短喂养周期;④提高饲料转化率也即饲料利用率,使之利用较少的饲料达到相同饲喂效果从而节省饲料提高生产效益⑤提高动物产品质量这其中主要是可提高肉蛋奶的产品质量⑥提高动物机能的抵抗力从而增强动物应付外界不良环境的能力。

近多年来,我国养殖业迅猛发展养殖模式从散养逐步转变集约化养殖,同时我国全发酵抗生素企业的生产技术和研发水平也逐步与国际接轨。因此,我国企业生产的全发酵抗生素产品在国内和国际占有相当的市场。例如,浙江海正药业股份有限公司生产的恩拉霉素预混剂一个品种一年的销

售额过亿元人民币。在满足国内市场需求的同时,这些企业积极开拓国际市场。由于我国能源、人工和原材料成本低,我国生产的全发酵产品迅速占领国际市场其中金河生物集团早在1994年就通过美国对金霉素产品的注册审批,并先后通过了5次组织的现场检査。其生产的饲用金霉素产品主要出口到美国。金河生物集团、濮阳泓天威药业有限公司、浙江升华拜克股份有限公司均已通过澳大利亚APVMA验收可以向澳大利亚、新西兰等国家地区供货。其他几家企业生产的饲用金霉素、盐霉素预混剂、莫能菌素预混剂、恩拉霉素预混剂、杆菌肽锌预混剂等产品大量出口北美、亚太以及南美国家。此类全发酵产品在国际市场上有着稳定的市场份额。

2 国内外部分抗生素固态发酵研究概况

2.1 头孢菌素C的固态发酵

早在1984年, 中国台湾的Wang H H等[1]就研究了利用大米来生产头孢菌素C。他们对发酵条件进行了较为细致的研究, 得到的条件如下: 以大米作为主要基质, 其中含有0. 65 % (质量分数)的蛋白胨, 0. 65%的硫酸铵, 0. 26%的肌醇, 1 .3%(体积质量比)的微量元素溶液, 0. 65%的碳酸钙, 0 .65 %的硫酸钙, 0 .065%的硫酸钾, 1 .3 %的蔗糖, 0 .13 %的DL- 蛋氨酸和2 .6 %的甲基油酸盐。初始含水量为49%~51 %,水活度是0 .985,发酵温度25 ℃, 发酵时间7 d, 产量达到6. 42 mg /g。

Jermini M F和Demain A L [2]研究了Strepto-mycesclavuligerus和Cephalosporium acremonium固态发酵产头孢菌素的条件。S. clavuligerus NR-RL 3585用大麦发酵7 d产量达到300 mg /g 基质, C. acremonium发酵10 d产量达到950 mg /g。K. Adinarayana等[3]对用Acremonium chry-sogenum ATCC 48272 固态发酵生产头孢菌素C的条件进行了优化。他们对不同的基质原料进行了选择,在麸皮、Wheat rawa 、Bombay rawa、大麦和米糠中,Wheat rawa 最适合头孢菌素的生产。以Wheat rawa为主要基质, 对其他条件进行优化如下: Wheat rawa加入1% ( 质量分数)的可溶性淀粉,1% (质量分数)的酵母提取物,培养温度30℃,营养盐按1 .5∶10(体积质量比)的比例加入, 接种量10% (体积质量比),初始含水量为80%, 初始pH值6 .5。在此条件下,头孢菌素C的产量达到22 .281 mg /g。

2.2 头霉素C的固态发酵

头霉素C是一种广谱的β-内酰氨类的抗生素,可由多种微生物产生, 如Nocardia lactamdurans, Streptomyces catteya和S. clauverigerus。因液态深层发酵需要消耗较多的能量, 人们开始研究利用

固态发酵的方法来生产头霉素C。Krishna Prasad Kota和Padma Sridhar[4-5]对利用麸皮固态发酵生产头霉素C进行了研究。固态发酵条件为: 麸皮5 g ,棉籽脱脂饼粉5 g ,葵花籽饼粉5 g ,玉米浆1 g ,基质初始含水量为80 %,初始pH 值为6. 5,发酵温度在28~30℃, 发酵周期约5 d。Streptomyces clavuligerus的生长在第2天看到,从第3天开始生成大量菌丝,到第5天时菌丝量达到稳定。头霉素C在第3天开始生成,在第5天的时候则以15 mg /g基质的最大速率生成,直到第30天都基本保持稳定。研究表明,固态发酵所生产的头霉素C比液态发酵方法所产具有更好的稳定性, Balkrishnan 和Pandey[2]的研究结果与此类似。固态发酵中头霉素C产生的最佳温度和pH都与液态发酵中是一致的, 但是在固态发酵中很难维持恒定的温度和pH 值。

2.3 青霉素的固态发酵

青霉素的固态发酵由于其产量较高曾经在一段时间受到广泛关注, 后来随着液态深层发酵水平的提高逐渐被忽视。Barrios- Gonzalez等[6]证实了怎样在短时间内用固态发酵方法大量地生产青霉素。在液态发酵条件下, 报道的最大产量为9. 8mg /L ,而在固态发酵条件下, 产量为13 mg /g ,这证实了固态发酵的经济性和可行性。

J. Barrios- González 等[7]研究了用营养液浸泡甘蔗渣在非无菌条件下固态发酵产青霉素的情况。结果显示,这种方法可大大提高青霉素的产量, 提高初始含水量到70%有利于青霉素的产生(以后的研究[8]发现甘蔗渣、营养物质、水三者的比例不同对青霉素的产量影响较大),与液态发酵的比较显示出一定的优越性。在甘蔗渣作支持物固态发酵生产青霉素的研究中, 用较大颗粒(14 mm)的甘蔗渣可使青霉素的产量提高37%,但这一影响是归因于蔗渣中较高的糖含量。提高填充密度青霉素的产量可提高20 %,如果通气带走的水分能及时补充, 通气不会对青霉素的产量产生较大的影响[9]。

3 抗生素菌渣资源化再利用

3.1 重新用于发酵替代培养基氮源

抗生素菌渣因其含有的丰富的蛋白质,含氮量高,可以作为培养基中的氮源。抗生素菌渣用作培养基成分主要有两种方式:一种是直接将菌渣研磨过筛后用于替代发酵培养基中的氮源;一种则是利用酵母菌和芽孢杆菌等对菌渣进行固体发酵,达到生物改性的目的后,再用在培养基中或者制成如酵母膏之类的高值化培养基成分。

抗生素菌渣直接用于发酵培养基早在1961年,Ghosh等[10]通过研究发现青霉素废菌渣在不经过任何预处理的情况下,就能用作青霉素发酵培养基中的唯一氮源,并取得了很好的效果。在不减发酵产青霉素效价的前提下,菌丝体重复利用的次数可达5次。近年来国内也有相关的研究,蔡翔等[11]研究利用可利霉素菌渣替代发酵培养基中的有机氮源,菌渣作唯一氮源时,加量为4%,效价最高,达到对照的77%,然后通过正交试验优化发酵条件,最终可利霉素效价达到对照的88%。虽然抗生素产量稍有下降,但是生产成本降低,处理方便,同时解决了菌渣处理的难题,保护环境。然而抗生素菌渣含有抗生素残留及有毒代谢产物,散发异味等不利因素,不但使得适用该处理方式的抗生素菌渣种类较少,而且目前这方面的相关文献报道中,某一抗生素菌渣也仅用于该抗生素发酵,适用性较窄。为此大部分菌渣通常需要进行无害化预处理以及生物改性,使其能更好地应用于发酵培养基。

3.2 能源化利用

抗生素菌渣含有丰富的生物质,故可以同其他生物质资源一样利用厌氧发酵,热解或者水热的方式进行能源化利用。

厌氧发酵是将含有高有机质的废弃物,如猪粪,有机垃圾、蔬菜废弃物和秸秆等资源化利用,变废为沼气的很好的处理方式,抗生素菌渣含有丰富的有机质,因而可采用厌氧发酵的方式达到减量化和资源化的目的,且这种处理方式既减少环境污染,又获得了经济效益。厌氧发酵处理适用性较广,可用于多种类型的抗生素菌渣,如红霉素、林可霉素、青霉素、四环素、洁霉素和麦迪霉素等[12-16]。

但是由于抗生素菌渣C/ N 比较低,蛋白质含量高,故其水解会造成氨氮的积累,氨氮和残留抗生素是其厌氧发酵的两个重要的抑制因素[14]。过多的氨氮可以通过添加碳源来处理[13],抗生素残留则可通过降解菌或者降解酶预处理,而且一定浓度抗生素残留对产甲烷菌存在抑制作用的同时也能对其驯化。刘子旭等[17]发现甲烷菌的活性会受到红霉素的抑制,未投加红霉素时甲烷的含量为68% ,在150 m g/ L 的红霉素浓度下,甲烷菌的甲烷产量降低约0% ,250 m g/ L 时甲烷菌基本丧失活性。通过保持添加20 m g/ L 的红霉素浓度不变,连续运行60 d,初始时甲烷含量下降到49. 5% ,运行20 d、40 d和60 d 后甲烷含量呈现递增趋势,分别增长至52. 6% 56%和64. 2%。虽未达到未投加红霉素的时候的68%的甲烷含量,但仅下降4% 。说明通过甲烷菌对抗生素的驯化能力,利用驯化的甲烷菌也能在一定程度上提高厌氧发酵效果。

除此之外,抗生素菌渣用于厌氧发酵还存在一个问题,菌丝体细胞壁存在由肽链交联的多糖成分,不利于生物降解[13],因此对菌渣进行破壁处理有益于厌氧发酵。目前对菌渣的预处理常见的有物理方法:微波法和超声破碎法;化学方法:酸热法和碱热法。选择高效且经济的破壁方式,具有很好的应用前景。韩庆等[18]通过对比微波法、碱热法和酸热法对青霉素菌丝体细胞壁的破壁效果发现,在相同的时间和温度条件下,碱热法的效果最好,且破壁所需的时间相对较短,具有最高的性价比。原因在于细胞壁主要由甲壳素、葡萄糖及聚糖醛酸等物质组成,这些物质大多在碱性条件不稳定,所以在碱性环境中破壁效果最好[19]。Zhong 等[13]通过对链霉素菌渣进行碱热预处理发现,反应器的生产性能和甲烷产量提高22. 08% -27. 08% ,菌渣去除率达到64. 09% ,总挥发性脂肪酸和氨氮的积累量都有所下降。因此,通过对菌渣进行合适的预处理,对其进行厌氧发酵实现菌渣减量化和能源化利用具有广阔的前景,同时厌氧发酵后的废渣,经过安全性分析后可用于农肥,实现综合利用。

热解液化处理是在缺氧和高温条件下处理有机物,将其由大分子分解成为小分子,甚至是气体,主要获得生物油资源和部分燃气及焦炭[20]。水热法则是以高温的液态水作为反应介质,将生物质转化成燃气、生物油和焦炭等。水热法和热解法都能很好地对菌渣进行无害化处理,不同的是水热法的能效更高,所得油品的热值也更高,更易于制成液体燃料。张光义等[21]研究利用水热法处理头孢菌素C制备固态燃料过程中的特性,表明水热处理能对菌渣进行无害化处理,并实现多重效益。但由于水热处理存在条件要求苛刻,设备成本高,反应时间长等问题,应用受到很大的限制,目前水热技术还未得到推广应用。

4 过程优化控制理论的应用及其发展

抗生素发酵过程优化的另一重要内容就是各种控制理论的应用。早在上世纪中叶, 人们为了研究微生物过程特性,开展以微生物细胞生长、代谢及有关产物形成等动力学研究, 先后建立了Monod、Contois 等数学模型,随着以生产为目的的发酵过程优化技术的研究深入,特别是对细胞大规模培养技术的深入研究和对以分批培养为主要对象的发酵过程参数的时变性、多样性、耦合性和不确定性的认识,在过程动力学数学模型为基础上,引进了一系列现代控制理论[22-24],其中有静态和动态优化、系统识别、自适应控制、专家系统、模糊控制、神经元网络等。这种适应发酵过程非线性特征的研究方法为细胞大规模培养技术研究的深入开展以及提高学术研究水平起了很大的推进作用,但在实际工厂生产上仍有很大局限性。造成这种局限性的原因除发酵过程的高度非线性的

多容量特性,很难用一组线性或拟线性数学模型来精确描述外, 如何实现从宏观描述到微观研究也是一个重要原因。本文提出的在发酵过程研究中应该重视细胞代谢流的问题实质上就属这种性质的问题。从控制论来看, 当前一个热点课题之一就是混沌现象的研究[25]。在我们进行抗生素发酵研究时,常发现发酵初期表现出过程的多态性和不稳定性,输入的初始条件的极细微的差别会产生结果的巨大变化, 这就是所谓发酵过程的混沌现象。混沌是非线性系统所特有的一种运动形态, 它是确定性系统里由于内部随机性而产生的貌似无序的复杂运动。但上述关于混沌现象的研究只是停留在对微生物过程混沌现象的揭示与表征,对导致生物系统出现混沌现象的微观机理未做任何涉及。任何生物现象问题必需要从细胞生物学角度找原因,这是近年来生物技术发展的共识,因此我们认为,如何从微观认识来解释上述现象对抗生素发酵过程优化与放大研究将具重要意义。这也是当前化学工程与生物技术深度结合形成生物化工的新特点:由宏观迈向微观,强调在生物技术深入发展的基础上,以微尺度的工程学观点研究过程特性。例如有人研究认为在发酵初期菌体处于对数生长阶段时, 在数学模型研究时随着引入阶数的增加, 菌体浓度随着滞后时间的增大已经有了明显的振荡, 不再表现为单纯指数型生长,若此时发酵过程出现底物限制或产物抑制,以及代谢途经或调控操作等的改变, 发酵过程将会发生周期、倍周期分岔直至混沌,就显示出过程的多态性和

不稳定性。

我们在红霉素与金霉素等抗生素发酵研究时, 发现早期CER、pH、DO 、OUR、RQ有一个相对应的上升峰或下降峰,反映了发酵初期的系统特征,并进一步通过在线计算机数据采集的RQ值变化, 发现在一定时期有机氮源同时被作为碳源使用, 即以碳氮骨架通过氨基酸进入到菌体,如这时控制不恰当,就会发生抗生素生产能力的大起大落, 即所谓混沌现象。经初步研究和有关文献报道,发现可能是原核细胞中的一种普遍的代谢调控机制: 严谨响应( stringent response)[26,27]。即当生长环境中的氨基酸成为限制条件时,空载tRNA水平升高, 当空载tRNA 进入核糖体后, 启动严谨响应因子,同时伴随着菌丝分化现象及次级代谢产物合成的启动。这种状态反映了基因表型和细胞代谢特征的变化,控制混沌可以得到我们所需要的细胞生理状态,有可能对提高抗生素发酵效价具有重要意义。

参考文献.

1.WANG H H , CHIOU J Y, WANG J Y , et al. Ceph-alosporin C production by solid state fermentation with rice grains[ J] . Chin J Microbiol Immunol, 1984, 17(1):55- 69.

2.JERMINI M F;DEM AIN A L. Solid state fermenta -tion for cephalosporin production by Streptomycescla-vuligerus and Cephalosporium acremonium[ J] . Expe -rientia, 1989, 45(11- 12): 1061 - 1065.

3. ADINARAYANA K, PRABHAKA R T, SRINIV A-SULU V , et al. Optimization of process parameters for cephalosporin

C production under solid state fer-mentation from Acremonium chrysogenum[ J] . Process Biochem, 2003, 39(2): 171- 177.

4.KOTA K P, SRIDHAR P. Solid state cultivation of Streptomyces clavuligerus for producing cephamycin C[ J] . J Sci Ind Res, 1998, 57(3): 587- 590.

5.KOTA K P, SRIDHAR P. Solid state cultivation of Streptomycesclavuligerus for cephamycin C produc-tion[ J] . Process Biochem, 1999, 34(4): 325 - 328.

6.BARRIOS- GONZALEZ J, CASTILLO T E, MEJIA A. Development of high penicillin - producing strains for solid state fermentation [ J] . Biotechnol Adv,1993, 11(3): 525 - 53

7.

7.BARRIOS- GONZá LEZ J, TOMASINI A, VINIEGRA-GONZá LEZ G , et al. Penicillin production by solid state

fermentation[ J] . Biotechnol Lett(Historical Archive),1998, 10(11): 793 - 798.

8.DOMí NGUEZ M , MEJí A A, REV AH S, et al. Op-timization of bagasse, nutrients and initial moisture ratios on the yield of penicillin in solid state fermenta-tion[ J] . World J Microbiol Biotechnol. , 2001, 17(7):751 - 756.

9.BARRIOS- GONZALEZ J, GONZA LEZ H, MEJIA A. Effect of particle size, packing density and agita -tion on penicillin production in solid state fermenta -tion[ J] . Biotechnol Adv , 1993, 11(3): 539- 547.

10.Ghosh D, Gangul i B. Product i on of peni ci l l i n wi t h wast e m ycel i um of Penicillium chrysogenum as t he sol e source of ni t rogen[J].Appl i ed M i crobi ol ogy, 1961, 9(3):252-255.

11.蔡翔, 郝玉有, 刘新星, 等. 可利霉素菌渣作为氮源的再利用研究[J]. 中国抗生素杂志, 2011, 36(6)478-481.

12.苏建文, 王俊超, 许尚营, 等. 红霉素菌渣厌氧消化实验研究[J]. 中国沼气, 2013, 31(5):25-28.

13. Zhong W , Li Z, Yang J, et al . Ef f ect of t herm al -al kal i ne pret reat m ent on t he anaerobi c di gest i on of st rept om yci n bact eri al resi dues f or m e-t hane product i on[J]. Bi oresour Technol , 2014, 151 :436-440.

14.何品晶, 管冬兴, 吴铎, 等. 氨氮和林可霉素对有机物厌氧消化的抑制效应[J]. 化工学报, 2011, 62(5):

15.孙效新, 黄栋, 李建民. 抗生素废菌渣液厌氧生物处理试验研究[J]. 中国沼气, 1990, 8(3):11-14.

16.吴铎, 管冬兴, 吕凡, 等. 林可霉素菌渣厌氧消化工况优化及抑制因素分析[C].

17.刘子旭, 孙力平, 李玉友, 等. 红霉素对产甲烷菌的抑制及其驯化[J]. 环境科学, 2013, 34(4):1540-1544.

18.韩庆, 苏海佳. 废菌渣高值化研究中细胞破壁工艺的比较[J].环境科学与技术, 2011, 34(5):144-147.

19.焦永刚, 马长捷, 李敏霞. 热解法处理抗生素发酵残渣的研究初探[J]. 工业安全与环保, 2011, 37(5):36-37.

20.高英, 石韬, 汪君, 等. 生物质水热技术研究现状及发展[J].可再生能源, 2011, 29(4):77-83.

21.张光义, 马大朝, 彭翠娜, 等. 水热处理抗生素菌渣制备固体

22.Shimizu K. An overview on the control system design of bioreac-tors[ J] .Adv Biochem Eng Biotechnol,

23.Montague G A, MorrisA J, Wright A R, et al. Parameter adap-tive control of the fed -batch penicillin

fermentation[ A] .JonhsonA, Modelling and Control of Biotechnological Processes [ M] .Oxford: The Netherlands, Pergamon Press, 1995, 39

24. Shih C C, Zuo K, Wu W T. Optimal fed-batch culture for peni-cillin production via hybrid neural model and real coded geneticalgorithm [ A] .Yoshida T, Shioya S. ( Eds. ), Computer appli-cations in biotechnology CAB7 [ M] .Osaka, Japan, Oxford:Elsevier, 1998:51

25.Demongeot J, Jacob C, CinquinP. Periodicity andChaos in Bio-logical Systems: New Tool for the Study of Attractors, Chaos inBiological Systems[ M] . New York: Poenum press, 1987

26.樊滔, 张嗣良. 金霉素发酵初期的生长分析与混沌现象[ J] .华东理工大学学报, 2002;28 ( 1):43

27.Riesenberg D, Bergter T, Kari C.Effect of serine hydrozamate and methyl α-D -glucopyranoside treatment on nucleoside polyphosphate pools, RNA and protein accemulation in Strepto-myces hygroscopicus [ J] .

水环境中抗生素的吸附处理研究进展

“环境化学”结课论文 (2015--2016学年度第二学期) 水环境中抗生素得吸附处理研究进展 院系名称化学与生命科学学院 专业环境科学与工程 学生姓名杨明月周亮 学号 2 2 指导老师杨绍贵 摘要 近年来,抗生素被大量应用在临床及畜禽与水产养殖,用于疾病得预防治疗及有机体得生长促进。但抗生素机体吸收差,水溶性强,常以活性形式(母体或代谢产物)随人与畜禽排泄、水产养殖及制药废水排放持续进入环境,最终残留于土壤与水体。抗生素在环境中得持久性残留与蓄积可导致微生物菌群耐药等诸多生态毒性,严重影响人类健康与生态平衡、 目前,在国内外各类水体中经常能检出ng/L--?g/L污染级别得抗生素残留。抗生素由于其特殊得抑菌或灭菌性能,可生化性极差,传统得水与废水处理技术一般无法对其有效去除。为控制其污染,有效得抗生素去除方法日益受到国内外广泛关注。 目前关于水中抗生素去除方法得研究主要集中在高级氧化法、吸附法、膜分离技术及组合工艺等。其中基于自由基氧化得高级氧化技术得到广泛关注,工艺一般选用03、H202,结合光照,或组合金属及半导体光催化剂来实现,但该方法不仅成本高,条件苛刻,且在降解抗生素得过程中很难实现矿化,降解产生得中间代谢物常表现出比母体抗生素更强得生态毒性,应用受到限制。而吸附法,作为一种非破坏手段,常表现出低成本、易操作、污染物脱除率高且无高毒性代谢物风险等优点,成为环境污染物治理技术中最具应用前景得方法之一,而如何设计开发低成本高性能得吸附剂成为吸附处理水环境中抗生素类污染物得关键、 开展新型高效经济吸附剂得研究,将对环境保护与人类得可持续发展具有非常重要得现实意义。

辣椒素作为饲用抗生素替代品的研究进展.

中国饲料 2011年第 23期基金项目 :国家高技术研究发展 (863 计划 (2006AA10Z412; 科技部科技型中小企业创新基金 (06C26222120113; 大连市外国专家局引智项目(2010-Z51 *通讯作者 近年来 , 植物活性物质因具有天然、高效的特点受到广泛关注。辣椒中的辣椒素是一种极度辛辣的香草酰氨类生物碱 , 是辣椒辛辣味和药物功能的主要来源。近年来 , 越来越多的学者开始探讨辣椒素作为抗生素替代品的可行性 , 并做了许多尝试 , 发现辣椒素具有抗菌、抗炎、增强食欲、促进消化、提高免疫力等特点 (Kym 等 , 2009; Hwang 等 , 2008; Harada 和 Okajima , 2007。本文就辣椒素作为一种饲用抗生素的替代品的研究进展进行综述。 1辣椒素的来源及性质 红辣椒于 6~7月果红 , 成熟的红辣椒含有 丰富的辣椒素 , 约占辣椒干重的 0.2%~1.0%, 辣椒素包括辣椒碱、二氢辣椒碱、降二氢辣椒碱、高二氢辣椒碱、高辣椒素等 14种同系物 , 各物质辣度 (以史高维尔指数 Scoville Scale 表示不尽相同 (见表 1。辣椒素不溶于水 , 易溶于甲醇、乙 醇、苯、丙酮、氯仿等有机溶剂中 , 在高温下产生刺激性气体 (王剑平等 , 1996。 2辣椒素的吸收和利用 动物自身不能合成红辣椒中含有的辣椒素 ,

必须通过注射或从饲料中摄入。不同的给药途径吸收速度不同。大鼠静脉注射辣椒素 2mg/kg, 3 min 后进入脊髓和肝脏 , 并通过血脑屏障进入脑 组织。脊髓和肝脏中辣椒素的浓度是血液中的 3~ 7倍。皮下注射辣椒素 50mg/kg, 10min 后就分布 到各组织中 , 30min 后肾脏达到高峰浓度 1000 ng/g。其他组织也在 5h 后达到高峰浓度 , 如血液、脑组织、脊髓中的辣椒素含量为 500ng/g, 但是肝脏中辣椒素的含量较低 , 大约是 50ng/g, 这可能 与肝脏中辣椒素在不断的代谢有关 (Saria 等 , 辣椒素成分含量 /% 史高维尔指数 辣椒碱 6916000000二氢辣椒碱 2216000000降二氢辣椒碱 79100000高二氢辣椒碱 18600000高辣椒碱 1 8600000 表 1 辣椒素的组成及史高维尔指数 [摘要 ]辣椒素作为天然植物来源的抗菌活性成分 , 具有安全、营养、高效广谱抗菌性和不产生抗药性的特征 , 在 饲料领域作为饲用抗生素替代品有极高的研究和应用价值。本文主要就辣椒素作为饲用抗生素天然替代品的研究进展作一综述。

常见的代替抗生素的中成药

抗生素替代中成药 一、呼吸系统炎症常用药 1、蒲地蓝消炎片:清热解毒,抗炎消肿。用于疖肿,腮腺炎,咽炎,淋巴腺炎,扁桃腺炎 等的治疗。 2、牛黄解毒片:清热解毒,通便,消炎,一般应用于流感、咽炎及肺部感染。 3、双黄连口服液:清热解毒。用于风热感冒发热,咳嗽,咽痛。 4、银黄胶囊/颗粒:清热解毒。用于急慢性扁桃体炎,急慢性咽喉炎,上呼吸道感染。 5、复方穿心莲片:清热解毒,利湿。用于风热感冒,咽喉疼痛,湿热泄泻。(咽喉炎、急 性肠炎等) 6、黄连上清片:清热通便,散风止痛。用于头晕目眩,暴发火眼,牙齿疼痛,口舌生疮, 咽喉肿痛,耳痛耳鸣,大便秘结,小便短赤。 7、穿心莲胶囊:具有清热解毒、凉血、消肿之功效,适用于感冒发热、咽喉肿痛、口舌生疮、泄泻痢疾、热淋涩痛、肿痛疮疡等。对急性扁桃体炎、慢性鼻炎、鼻窦炎、咽炎、喉炎、腮腺炎、支气管炎等上呼吸道感染以及肠道感染、尿路感染等均有一定的消炎作用。 8、清火片:清热泻火,通便。用于咽喉肿痛,牙痛,头目眩晕,口鼻生疮,风火目赤,大便不通。 9、三黄片:清热解毒,泻火通便。用于三焦热盛所致的目赤肿痛、口鼻生疮、咽喉肿痛、牙龈肿痛 10、众生片/丸/胶囊:清热解毒,活血凉血,消炎止痛。用于上呼吸道感染,急、慢性咽喉炎,急性扁桃腺炎,化脓性扁桃腺炎,疮毒等症。 11、清热散结片:消炎解毒,散结止痛。用于急性结膜炎,急性咽喉炎,急性扁桃腺炎,急性肠炎,急性菌痢,上呼吸道炎,急性支气管炎,淋巴结炎,疮疖疼痛,中耳炎,皮炎湿疹 12、喉痛灵片:清热解毒,消炎,清咽喉。用于咽喉炎,急性化脓性扁桃体炎,感冒发热,上呼吸道炎,疖疮等。 13、复方公英片:清热解毒。用于上呼吸道感染。 14、清咽片:清凉解热,生津止渴,用于咽喉肿痛,声嘶音哑,口干舌燥,咽下不利。(急慢性咽炎) 15芩黄喉症胶囊:清热解毒,消肿止痛,用于热毒内盛所致的咽喉肿痛。(急性咽喉炎、扁桃腺炎) 16、复方气管炎片:呼吸道炎症(急慢性支气管炎) 17、板蓝根颗粒:清热解毒,凉血利咽。用于肺胃热盛所致的咽喉肿痛、口咽干燥;急性扁桃体炎、腮腺炎见上述证候者。 18、复方鱼腥草片:清热解毒。用于外感风热引起的咽喉疼痛;急性咽炎、扁桃腺炎有风热证候者。 19、黄芩片:消炎解毒。用于上呼吸道感染,细菌性痢疾等。 20、复方黄芩片:清热解毒,凉血消肿。用于咽喉肿痛,口舌生疮,感冒发热,痈肿疮疡。 二、消化系统炎症 1、消炎利胆片:具有消炎利胆,清热解毒的功效。适用于急、慢性胆囊炎及肝胆结石并发 感染者。 2、青叶胆片:清肝利胆,清热利湿。用于黄疸尿赤,热淋涩痛。(肝胆囊炎、尿道炎等) 3、复方黄连素片:用于大肠湿热,赤白下痢,里急后重或暴注下泻,肛门灼热;肠炎、痢 疾见上述证候者。

喹诺酮类抗菌药的适应证和注意事项

喹诺酮类抗菌药的适应证和注意事项 临床上常用者为氟喹诺酮类,有诺氟沙星、依诺沙星、氧氟沙星、环丙沙星等。近年来研制的新品种对肺炎链球菌、化脓性链球菌等革兰阳性球菌的抗菌作用增强,对衣原体属、支原体属、军团菌等细胞内病原或厌氧菌的作用亦有增强,已用于临床者有左氧氟沙星、加替沙星、莫西沙星等。 一、适应证 1. 泌尿生殖系统感染:本类药物可用于肠杆菌科细菌和铜绿假单胞菌等所致的尿路感染;细菌性前列腺炎、淋菌性和非淋菌性尿道炎以及宫颈炎。诺氟沙星主要用于单纯性下尿路感染或肠道感染。但应注意,目前国内尿路感染的主要病原菌大肠埃希菌中,耐药株已达半数以上。 2. 呼吸道感染:环丙沙星、氧氟沙星等主要适用于肺炎克雷伯菌、肠杆菌属、假单胞菌属等革兰阴性杆菌所致的下呼吸道感染。左氧氟沙星、加替沙星、莫西沙星等可用于肺炎链球菌和溶血性链球菌所致的急性咽炎和扁桃体炎、中耳

炎等,及肺炎链球菌、支原体、衣原体等所致社区获得性肺炎,此外亦可用于革兰阴性杆菌所致下呼吸道感染。 3. 伤寒沙门菌感染:在成人患者中本类药物可作为首选。 4. 志贺菌属肠道感染。 5. 腹腔、胆道感染及盆腔感染:需与甲硝唑等抗厌氧菌药物合用。 6. 甲氧西林敏感葡萄球菌属感染。本类药物对甲氧西林耐药葡萄球菌感染无效。 7. 部分品种可与其他药物联合应用,作为治疗耐药结核分枝杆菌和其他分枝杆菌感染的二线用药。 二、注意事项 1. 对喹诺酮类药物过敏的患者禁用。 2. 18岁以下未成年患者避免使用本类药物。 3. 制酸剂和含钙、铝、镁等金属离子的药物可减少本类药物的吸收,应避免同用。 4. 妊娠期及哺乳期患者避免应用本类药物。

抗生素替代品_中草药饲料添加剂的应用研究解读

近年来 , 随着我国集约化畜牧业和饲料工业的不断发展 , 饲料添加剂的应用日益广泛 , 同时针对抗生素在畜禽产品中的残留及其所产生的抗药性等问题的出现 , 研制抗生素替代品的呼声也日益高涨。人们逐渐将目光转向一些天然的饲料添加剂 , 中草药以它独特的作用方式、良好效果 , 无残留、无抗药性以及无污染而受到了青睐。中草药饲料添加剂依据我国中医中药理论 , 科学组方配伍 , 不仅具有扶正祛邪、健脾开胃、抗菌促生长、增强动物免疫机能、改善动物产品品质等效果 , 而且来源广泛、价格低廉、安全方便、无毒副作用、无残留、无抗药性 , 引起了国内外学者的广泛兴趣 , 祖国这一宝贵遗产因而得以不断发掘 [1] 。 近年来 , 中草药饲料添加剂已成为动物营养研究的一大热点 , 大力开发中草药饲料添加剂对解决抗生素残留问题 , 提高生产率 , 发展绿色畜牧业 , 满足人们的食品安全需求 , 缩小我国畜牧业与发达国家差距 , 增强我国畜产品在国际市场的竞争力 , 具有重要的经济意义和社会效益。加强中草药饲料添加剂的基础理论研究 , 解决目前在使用中存在的一些问题 , 将有助于更好利用我国中草药的资源优 势 , 使之在畜牧生产中发挥更重要的作用。 1有效成分、作用原理及主要 功效的研究 1.1有效成分 一般认为中草药饲料添加剂的有 效成分主要有生物碱、甙类、挥发油、鞣质、糖类、氨基酸、蛋白质、酶、油脂、无机成分及色素 , 对于中草药不能孤立地去认识和研究 , 其有效成分的不同决定了其作用的不同。 1.1.1生物碱 :生物碱是一类存在于

生物体中含 N 的碱性天然有机物 , 具有多种多样的生理活性 , 在应用于中草药饲料添加剂中也发挥着很大的作用。生物碱具有 M 受体的作用 , 如食槟榔可使胃肠平滑肌张力升高 , 增加肠蠕动 , 使消化液分泌旺盛 , 食欲增加 , 其发挥的作用与其所含的生物碱密切相关 [2,3] 。 1.1.2 糖类 :多糖是自然界中分子机 构复杂庞大的糖类物质 , 具有多方面的生物活性。近年来发现某些中草药的多糖成分具有特殊的药理功能 , 如黄芪多糖可显著增强免疫功能 , 而目前对多糖的研究已成为热点 , 特别是在提高和改善动物免疫功能方面 [4] 。因 此 , 可以说多糖类是一类免疫增强剂 , 能增强机体的免疫能力 , 提高动物的抗病能力。 1.1.3甙类 :凡水解后能生成糖和非 糖化合物的物质都称为甙 , 因此甙类又称配糖体 , 它是中草药中分布非常 广泛的一大类结构复杂的有机化合物 , 其生物学活性仅次于生物碱。皂甙是甙类物质中最典型的一种 , 是由皂甙元和糖、糖醛酸组成的一类复杂的甙类化合物 , 皂甙的药理学研究比较多 , 如人参皂甙有明显的促进血清、肝脏、骨髓等的 RNA 、 DNA 、蛋白质及糖的生物合成 , 增强机体免疫功能的作用 ; 黄芪中的三菇皂甙 , 能促进 DNA 合成 , 加速肝脏分化增殖 , 对免疫功能有明显的促进作用等。因此 , 含皂甙类的一些药物可以作为添加剂中的免疫增强剂 [5]。

几种常用抗生素的配方

氨苄青霉素(ampicillin)(100mg/ml) 溶解1g氨苄青霉素钠盐于足量的水中,最后定容至10ml。分装成小份于-20℃贮存。常以25ug/ml~50ug/ml的终浓度添加于生长培养基。 羧苄青霉素(carbenicillin)(50mg/ml) 溶解0.5g羧苄青霉素二钠盐于足量的水中,最后定容至10ml。分装成小份于 -20℃贮存。常以25ug/ml~50ug/ml的终浓度添加于生长培养基。 甲氧西林(methicillin)(100mg/ml) 溶解1g甲氧西林钠于足量的水中,最后定容至10ml。分装成小份于-20℃贮存。常以37.5ug/ml终浓度与100ug/ml氨苄青霉素一起添加于生长培养基。 卡那霉素(kanamycin)(10mg/ml) 溶解100mg卡那霉素于足量的水中,最后定容至10ml。分装成小份于-20℃贮存。常以10ug/ml~50ug/ml的终浓度添加于生长培养基。 氯霉素(chloramphenicol)(25mg/ml) 溶解250mg氯霉素足量的无水乙醇中,最后定容至10ml。分装成小份于-20℃贮存。常以12.5ug/ml~25ug/ml的终浓度添加于生长培养基。 链霉素(streptomycin)(50mg/ml) 溶解0.5g链霉素硫酸盐于足量的无水乙醇中,最后定容至10ml。分装成小份于-20℃贮存。常以10ug/ml~50ug/ml的终浓度添加于生长培养基。 萘啶酮酸(nalidixic acid)(5mg/ml) 溶解50mg萘啶酮酸钠盐于足量的水中,最后定容至10ml。分装成小份于-20℃贮存。常以15ug/ml的终浓度添加于生长培养基。 四环素(tetracyyline)(10mg/ml) 溶解100mg四环素盐酸盐于足量的水中,或者将无碱的四环素溶于无水乙醇,定容至10ml。分装成小份用铝箔包裹装液管以免溶液见光,于-20℃贮存。常以 10ug/ml~50ug/ml的终浓度添加于生长培养基。 利福平 利福平储存浓度是15mg/ml,溶剂是甲醇,大肠杆菌中使用的终浓度是50微克每毫升。卡那的储存浓度是7.5mg/ml,溶剂是水,大肠杆菌中使用的终浓度是25微克每毫升。抗生素平时不用时均储存于4度。对于大肠杆菌来说,抗生素耐受程度可达到标准量的两倍。

抗生素替代品

抗生素替代品研究进展 郭影成延吉,吉林省延边朝鲜族自治州畜牧开发总公司,133000 摘要:鉴于抗生素的诸多缺点,人们研制开发了无毒副作用的抗生素替代品。包括益生菌、化学益生素、酸化剂、微生物培养物、鸡卵黄免疫球蛋、中草药添加剂、糖萜素以及牛至油等。在畜禽生产中长期应用有不易产生毒副作用,无抗药性,无停药期,安全、高效等优点。 关键字:抗生素;替代品;益生菌;化学益生素;酸化剂;微生物培养物; 绿色抗生素替代品作为畜禽饲料添加剂,较抗生素安全范围大,在畜禽生产中长期应用不易产生毒副作用,无抗药性,无停药期,安全、高效。与其他药物饲料添加剂合用,不发生或很少发生配伍禁忌,细菌对其不易产生抗药性,对动物生长不构成危害。在动物产品中无药物和危害人类健康的有毒有害物质残留。而且,在畜禽的排泄物中不存在对人类生存环境构成潜在危害的污染物。同时,大多抗生素替代品理化性质或生物活性物质稳定,能有效地进入畜禽胃肠道发挥作用,不影响畜禽采食饲料的适口性。更重要的是,绿色抗生素替代品尤其是植物提取类(中草药等)含有许多有效成分,除了具有抗病促生长作用外,还具有改进畜产品品质及提高畜禽繁殖性能的能力。如有些中草药含有甾醇类物质,对内分泌与生殖机能作用较强,能刺激畜禽的繁殖,提高畜禽的繁殖性能。包括益生菌、化学益生素、酸化剂、微生物培养物、鸡卵黄免疫球蛋白以及中草药添加剂等。下面就每种抗生素替代品概况做以简要陈述。 一、微生态制剂 微生态制剂也称为益生素或活菌制剂,包括乳酸杆菌、双歧杆菌、芽孢杆菌、活性酵母等。其主要作用是补充动物消化道中的双歧杆菌、乳酸菌等优势菌群,维持正常的微生态区系平衡;刺激动物产生干扰素,提高免疫球蛋白浓度和巨噬细胞活性,从而调节动物机体的免疫功能,增强抗病能力;刺激动物分泌有机酸、过氧化氢、类抗生素等杀菌物质,杀死病原微生物;可产生挥发性脂肪酸和乳酸,降低肠道ph值,从而抑制病原微生物的生长繁殖;益生菌能占据靶细胞,形成保护屏障,阻止病原菌的繁殖;防止动物肠道内产生的肠毒素、毒性肽、吲哚等有毒物质的积累,有利于动物身体健康;合成D族维生素、赖氨酸、蛋氨酸等营养物质,直接被动物吸收;在动物体内可产生蛋白酶、淀粉酶、植酸酶等多种消化酶及多种未知的促生长因子,有利于饲料中营养物质的消化吸收,加速动物生长。 1. 微生态制剂临床应用进展 1.1 微生态制剂首选药主要治疗的疾病 1.1.1 感染性腹泻 1.1.1.1 预防和治疗腹泻 腹泻患者多存在肠道菌群失调,微生态制剂通过增加腹泻患者肠道内有益菌的数量和活力,抑制致病菌的生长,以恢复正常的菌群平衡,达到缓解腹泻症状的作用,对成人和小儿的急性腹泻、慢性腹泻等均有良好的预防和治疗作用。Guandalini[1]等研究显示,嗜酸性乳杆菌治疗可使儿童轮状病毒感染性腹泻迅速恢复,患者的平均病程及平均治疗天数均明显缩

喹诺酮类抗菌药物的分类

喹诺酮类抗菌药物的分类、药效和临床应用 1喹诺酮类抗菌药物的临床分类 1.1第一代喹诺酮类 1.1.1第一代喹诺酮类的抗菌特点:第一代喹诺酮类药物奈啶酸、吡咯酸等,因其抗菌谱窄,仅对大肠杆菌、变形杆菌属、沙门菌属、志贺菌属的部分菌株具有抗菌作 也多在4mgL-1以上;对绿脓杆菌、不动杆菌属、用,且作用弱,对敏感菌株的MIC 90 葡萄球菌属等均无抗菌作用。 1.1.2第一代喹诺酮类的常见品种及临床应用:第一代喹诺酮类常见品种有奈啶酸、噁喹酸及吡咯酸等,主要用于敏感细菌所致的尿路感染。目前此类药物已被抗菌作用强、毒性低的其他抗菌药物所替代。 1.2第二代喹诺酮类 1.2.1第二代喹诺酮类的抗菌特点:第二代喹诺酮类较第一代喹诺酮类抗菌活性强,对革兰阴性杆菌作用包括了部分绿脓杆菌,可达到有效尿药浓度,临床应用不良反应明显较第一代喹诺酮类少见。 1.2.2第二代喹诺酮类的常见品种及临床应用:第二代喹诺酮类有新噁酸、噻喹酸、噁噻喹酸、吡喹酸、吡哌酸等。临床上主要用于肾盂肾炎、尿路感染及肠道感染的治疗。 1.2.3典型药物实例:吡哌酸(吡卜酸,Pipemidic Acid,Dolcol,Pipram,PPA)抗菌谱较广,对革兰阴性杆菌如大肠杆菌、绿脓杆菌、变形杆菌、痢疾杆菌等有较好的抗菌作用,对绿脓杆菌、变形杆菌的抗菌作用比对奈啶酸、头孢氨苄及羧苄西林强;作用机制是抑制细胞DNA的复制和转录。吡哌酸一般采用口服给药,口服后部分吸收,成人单次口服0.5g和1.0g后,血药峰浓度为3.8mgL-1和5.4mgL-1,半衰期为3.1h;本品吸收后可分布于肾、肝等组织,胆汁中药物浓度高于血浆浓度;本品主要经肾排泄,给药后24h58%~68%的药物从尿液中排出,部分自粪便排出。吡哌酸在临床主

天然水体中颗粒物对抗生素的吸附

天然水体中颗粒物对抗生素的吸附 1 引言 天然水体环境中最基本的颗粒物体系是以粘土矿物微粒为骨架,通过聚集作用形成的土壤团粒.微粒由于具有较大的比表面积,因而能够吸附金属水合氧化物并与水中存在的一些有机高分子通过架桥作用发生团聚.这种聚集体还可以吸附结合水中的重金属和离子、化学品等微污染物. 自1929年青霉素问世以来,抗生素在全世界范围内得到了广泛使用.美国在一项针对139条河流的水质状况的研究表明,在河水中检测出95种有机物,其中,31种常用抗生素中氟喹诺酮类、磺胺类、大环内酯类的最大值浓度能够达到1.9 μg · L-1.在德国Baden-Wuttemberg 地区 108个地下水样品中,共检测出 60种药物,有 8 种药物在至少3个样品中被检出,其浓度最高可达 1100 ng · L-1,检出率最高达 20%.我国在香港维多利亚港与珠江中检测多种抗生素,含量分别在70~489 ng · L-1与13~69 ng · L-1之间. 环境中抗生素药物的长期存在,可能导致环境微生物群落结构发生改变,甚至可能破坏生态系统原有正常的新陈代谢模式,导致水体或土壤性质发生变化.磺胺类抗生素及氟喹诺酮类抗生素对水体中的绿藻有负面影响,而且可能经由植物吸收等途径进入食物链,对人体健康构成潜在的威胁.青霉素、磺胺类药物等易使人产生过敏和变态反应. 当前,关于抗生素的吸附研究主要集中在土壤和底泥等对抗生素的吸附方面.研究了26个土壤的理化性质对土壤吸附抗生素的影响.利用超声波提取的方法测定了底泥中的14种抗生素,得出养殖场附近的河流底泥中抗生素如土霉素含量能够达到9287.5 μg · kg-1.等检测了海河底泥中的12种抗生素的含量,其中,磺胺泰哒嗪的含量高达481.85 ng · g-1. 水体中抗生素种类繁多,它们在水处理工艺中的去除效果相差很大,可能是受到抗生素分子特性和物化性质的影响.目前,很少有人从分子角度对这些抗生素的去除、抗生素的物理化学性质及饮用水工艺进行结合分析.研究抗生素从进入自然水体到处于平衡状态的过程中,各种抗生素的固、液相分配问题,对饮用水或者污水中的抗生素去除方法研究具有指导意义.因此,本文分析了水体中颗粒物对7种典型抗生素的吸附特征,通过环境扫描电镜测定颗粒物的表面结构及元素组成,并采用高效液相色谱与质谱串联(HPLC-MS/MS)的检测方法对抗生素进行测定. 2 材料与方法 2.1 仪器与材料 超高效液相色谱-三重串联四级杆质谱联用仪(美国Agilent公司),VAC ELUT SPS 24固相萃取仪(美国Agilent公司),恒温振荡器(美国CRYSTAL),SB 25-12DTDN超声波清洗仪(宁波新芝生物科技股份有限公司),N-EVAP氮吹仪(美国Organomation),OASIS HLB固相萃取柱(6 cc/500 mg,美国Waters),SAX阴离子交换小柱(3 cc/200 mg,美国Agilent),ZORBAX Eclipse C18柱(3.5 μm,2.1 mm×100 mm,美国Agilent),滤膜(聚四氟乙烯,0.22 μm、0.45 μm,47 mm,美国Pall;玻璃纤维,0.7 μm,47 mm,美国Whatman).

益生菌及益生元与抗生素组合应用研究进展

益生菌及益生元与抗生素组合应用研究进展 蒋正宇周岩民 (南京农业大学动物科技学院,南京210095) 摘要:本文综述了畜禽生产中的微生态调节剂种类、作用机理及与抗生素联用的效果,为微生态调节剂的合理配伍使用提供参考依据。 关键词:益生菌、益生元,抗生素,微生态调节剂 几十年来,饲料中添加抗生素在预防动物疾病、抗应激、提高动物生产性能等方面所取得的显著效果有目共睹,但抗生素的长期和广泛应用,导致了肠道菌群失衡、药物残留、耐药性及其传递和传播等负效应。近年来,随着生物技术和微生物工业的发展,一些微生态调节剂作为饲料中抗生素的替代品应运而生,如活菌制剂(益生菌)和低聚糖(益生元)等,它们通过维持动物肠道内微生态平衡而促进动物生长,提高动物机体免疫力和生产性能。目前,益生菌和益生元已广泛在饲料中研究和应用,已就不同种类的益生菌或益生元的作用机理、应用效果及在不同动物种类、年龄、饲养环境下的最佳用量进行了大量的研究,但不同的益生菌或益生元之间以及益生元与抗生素、益生菌以及其他营养性或非营养性添加剂之间存在着协同或拮抗作用,寻找这些新型饲料添加剂最佳同效应的添加组合,已成为饲料研究的热点之一。因此,本文对近年来所进行的相关研究进行了综合比较分析。 1 饲用微生态调节剂和抗生素的种类 微生态调节剂是指在微生态理论指导下,可调整微生态失调,保持微生态平衡,提高宿主健康水平或增进益生菌及其代谢产物和(或)生长促进物质的制剂,主要包括益生菌(prebiotics)、益生元(probiotics)、合生素(sybiotics,eubiotics)。 益生菌是有利于宿主肠道微生物平衡的活菌食品或饲料添加剂。目前,用作微生态饲料添加剂的微生物主要有:乳酸菌、芽孢杆菌、酵母菌、放线菌、光合细菌等几大类。1989年,美国FDA批准使用的微生物有40余种,其中30种是乳酸菌。2003年,我国农业部批准使用的饲料级微生物添加剂品种有:地衣芽孢杆菌、枯草芽孢杆菌、两歧双歧杆菌、粪肠球菌、屎肠球菌、乳酸肠球菌、嗜酸乳杆菌、干酪乳杆菌、乳酸乳杆菌、植物乳杆菌、乳酸片球菌、戊糖片球菌、产朊假丝酵母、酿酒酵母、沼泽红假单胞菌。 益生元是能够有选择性地刺激宿主动物消化道内有益菌的生长,从而对动物产生有利作用的食品或饲料中的不可消化成分,包括低聚糖、微藻(如螺旋藻、节旋藻)及天然植物(如中草药、野生植物)等。目前,饲料中研究较多的益生元主要是低聚糖、酸化剂、中草药和糖萜素等几大类。低聚糖是由2~10个单糖分子通过糖苷键形成直链和支链的糖类,它们很难为动物体内的消化酶所降解,可直接进入肠道,作为有益微生物的营养底物,促进肠道有益微生物的增殖,抑制有害微生物的生长,从而改善肠道微生态环境;饲料中研究和应用的低聚糖有甘露聚糖(MOS)、低聚果糖(FOS)、低聚木糖(XOS)、低聚半乳糖(GOS)、低聚异麦芽糖(IOS)、大豆低聚糖(SBOS)等。饲料酸化剂的应用已有30多年的历史,包括无机酸和有机酸,无机酸主要有硫酸、盐酸和磷酸,但无机酸存在使用效果不甚理想和腐蚀加工机械等问题;有机酸更为人们所认可、山梨酸、甲酸、乙酸等,生产中使用较为普遍且效果较好的有机酸是柠檬酸、延胡索酸、乳酸。 自1974年欧共体首先禁止了青霉素和四环素的使用开始,抗生素的应用已广受禁用和限用。2002年,我国农业部批准规定的可在饲料中长期添加使用以预防动物疾病、促进生长的饲用药物添加剂品种仅有33种。 2 益生菌及益生元与抗生素的作用机理 饲料中添加抗生素、益生菌、益生元对生产性能方面的有益作用是防病功能的延伸,可从两个方面发挥作用,即微生物途径和肠组织代谢途径。有关微生物途径,抗生素通过非选择性阻止或破

水中抗生素分析-应对地表水中68种抗生素

环境水中PPCPs的应用分析方法 应用编号:ME00001 PPCPs(Pharmaceuticals and Personal Care Products)是药品和个人护理产品的统称。PPCPs 种类繁杂,包括各类抗生素、人工合成麝香、止痛药、降压药、避孕药、催眠药、减肥药、发胶、染发剂和杀菌剂等,作为新兴污染物日益受到人们的重视。 目前对环境中的PPCPs污染的系统研究还较少,本文节选了两篇博纳艾杰尔“卓越用户文章奖励”活动中收集到的论文内容,供相关分析人员参考。特例举了如下产品及推荐理由,邀请广大分析同仁共同体验! 1)亲水、相对通用型固相萃取柱----Cleanert PEP 鉴于样品的亲水性及分析物的多样性,样品前处理首推Cleanert PEP、PEP-2固相萃取柱。该萃取柱采用的极性官能化的聚乙烯基二乙烯基苯材料,使其具有良好的亲水亲脂性,可实现水样多种PPCPs的同时萃取和富集。此外,回收率高、重现性好,操作简单等优点也是笔者首推此产品的重要原因。 2)传统固相萃取柱的升级--------------Cleanert LDC大体积水处理柱 LDC 独特的设计,可以直接将样品瓶倒扣在柱子上端,采样便捷;样品采样速度快,不易堵塞,适用于环境大体积样品的采集处理;低本底,高灵敏度,通用性强,适于各类极性与非极性样品的富集分析;其中AQ C18 等材料,可以用于EPA525方法。 第1页共4页

第2页共4页 3) 大体积水处理装置----------------SPE-D6 ● 多位通道:多位通道可独立使用 ● 处理快速:流速最高可达100mL/min ● 上样简便:1L 样品瓶直接倒置上样 ● 配置简单:负压驱动,真空度达-0.1MPa ● 适用性强:专用大体积水固相萃取柱 该装置可适用于大体积水样分析,如:PPCPs 、微囊藻毒素、有机磷农药、除草剂、多环芳烃、酚类、甲胺磷、丙烯酰胺等 4) 亲水能力、分离能力的完美平衡----------Venusil MP C18(2)液相色谱柱 Venusil MP-2 C18完美平衡了亲水能力、反相保留能力、分离能力和耐污染能力的关系,为极性范围大的混合物样品提供了均衡了保留能力,是环境中多种PPCPs 同时分析首选。

抗生素研究进展(DOC)

文献综述 抗生素发酵研究进展 专业年级13生物工程学院环资学院学生姓名王先府学号2013125142 指导教师常海军日期2016.4.30

抗生素发酵研究进展 王先府 (重庆工商大学环资学院2013级生物班2013125142) 摘要:抗生素是由微生物(包括细菌、真菌、放线菌属)或高等动植物在生活过程中所产生的具有抗病原体或 其它活性的一类次级代谢产物,能干扰其他生活细胞发育功能的化学物质,由于其在自然条件下不易获得,现可 利用发酵来生产抗生素,本文对抗生素发酵研究过程多方面进行综述。 关键词:抗生素;菌渣;过程优化 Advances in antibiotic fermentation Jeff (College of environment and resources, Industrial and Commercial University Of Chongqing,2013125142)Abstract:Antibiotics are by microorganisms,(including bacteria, fungi, actinomycetes spp.) or higher plants and animals produced in the process of life with resistance to pathogens or other activity of a class of secondary metabolites, can interfere with other living cells development function of chemical substances, due to its under natural conditions is not easy to get, is now available by fermentation to produce antibiotic, against the students ferment process research are reviewed. Key words:antibiotics; mushroom residue; process optimization 采用发酵工程技术生产医药产品是制药工程的重要部分,其中抗生素是我国医药生产的大宗产品,随着基因工程技术的进展,基因工程药的比例逐渐增大,但抗生素在国计民生中所起的作用是不能完全替代的,特别是西方国家出于能源和环保的考虑,转产生产高附加值的药物,留出了抗生素的市场空间,为我国的抗生素生产发展提供了机遇,作为一个发展中的国家,可以说在相当长时间内, 我国抗生素生产在整个医药产品中仍占很大的比例。 1全发酵研发情况 中国最早生产的全发酵抗生素品种为饲用土霉素钙。世纪年代内蒙古金河生物科技公司等4家抗生素发酵企业开始生产全发酵金霉素产品,并以内蒙古金河生物科技公司的国内国际的市场占有量最大。目前国内有25家抗生素发酵生产企业生产全发酵抗生素产品,产品主要有黄霉素预混剂、饲用金霉素、那西肽预混剂、硫酸黏菌素预混剂、恩拉霉素预混剂、杆菌肽锌预混剂、亚甲基双水杨酸杆菌肽预混剂等由于含量规格不同,目前在我国共获得70多个产品批准文号。这些产品对我国的动物养殖发挥了重要作用主要体现在:①治疗某些动物疾病;②预防某些动物疾病尤其是对那些传染性疾病的预防,保证畜禽的健康生长;③促生长作用使畜禽生长速度加快,可使某些饲养动物缩短喂养周期;④提高饲料转化率也即饲料利用率,使之利用较少的饲料达到相同饲喂效果从而节省饲料提高生产效益⑤提高动物产品质量这其中主要是可提高肉蛋奶的产品质量⑥提高动物机能的抵抗力从而增强动物应付外界不良环境的能力。 近多年来,我国养殖业迅猛发展养殖模式从散养逐步转变集约化养殖,同时我国全发酵抗生素企业的生产技术和研发水平也逐步与国际接轨。因此,我国企业生产的全发酵抗生素产品在国内和国际占有相当的市场。例如,浙江海正药业股份有限公司生产的恩拉霉素预混剂一个品种一年的销

常用抗生素浓度及贮存

常用抗生素 氨苄青霉素(ampicillin)(100mg/ml) 溶解1g氨苄青霉素钠盐于足量的水中,最后定容至10ml。分装成小份于-20℃贮存。常以25ug/ml~50ug/ml的终浓度添加于生长培养基。 羧苄青霉素(carbenicillin)(50mg/ml) 溶解0.5g羧苄青霉素二钠盐于足量的水中,最后定容至10ml。分装成小份于-20℃贮存。常以 25ug/ml~50ug/ml的终浓度添加于生长培养基。 甲氧西林(methicillin)(100mg/ml) 溶解1g甲氧西林钠于足量的水中,最后定容至10ml。分装成小份于-20℃贮存。常以37.5ug/ml终浓度与100ug/ml氨苄青霉素一起添加于生长培养基。 卡那霉素(kanamycin)(10mg/ml) 溶解100mg卡那霉素于足量的水中,最后定容至10ml。分装成小份于-20℃贮存。常以10ug/ml~50ug/ml的终浓度添加于生长培养基。 氯霉素(chloramphenicol)(25mg/ml) 溶解250mg氯霉素足量的无水乙醇中,最后定容至10ml。分装成小份于-20℃贮存。常以12.5ug/ml~25ug/ml的终浓度添加于生长培养基。 链霉素(streptomycin)(50mg/ml) 溶解0.5g链霉素硫酸盐于足量的无水乙醇中,最后定容至10ml。分装成小份于-20℃贮存。常以10ug/ml~50ug/ml的终浓度添加于生长培养基。 萘啶酮酸(nalidixic acid)(5mg/ml) 溶解50mg萘啶酮酸钠盐于足量的水中,最后定容至10ml。分装成小份于-20℃贮存。常以15ug/ml 的终浓度添加于生长培养基。 四环素(tetracyyline)(10mg/ml) 溶解100mg四环素盐酸盐于足量的水中,或者将无碱的四环素溶于无水乙醇,定容至10ml。分装成小份用铝箔包裹装液管以免溶液见光,于-20℃贮存。常以10ug/ml~50ug/ml的终浓度添加于生长培养基。

喹诺酮类抗菌药分类、构效关系.

喹诺酮类抗菌药分类、构效关系 喹诺酮类抗菌药的基本结构为吡酮羧酸类衍生物,综合临床使用的喹诺酮类抗菌药的结构,归纳其基本结构通式如下: 12345678Y X N 1 COOH R 2 R 3R 4 5 O A B 该类药物的结构特点是在其基本母核结构上一般1位为取代的氮原子,3位为羧基,4位为酮羰基,5、7、8位可有不同的取代基,第三代、四代喹诺酮类抗菌药6位为氟原子。 喹诺酮类药物按其母核的结构特征可以分为以下四类: (1)萘啶羧酸类(naphthyridinic acids ) N N 2CH 3 H 3C COOH O N N CH 2CH 3 N COOH O F HN 萘啶酸 依诺沙星 nalidixic acid enoxacin (2)吡啶并嘧啶羧酸类(pyridopyrimidinic acids ) N N N 2CH 3 COOH O N N N N 2CH 3 COOH O N HN 吡咯酸 吡哌酸 piromidic acid pipemidic acid (3)噌啉羧酸类(cinnolinic acids ) N N O O CH 2CH 3COOH O 西诺沙星 cinoxacin (4)喹啉羧酸类(quinolinic acids )

N CH 2CH 3 COOH O N HN F N O F N HN COOH 诺氟沙星 环丙沙星 norfloxacin ciprofloxacin N O CH 3 COOH F N N O H 3C N O F COOH OCH 3 H N N 氧氟沙星 莫西沙星 ofloxacin moxifloxacin N O F N HN COOH F 3 NH 2 H 3C N O F N HN COOH OCH 3 3 司帕沙星 加替沙星 sparfloxacin gatifloxacin 在这四类结构中,喹啉羧酸类药物最多,发展最快。 根据喹诺酮类抗菌药的化学结构和抗菌作用的关系,将该类药物的构效关系总结如下: 1.吡啶酮酸的A 环是抗菌作用的基本药效基团,变化较小,其中3位-COOH 和4位C=O 是抗菌活性必需基团,若被其他取代基取代则活性消失。 2.B 环可作较大改变,可以是苯环(X=CH ,Y=CH )、吡啶环(X=N ,Y=CH )、嘧啶环(X=N ,Y=N )等。 3.1位取代基为烃基或环烃基活性较佳,其中以乙基或与乙基体积相近的氟乙基或环丙基的取代活性较好。 4.5位可引入氨基,提高吸收能力或组织分布选择性。 5.6位引入氟原子可使抗菌活性增大。引入其他不同取代基对抗菌活性贡献的大小顺序为:-F >-Cl >-CN≥-NH 2≥-H 。 6.7位引入五元或六元杂环,抗菌活性均增加,以哌嗪基最好。

丁酸钠替代抗生素在水产上的应用

丁酸钠替代抗生素在水产动物上的应用 丁酸钠在陆生动物上的研究进展已经广为普及,也因为全球抗生素滥用所造成的抗药性,欧盟决定于 2006 年禁止用抗生素作为所谓的“生长促进剂”添加到饲料中。在寻找抗生素替代品的过程中丁酸钠由于具有广泛的生物调节作用而逐渐引起人们的关注。许多科学研究报告已证实丁酸钠在陆生动物具有以下的作用, 例如抑制人类结肠粘膜发炎及癌症生成;改善禽类的蛋壳品质及减少肉鸡下痢;增长增生猪肠道绒毛、使肠壁变丰厚;及刺激犊牛瘤胃肌层及突触的生长。至于丁酸钠在鱼类上的应用,可从以下的试验得到验证。(1)丁酸钠对罗非鱼生长、血液参数及免疫反应的影响(Ahmed H.A., 2015) 1)试验设计选择健康状况良好的罗非鱼 200 条,随机分成两个处理组,每个处理组各 100 条。对照组饲喂基础日粮,丁酸钠组饲喂基础日粮添加 0.03%丁酸钠,基础日粮含有蛋白质 24.7%,总能 3896 千卡/公斤。罗非鱼的喂食量以每日 3%鱼体重量喂食;每日分两餐。2)试验结果 表 1 丁酸钠对罗非鱼的生长表现 表 2 丁酸钠对罗非鱼肉品质的影响 表 3 丁酸钠对罗非鱼血清蛋白、血葡萄糖及肝指数的影响 注:肩字母不同表示差异显著(P〈0.05) (2)丁酸钠对美洲鳗鲡采食、生长性能及抗氧化能力的影响(ZhangS,2011) 1)试验设计选择健康状况良好的美洲鳗鲡 600 条,随机分成三个处理组,每个处理组设2 个重复,每个重复各 100 条。对照组饲喂基础日粮,丁酸钠 1 组饲喂基础日粮添加0.05%丁酸钠,丁酸钠 2 组饲喂基础日粮添加 0.1%丁酸钠。试验预饲期 20 天,正式期 6 周。 2)试验结果 表 4 丁酸钠对美洲鳗鲡生长情况的影响 表 5 丁酸钠对美洲鳗鲡肝脏健康情况的影响 (3)丁酸钠对淡水鱼生长表现及肠道粘膜结构的影响(Wang et.Al., 2008) 1)试验设计选择健康状况良好的鲤鱼 360 条,随机分成四个处理组,每个处理组设 3 个重复,每个重复各 30 条。对照组饲喂基础日粮,另外三个试验组分别在基础日粮中添加0.05%、0.1%、0.15%的丁酸钠。饲料期 60 天,每日投饵 2 次,喂食量为鱼体重的 3-4%。2)试验结果 表 6 丁酸钠对鲤鱼生长情况的影响 图 1 丁酸钠增长鲤鱼肠绒毛长度 Nuez-Ortin 2011 也指出包被丁酸钠对鲶鱼(P. hypohthalmus)生长有非常优异的表现,如下表。 注:肩字母不同表示差异显著(P〈0.05) 在维护肠道健康方面, 丁酸盐能抑制陆生动物肠道发炎。当细菌入侵时,单核球/巨噬细胞产生大量促进发炎的细胞激素(cytokine)如 IL-12 (白细胞介素; interleukin12)及少量 IL-10。IL-12 刺激 T 细胞生成γ干扰素(interferon-γ),肿瘤坏死因子(TNF,tumornecrosisfactor)及 IL-2(白细胞介素 IL-2)。全都会促使肠道发炎反应。见图 2。 图 2 而丁酸会刺激单核球/巨噬细胞产生 IL-10,IL-10 反抑制 IL-12 生成,因此肠道发炎反应被抑制。见图 3。 图 3 水产饲料配方中普遍使用鱼粉及鱼油来促进鱼虾生长,但因这几十年来全球,鱼粉鱼油

水环境中抗生素的吸附处理研究进展

“环境化学”结课论文 (2015--2016学年度第二学期) 水环境中抗生素的吸附处理研究进展 院系名称化学与生命科学学院 专业环境科学与工程 学生姓名杨明月周亮 学号 2013070200036 2013070200041 指导老师杨绍贵

摘要 近年来,抗生素被大量应用在临床及畜禽和水产养殖,用于疾病的预防治疗及有机体的生长促进。但抗生素机体吸收差,水溶性强,常以活性形式(母体或代谢产物)随人和畜禽排泄、水产养殖及制药废水排放持续进入环境,最终残留于土壤和水体。抗生素在环境中的持久性残留和蓄积可导致微生物菌群耐药等诸多生态毒性,严重影响人类健康和生态平衡。 目前,在国内外各类水体中经常能检出ng/L--?g/L污染级别的抗生素残留。抗生素由于其特殊的抑菌或灭菌性能,可生化性极差,传统的水和废水处理技术一般无法对其有效去除。为控制其污染,有效的抗生素去除方法日益受到国内外广泛关注。 目前关于水中抗生素去除方法的研究主要集中在高级氧化法、吸附法、膜分离技术及组合工艺等。其中基于自由基氧化的高级氧化技术得到广泛关注,工艺一般选用03、H202,结合光照,或组合金属及半导体光催化剂来实现,但该方法不仅成本高,条件苛刻,且在降解抗生素的过程中很难实现矿化,降解产生的中间代谢物常表现出比母体抗生素更强的生态毒性,应用受到限制。而吸附法,作为一种非破坏手段,常表现出低成本、易操作、污染物脱除率高且无高毒性代谢物风险等优点,成为环境污染物治理技术中最具应用前景的方法之一,而如何设计开发低成本高性能的吸附剂成为吸附处理水环境中抗生素类污染物的关键。 开展新型高效经济吸附剂的研究,将对环境保护和人类的可持续发展具有非常重要的现实意义。 关键词:抗生素吸附活性炭污染治理类石墨烯

抗生素替代品

龙源期刊网 https://www.doczj.com/doc/2e11599581.html, 抗生素替代品 作者:张江 来源:《国外畜牧学·猪与禽》2018年第04期 从微小的病毒、真菌、细菌、原生动物、寄生虫到各种各样的植物和动物,这个星球上的所有生物都在为生存和繁殖而努力。在生存竞争中,许多微生物进化出可分泌某些抗菌物质的系统,科学家鉴定分离出這些抗菌物质并用作抗生素。抗生素滥用可能会导致易感微生物改变其原有系统并进化出新系统,避开抗菌物质的有害作用,这称为微生物耐药性。大多数情况下耐药性可以在同一物种内垂直传播,也可以在不同物种间水平传播,最终引发一些非常严重的问题,比如产生对所有抗生素具有耐药性的超级细菌,对人类文明形成威胁。 中图分类号:S831.5 文献标志码:C 文章编号:1001-0769(2018)04-0082-02 为了解决抗生素耐药性问题并寻找抗生素替代方法,人们在全球开展了多种研究。这些研究可以分为如下几类:1)改变现有抗菌剂和/或添加某些新成分,恢复抗菌剂的功效;2)寻找其他微生物或其产物,消灭有害菌;3)使用微生物工具提高人类或动物体的免疫力;4) 应用某些新化合物和抗菌工艺;5)使用植物抗菌剂、免疫刺激剂及相关成分。 1 改变现有抗菌剂和/或添加某些新成分,恢复抗菌剂的功效 青霉素是最先发现、也是最早注意到其耐药性的抗生素。产生耐药性的青霉素会生成β-内酰胺酶。为了解决这个问题,在青霉素中加入了某些化学物质(克拉维酸、舒巴坦、他唑巴坦,等等),这些化学物质无任何抗菌作用,但可帮助克服微生物耐药性。后来又发现了其他一些方法(使用细菌外排抑制剂、抗生素类似物等)解决微生物耐药性问题。不过几年后因微生物改变了抗性机制,效果呈现逐渐下降的趋势。因此,即使不断研究和开发此类化学物,延长现有抗菌剂的使用寿命,其实际功效也会日益下降。 2 寻找其他微生物或其产物,消灭有害菌 2.1 抗菌肽 不同的植物、动物和真菌具有完全不同的免疫系统,但都可产生破坏细菌的肽(小型蛋白质)。许多两栖动物和爬行类可生成能杀死多种致病菌的肽。目前正在研究这些肽作为抗菌剂的治疗作用。 宿主防御肽(天然小肽)和天然防御调节肽(合成小肽)具有间接抗菌效果,主要通过增加抗炎趋化因子和细胞因子表达以及减少促炎细胞因子表达发挥作用。研究表明,抗生物膜肽可特异性抑制细菌生物膜的形成,目前已进入临床前开发阶段。 2.2 噬菌体

相关主题
文本预览
相关文档 最新文档