最新4支足球队进行单循环比赛.pdf
- 格式:pdf
- 大小:9.54 KB
- 文档页数:3
组合一、课堂目标1.理解组合的定义,掌握组合数公式及性质的应用.2.掌握常见的组合问题的模型及应用.【备注】【教师指导】1.本讲的重点是理解组合的定义,掌握组合数公式及性质的应用;难点是掌握常见的组合问题的模型及应用;重点题型是利用组合数及性质进行计算、组合问题的常见模型解决计数问题以及排列与组合的综合应用.2.排列组合与二项式定理属于历年高考必考题,在期中期末也属于常考题,属于重点内容.对于排列与组合的考查,有时难度比较大,学生也不好理解,在求解时会漏掉一些情况或者多数一些情况.对于这些问题,学生要理解对应的模型,熟练掌握对应模型的应用.二、知识讲解问题1:从甲、乙、丙3名同学中选出2名取参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?问题2:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,有多少种不同的选法?【备注】【教师指导】1.本模块为【知识引入】环节.2.问题1:,从3个元素中取出2个元素的一个排列,此时是有顺序的;问题2:甲乙,甲丙,乙丙,从3个不同元素中取出2个元素合成一组,此时是没有顺序的.从而引出本节课要学习的新知识:组合.1. 组合的定义知识精讲1.组合的定义一般地,从个不同元素中取出个元素合成一组,叫做从个不同元素中取出个元素的一个组合.2.排列与组合的联系与区别共同点:都是从n个不同元素中取出个元素.不同点:排列与元素的顺序有关,而组合与元素的顺序无关.可总结为:有序排列,无序组合.,,,,【备注】【教师指导】对于排列与组合的不同点:只有元素相同且顺序相同的两个排列才是相同的;而两个组合只要元素相同,不论元素的顺序如何,都是相同的.例如,“甲乙”与“乙甲”的元素完全相同,但是元素的排列顺序不同,因此它们是相同的组合,但不是相同的排序.知识点睛1.组合的定义中有两个要点(1)取出元素,且要求个元素是不同的;(2)“只取不排”,即取出的个元素与顺序无关,无序性是组合的特征性质.2.两个组合相同只要两个组合中的元素完全相同,不管元素的顺序如何.经典例题1.【解析】给出下列问题:()从,,,四名学生中选名学生完成一件工作,有多少种不同的选法?()从,,,四名学生中选名学生完成两件不同的工作,有多少种不同的选法?(),,,四支足球队之间进行单循环比赛,共需赛多少场?(),,,四支足球队争夺冠亚军,有多少种不同的结果?()某人射击枪,命中枪,且命中的枪均为枪连中,不同的结果有多少种?()某人射击枪,命中枪,且命中的枪中恰有枪连中,不同的结果有多少种?在上述问题中, 是组合问题, 是排列问题.【答案】()()() ; ()()()()名学生完成的是同一件工作,没有顺序,是组合问题.()名学生完成两件不同的工作,有顺序,是排列问题.【备注】【教师指导】考查排列和组合的定义及区别,要求学生掌握排列与组合的联系及区别.【标注】()单循环比赛要求每两支球队之间只打一场比赛,没有顺序,是组合问题.()冠亚军是有顺序的,是排列问题.()命中的枪均为枪连中,没有顺序,是组合问题.()命中的枪中恰有枪连中,即连中枪和单中枪,有顺序,是排列问题.【知识点】排列;组合巩固练习(1)(2)(3)(4)(5)2.(1)(2)(3)(4)(5)【解析】【标注】判断下列问题是组合问题还是排列问题.设集合,则集合的含有个元素的子集有多少个?某铁路线上有个车站,则这条铁路线上需准备多少种车票?从本不同的书中取出本给某同学.个人去做种不同的工作,每人做一种,有多少种分工方法?把本相同的书分给个学生,每人最多得一本,有多少种分配方法?【答案】(1)(2)(3)(4)(5)组合问题.排列问题.组合问题.排列问题.组合问题.因为集合的任一个含个元素的子集与元素顺序无关,故它是组合问题.车票与起点终点顺序有关,例如“甲乙”与”“乙甲”的车票不同,故它是排列问题.从本不同的书中取出本给某同学,取出的本书并不考虑书的顺序,故它是组合问题.因为一种分工方法就是从种不同工作中取出种,按一定顺序分给人去干,故它是排列问题.因为本书是相同的,把本书无论分给哪三个人都不需要考虑顺序,故它是组合问题.【知识点】组合;排列2. 组合数及公式知识精讲1.组合数从个不同元素中取出个元素的所有不同组合的个数,叫做从个不同元素中取出个元素的组合数,用符号表示.注意:(1)组合数与组合是两个不同的概念,组合是从个不同的元素中任取个元素并成一组,它是一件事,而组合数是一个数.(2)从集合的角度来看,从个不同的元素中任取个元素并成一组的组合的全体构成一个集合,组合数就是这个集合中元素的个数.,,,,,,2.组合数公式①连乘表示:.②阶乘表示:.规定:.注意:组合数公式①体现了组合数与相应排列数的关系,一般在计算具体的组合数时会用到.组合数公式②的主要作用有:计算较大时的组合数;对含有字母的组合数式子进行变形.,,,【备注】【教师指导】组合数公式的推导一般地,求从个不同元素中取出个元素的排列数,可以分如下两步:第1步,求从个元素中取出个元素的组合数;第2步,求每一个组合中个元素的全排列数.根据分步乘法计数原理得:,因此有.经典例题3.【标注】计算: .【答案】【知识点】组合【备注】【教师指导】本题考查的是组合数公式的直接运用.巩固练习4.【解析】【标注】 .【答案】.【知识点】组合数计算经典例题5.【标注】计算:.【答案】【知识点】组合【备注】【教师指导】本题考查排列数公式和组合数公式的综合运算,要提醒学生注意二者计算公式的差异.A.B.C.D.6.【解析】【标注】已知,则的值是( ).【答案】C ∵,∴,化简得,解得或(不合题意,舍去),∴的值是.故选:.【知识点】组合【备注】【教师指导】本题考查排列数公式和组合数公式的综合运算,要求学生熟记且灵活应用公式.巩固练习7.【解析】【标注】若,则 .【答案】由题意如:,,解得:或(舍),∴.【知识点】组合;排列经典例题8.【解析】【标注】设,,,求证:.【答案】证明见解析.由组合数公式知,.【知识点】组合数计算【备注】【教师指导】对公式的直接考查,利用组合数的公式进行证明等式成立问题.巩固练习A. B. C. D. 9.【解析】下列等式正确的是( ).【答案】ABD通过计算得到选项,,的左右两边都是相等的.对于选项,,所以选项是错误的.故选.【备注】【教师指导】此题为多选题,是新高考形式下的新题型.【标注】【知识点】组合数计算;排列数计算3. 组合数的性质知识精讲1.性质1:【备注】【教师指导】下列内容,可板书展示给学生:1.性质1的证明:2.性质1的意义:由于,因此该等式在时也成立.该性质反映了组合数的对称性.其组合意义是从个不同的元素中任取个元素的组合与任取个元素的组合是一一对应的.因为从个不同元素中取出个元素后,就剩下个元素,因此从个不同元素中取出个元素的方法,与从个不同元素中取出个元素的方法是一一对应的,因此取法是一样多的,就是说从个不同元素中取出个元素的每一个组合,都对应着从个不同元素中取出个元素的唯一的一个组合,反过来也一样.即从个不同元素中取出个元素的组合数等于从个不同元素中取出个元素的组合数”,也就是.3.等式特点:等号两边组合数的下标相同,上标之和等于下标.4.应用:(1)简化计算,当时,通常将计算转化为计算,如;(2)列等式,由,可得或,如若则或,故或.2.性质2:【备注】【教师指导】下列内容,可板书展示给学生:1.性质2的证明:2.性质2的意义:性质2可以理解为分类加法计数原理的应用,在确定从个不同元素中取出个元素时,对于某一个特定元素,只存在取与不取两种情况,如果取这个元素,则只需从剩下的个元素中再取个元素,有种取法;如果不取这个元素,则需从剩下的个元素中取出个元素,有种取法.由分类加法计数原理可得:.3.等式特点:下标相同而上标相差1的两个组合数之和,等于下标比原下标多1而上标与较大的上标相同的一个组合数.4.应用:恒等变形,简化运算.,,经典例题A.B.C.D.10.方程的解集为( ).【答案】C【备注】【教师指导】本题是对性质1:的直接考查,要注意有两种情况.【解析】【标注】由得或, ∴或, 经检验知和均符合题意. 故选.【知识点】组合11.【解析】【标注】若,则 .【答案】若,则.故答案为:.【知识点】组合【备注】【教师指导】本题是对性质1:的逆运用.巩固练习12.【解析】【标注】方程的解为 .【答案】或已知,∵或,∴或,∴或.【知识点】组合经典例题A.B.C.D.13.若,则等于( ).【答案】C【备注】【教师指导】本题是对性质2:的直接运用.【解析】【标注】,即,所以,即.故选.【知识点】组合数计算14.【解析】【标注】计算 .【答案】∵,∴原式.故答案为:.【知识点】组合数计算【备注】【教师指导】本题是对性质2:的运用吗,但需要利用进行一步配凑.巩固练习(1)15.(1)(2)【解析】求值:.【答案】(1)(2)...【标注】.【知识点】组合数计算4. 组合问题模型—分组分配问题知识精讲在日常生活中,常会将一些物品分发出去,这种问题称为分组分配问题.通常采用先分组后分配的方法解决.题型主要涉及:①平均分组;②部分平均分组;③不均匀分组.(1)平均分组例题:按下列要求分配6本不同的书,有多少种不同方法?①平均分3组;②平均分给甲、乙、丙三人.解析:①平均分成3组:有种方法;②平均分给甲、乙、丙三人:有种方法.注意:先分组,后分配;平均分成组,一定要除以.(2)部分平均分组例题:按下列要求分配6本不同的书,有多少种不同的方法?①一份4本,另两份各1本;②甲、乙各得1本,丙得4本.解析:①有两组是平均分配的,有:种方法;②可以先按第①问分组,因为甲、乙分别得到哪本书不同,故需对甲、乙排序,共有:种方法.(3)不均匀分组例题:按下列要求分配6本不同的书,各有多少种不同分配方式?①一份1本,一份2本,1份3本;②甲、乙、丙三人中一人1本,一人2本,一人3三本.解析:①因为不涉及均匀分配问题,直接利用乘法原理即可:种分配方式;②甲、乙、丙三人中谁得到一本,二本,三本是不清楚的,需要再次排列,所以共有种分配方式.经典例题(1)(2)(3)16.(1)(2)(3)【解析】【标注】按下列要求把个人分成个小组,各有多少种不同的分法?各组人数分别为,,人;平均分成个小组;平均分成个小组,进入个不同车间.【答案】(1)(2)(3)种.种.种...分两步:第一步平均分三组;第二步让三个小组分别进入三个不同车间,故有种不同的分法.【知识点】分组分配法【备注】【教师指导】本题的第(1)问考查的是不均匀分组,不需要考虑排列;第(2)问考查的是均匀分组,不需要考虑排列;第(3)问考查的是均匀分组,需要考虑排列.巩固练习17.【解析】【标注】将本不同的书分成堆,每堆本,有 种不同的分法.【答案】.【知识点】分组分配法18.【解析】将名男生,名女生分成两组,每组人,参加两项不同的活动,每组名男生和名女生,则不同的分配方法有 种.【答案】【标注】先将名男生,名女生分成两组,每组人,有不同的两组,然后将这两组分配到两项不同的活动中,则不同的分配方法有种.故答案为:.【知识点】分组分配法经典例题19.【解析】【标注】将位心智助教分成组,其中两个组各人,另两个组各人,分赴四个不同班级服务,不同的分配方案有 种?(用数字作答)【答案】将人分成,,,人数的四组,则分配方案有:种.故答案为:.【知识点】分组分配法;排列【备注】【教师指导】本题考查的是部分平均分组,并且要考虑排列问题.巩固练习A. B. C. D.20.【解析】若有本不同的书,分给三位同学,每人至少一本,则不同的分法数是( ).【答案】B根据题意,分步进行分析:①将本不同的书分成组,若分成、、的三组,有种分组方法;若分成、、的三组,有种分组方法;则有种分组方法;②将分好的三组全排列,对应三人,有种情况,则有种不同的分法.【标注】故选.【知识点】分步乘法计数原理;分组分配法21.【解析】【标注】年月日是第六届世界肾脏日,某社区服务站将位志愿者分成组,其中两组各人,另一组人,分别去三个不同的社区宣传这届肾脏日的主题:“保护肾脏,拯救心脏”,不同的分配方案有 种.(用数字作答)【答案】不同的分配方案有(种).【知识点】分组分配法5. 组合问题模型—相同元素隔板法知识精讲个相同元素,分成组,每组至少一个的分组问题——把个元素排成一排,从个空中选个空,各插一个隔板,有.经典例题22.【解析】【标注】个名额分配到八个班,每班至少一个名额,则有多少种不同的分配方法?【答案】.由挡板法可得,.【知识点】隔板法【备注】【教师指导】本题是对组合问题模型—相同元素隔板法直接考查:10个相同元素形成9个空,再在9个位置放置7个挡板一共有多少种结果.巩固练习23.有个三好学生名额,分配到高三年级的个班里,要求每班至少个名额,共有 种不同的分配方案.【解析】【标注】【答案】把个相同的元素放到个班中,每班至少一个,可以用挡板法来解,把个元素一字排列形成个空,再在个位置放置个挡板共有种结果.【知识点】隔板法24.【解析】【标注】为抗战新冠病毒,社会各界积极捐赠医疗物资.爱心人士向某市捐赠了箱相同规格的医用外科口罩,现需将这箱口罩分配给家医院,每家医院至少箱,则不同的分法共有 种.【答案】将箱相同口罩分配给家医院,采用隔板法,在个空中隔个板即可,∴不同的分法共有种.故答案为.【知识点】隔板法6. “先选后排”解排列组合综合问题知识精讲解决先选后排问题,应遵循三大原则:(1)先特殊后一般;(2)先组合后排列;(3)先分类后分步.经典例题A.B.C.D.25.从名学生中选出名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为( ).【答案】D【备注】【教师指导】先特殊再一般,是对特殊元素甲先排,再排其他的元素.【解析】【标注】根据题意,从名学生中选出名分别参加竞赛,分种情况讨论:①选出的人没有甲,即选出其他人即可,有种情况,②选出的人有甲,由于甲不能参加生物竞赛,则甲有种选法,在剩余人中任选人,参加剩下的三科竞赛,有种选法,则此时共有种选法,则有种不同的参赛方案;故选:.【知识点】特殊元素优先法巩固练习26.【解析】【标注】某地奥运火炬接力传递路线共分段,传递活动分别由名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有 种.(用数字作答)【答案】从特殊位置入手分类和分步完成,从最后一棒分类.甲为最后一棒,再考虑第一棒,再考虑其余位置,依次有;乙为最后一棒,再考虑第一棒,再考虑其余位置,依次有,则有.故答案为:.【知识点】特殊元素优先法;分类加法计数原理;分步乘法计数原理【素养】逻辑推理;数学运算经典例题A.种B.种C.种D.种27.将甲,乙等位同学分别保送到北京大学,上海交通大学,中山大学这所大学就读,则每所大学至少保送人的不同保送方法数共有( ).【备注】【教师指导】先组合后排列:先将四名同学进行分组,再将这三组同学进行排列,分配到三所学校中.【解析】【标注】将名同学分为组,共有种分法,再将这组分配给所学校,共有种分法,∴总共有种方法.故选.【知识点】分组分配法巩固练习28.【解析】【标注】将位志愿者分成组,其中两个组各人,另两个组各人,分赴世博会的四个不同场馆服务,不同的分配方案有 种.(用数字作答).【答案】先分组 ,再排列.【知识点】分组分配法经典例题A.B.C.D.29.【解析】某班上午有五节课,分别安排语文,数学,英语,物理,化学各一节课.要求语文与化学相邻,数学与物理不相邻,且数学课不排第一节,则不同排课法的种数是( ).【答案】B根据题意,分步进行分析:①要求语文与化学相邻,将语文与化学看成一个整体,考虑其顺序,有种情况,②将这个整体与英语全排列,有种顺序,排好后,有个空位,③数学课不排第一节,有个空位可选,在剩下的个空位中任选个,安排物理,有种情况,则数学、物理的安排方法有种,则不同排课法的种数是种.【备注】【教师指导】先分类后分步,是对分类加法原理和分步乘法原理综合考查.【标注】【知识点】分类加法计数原理;分步乘法计数原理;加法原理与乘法原理的综合运用巩固练习A.本B.本C.本D.本30.【解析】【标注】给一些书编号,准备用个字符,其中首字符用,,后两个字符用,,(允许重复),则不同编号的书共有( ).【答案】D 分两步:第一步:选定首字符,有种可能;第二步:选后两个字符,又分两小步:第二字符,有种可能,第三个字符,也有种可能,所以利用乘法原理,最终就有种不同的组合情况,也就是说可以编本书.故选.【知识点】分步乘法计数原理三、思维导图你学会了吗?请你画出本节课的思维导图.【备注】四、出门测A.B.C.D.31.【解析】【标注】( ).【答案】D ,故选:.【知识点】组合数计算A.或B.C.D.32.【解析】【标注】方程的解为( ).【答案】A 当时,解得;当时,解得.故选:.【知识点】组合A.B.C.D.33.【解析】【标注】将个相同名额分给个不同的班级,每班至少得到一个名额的不同分法种数是( ).【答案】D将个相同元素分成组,用隔板法即可,即每班至少得到一个名额的不同分法种数是,故选:.【知识点】隔板法(1)(2)34.(1)(2)【解析】【标注】王华同学有课外参考书若干本,其中有本不同的外语书,本不同的数学书,本不同的物理书.若从这些参考书中选本不同学科的参考书带到图书馆,则有多少种不同的带法?将本不同的外语书全部分享给名室友,每人至少一本,有多少种分法?【答案】(1)(2)种.种.带本外语书和本数学书时有种带法;同样地,带外语书,物理书各本,有种带法;带数学书,物理书各本,有种带法,故有种带法.先把本外语书分组分三组:①三组本数分别为,,,种方法,②三组本数分别为,,,种方法,再分配给三个人,共种分法.【知识点】加法原理与乘法原理的综合运用;分步乘法计数原理;排列;分组分配法。
第29讲综合推理学习目标①学会对一个问题进行分析、推理;②利用我们的推理来解决一些较简单的问题;③通过学生解决问题的过程,激发学生的创新思维,培养学生学习的主动性和坚韧不拔、勇于探索的意志品质。
知识梳理解数学题,从已知条件到未知的结果需要推理,也需要计算,通常是计算与推理交替进行,而且这种推理不仅是单纯的逻辑推理,而是综合运用了数学知识和专门的生活常识相结合来运用。
这种综合推理的问题形式多样、妙趣横生,也是小学数学竞赛中比较流行的题型。
解答综合推理问题,要恰当地选择一个或几个条件作为突破口。
统称从已知条件出发可以推出两个或两个以上结论,而又一时难以肯定或否定其中任何一个时,这就要善于运用排除法、反证法逐一试验。
当感到题中条件不够时,要注意生活常识、数的性质、数量关系和数学规律等方面寻找隐蔽条件。
典例分析例1、甲、乙两队进行象棋对抗赛,甲队的三人是张、王、李,乙队的三人是赵、钱、孙,按照以往的比赛成绩看,张能胜钱,钱能胜李,李能胜孙,但是第一轮的三场比赛他们都没有成为对手.请问:第一轮比赛的分别是谁对谁?例2、甲、乙、丙三名选手参加马拉松比赛,起跑后甲处在第一的位置,在整个比赛过程中,甲的位置共发生了7次变化.比赛结束时甲是第几名?(注:整个比赛过程中没有出现三人跑在同一位置的情形.)例3、6支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分,请问:(1)各队总分之和最多是多少分?最少是多少分?(2)如果在比赛中出现了6场平局,那么各队总分之和是多少?例4、编号为1、2、3、4、5、6的同学进行围棋比赛,每2个人都要赛1盘.现在编号为1、2、3、4、5的同学已经赛过的盘数和他们的编号数相等.请问:编号为6的同学赛了几盘?例5、甲、乙、丙、丁、戊五个同学的各科考试成绩如表,已知:①每门功课五个人的分数恰巧分别为l、2、3、4、5;②五个人的总分互不相同,且从高到低的顺序排列是:甲、乙、丙、丁、戊;③丙有四门功课的分数相同.请你把表格补充完整.语文数学英语音乐美术总分田24乙丙丁 4戊 3 5例6、九个外表完全相同的小球,重量分别是1,2,…,9.为了加以区分,它们都被贴上了数字标签,可是有一天,不知被哪个调皮鬼重新乱贴了一通.我们用天平做了两次称量,得到如下结果:(1)①②>③④⑤⑥⑦;(2)③⑧=⑦,请问:⑨号小球的重量是多少?例7、在一次射击练习中,甲、乙、丙三位战士打了四发子弹,全部中靶,其中命中情况如下:(1)每人四发子弹命中的环数各不相同;(2)每人四发子弹命中的总环数均为17环;(3)乙有两发命中的环数分别与甲其中两发一样,乙另外两发命中的环数与丙其中两发一样;(4)甲与丙只有一发环数相同;(5)每人每发子弹的最好成绩不超过7环.问:甲与丙命中的相同环数是几?例8、9个小朋友从前到后站成一列.现在将红黄蓝三种颜色的帽子各三顶分别戴在这些小朋友的头上.每个小朋友都只能看到站在他前面的小朋友帽子的颜色.后来统计了一下,发现他们看到的红颜色帽子的总次数等于他们看到的黄颜色帽子的总次数,也等于他们看到的蓝颜色帽子的总次数.已知从前往后数第三个小朋友戴着红帽子,第六个小朋友戴着黄帽子,请问:最后一个小朋友戴着什么颜色的帽子?例9、现有A、B、C共3支足球队举行单循环比赛,即每两队之间都要比赛一场.比赛积分的规定是胜一场积2分,平一场积1分,负一场积0分,表1是一张记有比赛详细情况表格,但是,经过核对,发现表中恰好有4个数字是错误的,请你把正确的结果填入表2中.表1场数胜负平进球失球积分A 2 2 0 1 0 2 3B 2 1 1 0 3 6 2C 1 2 1 2 0 1 1表2场数胜负平进球失球积分ABC实战演练➢课堂狙击1.甲、乙、丙、丁与小强五位同学一起比赛象棋,每两人都要比赛一盘.到现在为止,甲已经赛了4盘,乙赛了3盘,丙赛了2盘,丁赛了1 盘.问:小强已经赛了几盘?分别与谁赛过?2.有10名选手参加乒乓球单打比赛,每名选手都要和其它选手各赛一场,而且每场比赛都分出胜负,请问:(1)总共有多少场比赛?(2)这10名选手胜的场数能否全都相同?(3)这10名选手胜的场数能否两两不同?3. 5支球队进行单循环赛,每两队之间比赛一场,每场比赛胜者得3分,负者得0分,打平则双方各得1分,最后5支球队的积分各不相同,第三名得了7分,并且和第一名打平.请问:这5支球队的得分,从高到低依次是多少?4. 红、黄、蓝三支乒乓球队进行比赛,每队派出3名队员参赛.比赛规则如下:参赛的9名队员进行单循环赛决出名次,按照获胜场数进行排名,并按照排名获得一定的分数,第一名得9分,第二名得8分,…,第九名得1分;除产生个人名次外,每个队伍还会计算各自队员的得分总和,按团体总分的高低评出团体名次.最后,比赛结果没有并列名次.其中个人评比的情况是:第一名是一位黄队队员,第二名是一位蓝队队员,相邻的名次的队员都不在同一个队.团体评比的情况是:团体第一的是黄队,总分16分;第二名是红队,第三名是蓝队.请问:红队队员分别得了多少分?5.一次考试共有10道判断题,正确的画“√”,错误的画“×”,每道题10分,满分为100分.甲、乙、丙、丁4名同学的解答及甲、乙、丙3名同学得分如下表所示.丁应得分.题号学生 1 2 3 4 5 6 7 8 9 10 得分甲××√√××√×√√70乙×√×√√××√√×70丙√×××√√√×××60丁×√×√√×√×√×6.五行(火水木金土)相生相克,其中每一个元素都生一个,克一个,被一个生和被一个克,水克火是我们熟悉的,有一个俗语叫做“兵来将挡,水来土掩”,是说土能克水.另外,水能生木,火能生土.请把五行的相生相克关系画出来.7. 4支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0 分,平局各得1分.比赛结果,各队的总得分恰好是4个连续的自然数.问:输给第一名的队的总分是多少?8.A、B、C、D四个足球队进行循环比赛.赛了若干场后,A、B、C三队的比赛情况如表:问:D赛了几场?D 赛的几场的比分各是多少?场数胜平负进球失球A 3 2 1 0 2 0B 2 1 1 0 4 3C 2 0 0 2 3 6D9.一次象棋比赛共有10位选手参加,他们分别来自甲、乙、丙3个队.每人都与其余9人比赛一盘,每盘胜者得1分,负者得0分,平局各得0.5分.结果乙队平均得分为3.6分,丙队平均得分为9分,那么甲队平均得多少分?➢课后反击1.有A、B、C三支足球队,每两队比赛一场,比赛结果为:A:两胜,共失2球;B:进4球,失5球;C:有一场踢平,进2球,失8球.则A与B两队间的比分是多少?2.赵、钱、孙、李、周5户人家,每户至少订了A、B、C、D、E这5种报纸中的一种.已知赵、钱、孙、李分别订了其中的2、2、4、3种报纸,而A、B、C、D这4种报纸在这5户人家中分别有1、2、2、2家订户.周姓订户订有这5种报纸中的几种?报纸E在这5户人家中有几家订户?3.A、B、C、D、E、F六个国家的足球队进行单循环比赛(即每队都与其他队赛一场),每天同时在3个场地各进行一场比赛,已知第一天B对D,第二天C对E,第三天D对F,第四天B对C请问:第五天与A队比赛的是哪支队伍?4. A、B、C、D、E五位同学分别从不同的途径打听到五年级数学竞赛获得第一名的那位同学的情况:A打听到的:姓李,是女同学,13岁,东城区;B打听到的:姓张,是男同学,11岁,海淀区;C打听到的:姓陈,是女同学,13岁,东城区;D打听到的:姓黄,是男同学,11岁,西城区;E打听到的:姓张,是男同学,12岁,东城区.’实际上第一名同学的情况在上面都出现过,而且这五位同学的消息都仅有一项正确,那么第一名的同学应该是哪个区的,今年多少岁呢?5. 10名选手参加象棋比赛,每两名选手间都要比赛一次,已知胜一场得2分,平一场得1分,负一场不得分.比赛结果:选手们所得分数各不相同,前两名选手都没输过,前两名的总分比第三名多20分,第四名得分与后四名所得总分相等,问:前六名的分数各为多少?6. 阿奇和8个好朋友去李老师家玩,李老师给每人发了一顶帽子,并在每个人的帽子上写了一个两位数,这9个两位数互不相同,且每个小朋友只能看见别人帽子上的数.李老师在纸上写了一个自然数A,问这9位同学:“你们知道自己帽子上的数能否被A整除吗?知道的请举手,”结果有4人举手.李老师又问:“现在你们知道自己帽子上的数能否被24整除吗?知道的请举手.”结果有6人举手.已知阿奇两次都举手了,并且这9位同学都足够聪明且从不说谎.请问:除了阿奇之外的人帽子上8个两位数的总和是多少?重点回顾(1)学会对一个问题进行分析、推理;(2)利用我们的逻辑推理来解决一些推理的问题;名师点拨重点和难点突破:(1)理解每一个题的逻辑关系;(2)掌握推理的一般方法。
逻辑推理(二)计算逻辑在逻辑推理过程中,需要进行数字(或数)的计算来完成的逻辑问题,如数字问题,体育比赛的得分、场数、名次问题,在考试中的得分等等问题,我们称这类问题为计算逻辑.例1在一座办公大楼里,有30名办事员.某天上班有一名办事员没有和其他办事员见面.请问这一天在大楼里办公的人最多能遇到几位同事?随堂练习1某次集会共到了68人,每人头上都戴了一顶帽子,颜色分红、蓝两种,任意两个到会的人中至少有一个人戴红帽子.问戴红帽子的人数比戴蓝帽子的人数多了多少个人?例2如图,六张四位数的纸片互相纵横交错叠在一起.其中有且只有一个数是完全平方数.这个数是多少?例3伟大的物理学家爱因斯坦A年B月14日生于德国乌尔姆(UIM),父母都是犹太人,他是相对论的创立者,诺贝尔物理奖获得者.C年4月D日逝世于美国,享年E岁.请将下列给出的一组数正确的填入A、B、C、D、E中.(1)1955 (2)3 (3)1879 (4)76 (5)18随堂练习2 A年B月16日在德意志的波恩附近,一件破旧的阁楼上诞生了以后影响百年的音乐奇才——贝多芬.他以非凡的英雄气概,与残酷的命运抗争,以无与伦比的意志和才华写出了无数欢乐的、悲壮的、田园诗一般温馨的不朽乐章.在一个雷雨交加的夜晚,他圆睁双目注视着闪电,孤独地离开了人世.一个陌生人替他合上了眼睛,时年C年3月D日,贝多芬享年E岁.请将下列给出的一组数正确的填入A、B、C、D、E中.(1)26 (2)57 (3)1827 (4)12 (5)1770例4 10个好朋友彼此住得很远,没有电话,只能靠写信互通消息.现在这10个人每人都知道一条好消息,这10条好消息彼此不同,为使这10个人都知道所以的好消息,只能通过相互写信通报.请问至少要让邮递员传送几封信?例5甲、乙、丙、丁四个同学进行象棋比赛,每两个都比赛一场,规定胜者得2分,平局各得1分,输者得0分.结果甲得第一,乙、丙并列第二,丁最后一名,那么乙得分.随堂练习3五个选手进行象棋比赛,每两个人之间都要赛一盘.规定胜一盘得2分,平一盘各得1分,输一盘不得分.已知比赛后,其中4位选手共得16分,则第5位选手得了分.例6 A、B、C、D、E五对夫妇聚会,见面时相互握手问候.A先生好奇地私下向每个人(包括他太太)刚才握手的次数,得到的回答使他惊奇.9个人中竟然没有两个人握手次数相同的.A太太握手次数是多少?(一对夫妇之间不握手)随堂练习4四所小学,每所小学有两只足球队.这八支足球队进行友谊比赛.规定本校两支球队不进行比赛,不同学校的任意两队之间比赛一场.比赛进行到某一阶段后(还没有赛完).A校第一队队长发现,其他七支球队已赛过的场数互不相同.问这时A校第二队赛了几场?练习题1.有9张纸牌,分别为1至9.A、B、C、D四人取牌,每人取两张.现已知A取两张牌之和是10;B取两张牌之差是1;C取两张牌之积是24;D取两张牌之商是3.剩下的一张牌是几?2.四名棋手每两名选手都要比赛一局,规则规定胜一局得2分,平一局得1分,负一局得0分.比赛结果,没有人全胜,并且各人的总分都不相同.那么至多可以有多少个平局?3.甲、乙、丙三名运动员囊括了全部比赛项目的前三名,他们的总分分别为8、7和17分.甲得了一个第一名,已知各个比赛项目分数相同,且第一名得分不低于二、三名得分的和.那么,比赛共有几个项目,甲每项得分分别是几分?4.三人打乒乓球,每场两人,输者退下换成另一人.这样继续下去.在甲打了9场,乙打了6场时,丙最多打了______场.5.在一个庆典晚会上,男女嘉宾共69人.出现了一个非常有趣的情况:每位女士认识的男士的人数各不相同,而且组成连续的自然数,最少的认识16位男士,最多的只有两位男士不认识.这次晚会上共有女嘉宾______人.6.一些士兵排成一列横队,第一次从左到右1至4报数,第二次从右至左1至6报数,两次都报3的恰有5名,这列士兵最多有______名.7.共有四人进行跳远、百米、铅球、跳高四项比赛.规定每个单项第一名记5分,第二名记3分,第三名记2分,第四名记1分,每个单项比赛中四人得分互不相同.总分第一名得17分,其中跳高得分低于其他项的得分;总分第三名得11分,其中跳高得分高于其他项的得分.问总分第二名的铅球得分是多少?8.在一次射击练习中,甲、乙、丙三位战士各打了四发子弹,全部中靶.其命中情况如下:(1)每人四发子弹所命中的环数各不相同;(2)每人四发子弹所命中的总环数均为17环;(3)乙有两发命中的环数分别与甲命中的环数一样;(4)甲与丙只有一发环数相同;(5)每人每发子弹的最好成绩不超过7环.问:甲与丙命中的相同环数是几环?9.12个队参加一次足球比赛,每两个队都要比赛一场,每场比赛中,胜队得3分,负队得0分,平局各得1分.比赛完毕后,获第三名和第四名的两个队得分最多可以相差______分.10.有A、B、C、D四支足球队进行单循环比赛,共要比赛______场.规定:胜一场得2分,平一场得1分,负一场得0分.全部比赛结束后,A、B两队的总分并列第一名,C队第二名,D队第三名,C队最多得______分.11.一种游戏,每一局胜则得6分,平则得5分,负则得零分,比赛足够多局,但无论比赛多少局,不能得到的分数共有多少个?。
经典逻辑题1.乙、丙、丁与小青五位同学一起比赛象棋,每两人比赛一盘。
到现在为止,甲已赛了4盘,乙赛了3盘,丙赛了2盘,丁赛了1盘。
问小青已经赛了几盘?2.小王、小方和小孙住在一起,他们一位是医生,一位是经理,一位是教师。
小孙比医生的年龄大,小王和教师不同岁,教师比小方小。
请问小王、小方和小孙的职业各自是什么?3.莎士比亚《威尼斯商人》中,鲍西娅为了挑选聪明的男朋友,就做了三个匣子,一个是金的,一个是银的,一个是铜的,其中只有一个匣子里放了她自己的照片。
三个匣子外面分别贴上一张字条,金的匣子上面写着:“照片不在此匣中。
”银匣子上面写着:“照片在金匣子中。
”铜匣子上面写着:“照片不在此匣中。
”同时鲍西娅又告诉来应选的人,这三句话中只有一句是真的。
请问,照片究竟在哪个匣子里?4.一篇文章,现有甲、乙、丙三人翻译,如果甲、乙两人合作翻译,需要10小时完成,如果由乙、丙两人合作翻译,需要12小时完成。
现在先由甲、丙合作翻译4小时,剩下的再由乙单独去翻译,需要12小时才能完成。
则这篇文章如果全部由乙单独翻译,要多少小时能够完成?5.有黑、白、红三种颜色的珠子,共16颗。
已知白珠颗数是黑珠的5倍。
红珠有多少颗?6.三只口袋分别装有两个红球、两个白球、一红一白球,但口袋外贴的标签都是错的,请从口袋里取出一只球,使你能根据这个球的颜色说出三只口袋里球的颜色。
7.烧一根不均匀的绳,从头烧到尾总共需要1个小时。
现在有若干条材质相同的绳子,问如何用烧绳的方法来计1个小时15分钟呢?8.一只小蚂蚁贪玩迷了路,它很着急,怎么找也找不到回去的路;此时,旁边正好过来一只毛毛虫,于是小蚂蚁上前问毛毛虫,从这里回它的家要怎么走。
毛毛虫告诉它,如果绕过这堵墙要走很远的路,最好还是翻墙过去。
听了毛毛虫的话,小蚂蚁决定翻墙回家,而这面墙有20米高。
如果小蚂蚁只在白天行动,而且一天只爬3米,而晚上它要睡觉,这样又会下滑2米。
如果小蚂蚁就依这种速度从一边的墙脚出发,需要几天的时间才能翻到墙的另一边回家呢?9.小李是他们班的物理课代表,平时除了收发作业外,他还经常与老师去做一些物理实验。
1.n支队伍的单循环比赛将进行场比赛,其中每支队都进行体育比赛中的总分2.体育比赛中的总分胜、平、负按每出现一场平局,总分就会减少每出现一场平局胜、平、负按不管比赛情况如何,最后的总分总是不变的。
3.一个小组内:胜的总场数等于负的总场数;事实上,数学中无处不存在逻辑推理问题,甚至可以说,只要存在因果关系的地方就有逻辑推理。
那么本节,我们将要学习的内容是:体育比赛形式本节的逻辑推理问题。
体育比赛形式的逻辑推理问题,主要是学会将比赛双方以及胜负关系的情况使用点线图来进行表示,借助表格来统计得分数和得失球数,有时还可以利用总得分情况来进行分析。
足球世界杯小组赛的每个小组有四个队参加单循测试题1.甲乙丙三名选手参加马拉松比赛。
起跑后甲处在第一的位置,在整个比赛过程中,甲的位置共发生了七次变化。
比赛结束时甲是第几名?(注:整个比赛过程中没有出现三人跑在同一位置的情形)2.在一次中国象棋比赛中,甲乙丙丁和小张进入了最后的决赛,他们要进行单循环赛,比赛规定:胜一盘得2分,和一盘得1分,输一盘不得分。
到目前为止,甲赛了4盘得了2分,乙赛了3盘得了4分,丙赛了2盘得了1分,丁赛了1盘得了1分。
试问:小张已经比赛了几盘?他一共得了多少分?3.甲、乙、丙、丁四名同学进行象棋比赛,每两人都比赛一场,规定胜者得2分,平局各得1分,输者得0分。
请问:⑴一共有多少场比赛?⑵四个人最后得分的总和是多少?⑶如果最后结果甲得第一,乙、丙并列第二,丁是最后一名,那么乙得了多少分?4.四支足球队进行单循环比赛,即每两队之间都比赛一场。
每场比赛胜者得3分,负者得0分,平局各得1分。
比赛结束后,各队的总得分恰好是4个连续的自然数。
问:输给第一名的队的总分是多少?5.乒乓球是中国的国球,是“三大国粹”之一在一次乒乓球国际赛事中,中国著名选手马琳以4:0横扫德国著名选手波尔.乒乓球比赛为11分制,即每局11分,7局4胜制,打成10:10后必须净胜而且只能净胜2分。
组合数学第01讲_比赛中的推理知识图谱组合数学第01讲_比赛中的推理-一、比赛中的推理场次计算总分计算具体赛程积分与名次得失球相关一:比赛中的推理知识精讲比赛中的推理:这些问题有各种不同的形式:有分析对阵情况的,有计算各队积分的,有利用积分排名的,甚至还有讨论进球数、失球数的.不同类型的问题我们应该用不同的方法来处理.在推理中,画示意图或表格用来分析比赛问题,能够让我们对比赛的情况更为直观明了.1.比赛分类:(1)淘汰赛:每场比赛踢掉一支球队,只取第一名.(2)单循环赛:n支球队,每两队比赛1场,总共比赛场.(3)双循环比赛:n支球队,每两球比赛2场总共比赛场.2.与比赛积分有关的推理问题.两种常见的计分法:(1)2分制计分法:“每场比赛胜者得2分,负者得0分,平局各得1分”.这种情况下,每场比赛无论结果如何,双方总得分都是2分,因此所有选手的总分就等于“比赛场数×2”.(2)3分制计分法:“每场比赛胜者得3分,负者得0分,平局各的1分”.这种情况下,总分就是“胜负场数×3+平局场数×2”,或者写成“比赛场数×2-平局场数”.三点剖析重难点:要注意搞清比赛规则,特别是积分规则,对阵方式,认识总场次、总得分与某个对或人总得分、总场次间的区别与联系..若是画对阵关系图,注意箭头表胜负,虚线表示平局.题模精讲题模一场次计算例、某年级8个班级进行足球友谊赛,比赛采用单循环赛制(参加比赛的队每两队之间只进行一场比赛),胜一场得3分,负一场得0分,平一场得1分.某班级共得15分,并以无负局成绩获得冠军,那么该班共胜几场比赛答案:4解析:该班赛了7场.假设全是平局,应得7分.每将1场平局替换为胜场,总分增分,故该班共胜场.例、为弘扬亚运精神,四年级组织了篮球联赛,赛制为单循环制,即每两队之间都要比一场,计划安排15场比赛,应该邀请几个篮球队参加答案:6解析:由于,故应该邀请6个篮球队参加.例、甲、乙、丙、丁与小明五位同学进入象棋决赛.每两人都要比赛一盘,每胜一盘得2分,和一盘得1分,输一盘得0分.到现在为止,甲赛了4盘,共得了2分;乙赛了3盘,得了4分;丙赛了2盘,得了1分;丁赛了1盘,得了2分.那么小明现在已赛了______盘.答案:2解析:由题意可画出比赛图,已赛过的两人之间用线段连接.由图看出小明赛了2盘.例、A,B,C三个篮球队进行比赛,规定每天比赛一场,每场比赛结束后,第二天由胜队与另一队进行比赛,败队则休息一天,如此继续下去.最后结果是A队胜10场,B队胜12场,C队胜14场,则A队共打了几场比赛答案:23场解析:因为A队胜10场,所以A队休息和被击败的天数的和是.26是个偶数,结合我们在分析中得到的结论,可以知道A队休息的天数与被打败的天数是相同的,所以A队休息了13天.因为一共有36场比赛,所以A队打了23场比赛.例、有16位选手参加象棋晋级赛,每两人都只赛一盘.每盘胜者积1分,败者积0分.如果和棋,每人各积分.比赛全部结束后,积分不少于10分者晋级.那么本次比赛后最多有_______为选手晋级.答案:11解析:一共比赛了120场,每场比赛两个选手总分会得到1分,所以共有120分,理论上来讲,最多能有人,但是没有晋级的人同样也消耗了120分钟的若干分,所以不可能这120分全部是这12个人获得,故最多不可能是12人;于是接下来考虑11人的情况,这样是可以实现的,11人只需110分,而剩下来的5人正好消耗分,加起来120分.(具体的一种情况可以使前11人之间均为平局,然后他们都赢了最后5名,则前11人每人得分都为10分).例、五支足球队伍比赛,每两个队伍之间比赛一场;胜者得3分,负者得0分,平局各得1分.比赛完毕后,发现各队得分均不超过9分,且恰有两支队伍同分.设五支队伍的得分从高到低依次为、、、、(有两个字母表示的数是相同的).若恰好是15的倍数,那么此次比赛中共有______场平局.答案:3解析:体育比赛得分问题,首先算出比赛一共10场,总分在20到30分之间.五位数是15的倍数,利用整除性可知,可为0或者5,考虑到最小,如果,总分最小为分,不成立,所以,即第五名4场全负积0分.第五名负四场,则平局最多为6场,总分最少为24分.又考虑到分数和为3的倍数,总分可能情况为30,27,24.对三种情况分别讨论:(1)总分30分:即无平局情况,那么前四名队伍得分只可能为9,6,3分.不能在只有两个重复的情况下凑出30.所以总分30分情况不存在.(2)总分27分:经测试,存在,满足题目分数要求,且四个队7场胜3场负,恰好满足第五队的4场负,所以此为一解,比赛3场平局.(3)总分24分:在24分情况下,只有前四名只能各胜1场平2场,但不满足只有两队得分相同.所以总分24分情况不存在.综上,唯一存在总分27分情况下,比赛中共有3场平局.题模二总分计算例、6名同学进行象棋比赛,每两人都比赛一场,比赛规定胜者得2分,平局各得1分,输者得0分.那么6个人最后得分的总和是_______分.答案:30解析:无论赛果如何,每场共产生2分.6个人共赛了场,因此总分为分.例、四支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分.比赛结束后,各队的总得分恰好是4个连续的自然数.问:输给第一名的队的总分是多少答案:4分解析:如果比赛分出胜负,那么双方得分之和就是3分;如果平局,双方得分之和就是2分.4支队之间要进行场比赛,那么总分就要在12分和18分之间.各队的总得分就是6场比赛的总得分,因此四支球队的总分也要在12分和18分之间.由题意,四支球队的得分是4个连续的自然数.而四个连续自然数的和可能是:,,,,……在12分和18分之间的只有14和18,因此这四支球队的得分可能是2分、3分、4分、5分,或者3分、4分、5分、6分.这两种情况都可能出现吗如果是3分、4分、5分、6分,总分是18分,那么每场比赛都分出了胜负,但这是不可能的,大家自己想想这是为什么如果是2分、3分、4分、5分,那么第一名得5分,只能是1胜2平;第二名得4分,只能是1胜1平1负;第三名得3分,可能是1胜2负,也可能是3平;第四名得2分,只能是2平1负.其中只有第三名的比赛结果有两种情况.综合考虑第一名、第二名、第四名的胜负情况:他们一共有2胜5平2负.由于总胜场数与总负场数相同,所以第三名只能是3平.第三名没有平局,容易画出四支队之间的比赛胜负关系,如图所示.因此输给了第一名的只有第二名,他得了4分.例、10名选手参加象棋比赛,每两名选手间都要比赛一次.已知胜一场得2分,平一场得1分,负一场不得分.比赛结果:选手们所得分数各不相同,前两名选手都没输过,前两名的总分比第三名多20分,第四名得分与后四名所得总分相等.问:前六名的分数各为多少答案:17分,16分,13分,12分,11分,9分解析:因为前两名选手都没有输过,所以第一名选手的战绩最好是8胜1平,得17分.第二名最多得16分.可知第三名最多得分.后四名选手之间有6场比赛,每场比赛得2分,一共得12分.所以后四名选手总分最少为12分,从而第四名选手最少得12分.考虑到第三名最多得13分,可知第三名得13分,第四名得12分.于是第一名和第二名总分为33分,也就是第一名得17分,第二名得16分.10名选手之间一共有45场比赛,总分是90.第五名和第六名的总分是.考虑到每一个的得分都小于第四名的得分12,可知第五名得11分,第六名得9分.因此前六名的分数分别为17、16、13、12、11、9.例、有A、B、C、D、E五个队分在同一个小组进行单循环足球赛(每两队只进行一场比赛),为争夺出线权,比赛规则规定:胜一场得3分,平一场各队各得一分,负一场得0分.小组赛结束后,小组中名次在前的两个队出线,请你解答下列问题:(1)小组赛结束后,若A队的积分为9分,设A队胜m场,平n场,则的值是多少(2)小组赛结束后,设5个队的积分总和为x,那么x的范围是什么(3)小组赛结束后,若A队的积分为10分,A队能出线吗请你对A队能否出线作出分析.答案:(1)9(2)(3)能解析:(1)即为A的总分,故.(2)共赛场,每场最少产生2个积分,最多产生3个积分,故5个队的积分总和x最小为,最多为,且易知此范围内任何一种情况均可达到.因此,x的范围是.(3)假设A无法出线,则至少有两队的得分不低于10分,即此三队总分至少为分,进而另两队总分最多为分.但另两队之间会比一场,不可能都积0分,矛盾.因此假设不成立,即A一定能出线.题模三具体赛程例、甲、乙、丙、丁与小强五位同学一起比赛象棋,每两人都要比赛一盘.到现在为止,甲已经赛了4盘,乙赛了3盘,丙赛了2盘,丁赛了1盘.问:小强已经赛了几盘分别与谁赛过答案:2;甲,乙解析:用5个点代表5人,实线代表两人比过,虚线则为没比过.甲与每人都比过,这样丁只与甲比过,乙未与丁比,与另三人比过,进而丙只与甲、乙比过.最终得小强与甲、乙比过2盘.例、今有6支球队进行单循环赛,每两队仅赛一场,胜者得3分,负者得0分,平局各得1分.比赛结束,各队得分由高到低恰好是等差数列(排名相邻两队得分差相等),其中第三名得8分.这次比赛中平局共有几局答案:3解析:第三名5场得8分,故最多胜2场.假设其只胜1场,则其积分最多为分,矛盾,因此第三名只能为2胜2平1负.共比了场,故所有队总分最多为分.前五名总分为分,进而第六名最多为分,且与第三名差3个公差,只能为2分.这样,所有队总分为分,平局有局.例、五个国家足球队A、B、C、D、E进行单循环比赛,每天进行两场比赛,一队轮空.已知第一天比赛的是A与D,C轮空;第二天A与B比赛,E轮空;第三天A与E比赛;第四天A与C比赛;B与C的比赛在B与D的比赛之前进行.那么C与E在哪一天比赛答案:第五天解析:列表分析,用*表示轮空.题模四积分与名次例、A、B、C、D四支球队进行足球比赛,每两队都要比赛一场.已知A、B、C三队的成绩分别是:A队2胜1负,B队2胜1平,C队1胜2负.那么D队的成绩是________胜.答案:解析:D显然有1平.共赛了场,A、B、C共胜5场,再加上1场平局,已经达到6场,因此D没有获胜.例、东亚四强赛是由中国、韩国、日本、朝鲜四个国家球队之间进行的一次单循环制比赛,即每支球队都必须分别和其他球队比赛一场.请问:东亚四强赛总共需要比多少场比赛如果每赢一场得3分,平一场得一分,输一场得0分,那么第一名最多可以的多少分最少可以得多少分答案:9;3解析:易知第一名最多为分.若所有比赛均为平局,显然第一名为分.假设某队只得2分、1分或0分,则其至少输了1场,故必有1队至少积3分,因此3分以下不可能为第一名.综上,第一名最多9分,最少3分.例、A、B、C、D四支足球队进行一次单循环比赛,赢一场得2分,平局各得1分,输一场不得分.所有比赛结束后,按积分高低排名,A、B两队并列最后一名,C 队第二名,D队第一名.那么A队最多得多少分答案:2解析:共赛了场,各队总积分为分.A队得分必低于平均分分,即最多2分.易知2分是可达的,如D胜A、B,其余比赛均为平局即可.因此,A队最多得2分.例、一张有4人参加的国际象棋单循环比赛的积分表如下,每场比赛胜者得3分,负者减1分,平局则两人各得1分.(1)填出表内空格中的分值.(2)排出这次比赛的名次.答案:(1)见下表(2)余张赵陈解析:若a胜b,则b负于a;若a与b战平,则b与a也战平.由此易将表格补全,进而得到名次.例、热火队和雷霆队为了争夺NBA总决赛的冠军,斗得难分难解.在今天晚上的比赛中:(1)两队都没有换过人;(2)除了三名队员外,其他队员得分都互不相同.这三名队员都得了22分,但是不在同一个队中;(3)全场最高个人得分是30分,只有三名队员得分不到20分;(4)热火队中,得分最多和得分最少的球员只相差3分;(5)雷霆队每人的得分正好组成一个等差数列.这场比赛__________队胜,他们的比分是___________________.答案:雷霆,解析:综合条件,可以得到雷霆队得分组成的等差数列的公差只能是4分,队员分别得分为30、26、22、18、14,而热火队得分为22、22、21、20、19.所以雷霆队与热火队的比分是110:104.例、世界杯足球小组赛,每组四个队进行单循环比赛(即每个队都与同组的其它三个队各赛一场).每场比赛胜队得3分,败队得0分,若打成平局,则两队各得1分,小组赛全赛完后,总积分高的两个队出线进入下一轮比赛.如果总积分相同,则还要依次按净胜球多少和进球数多少来排序.试问:(1)每组小组赛需要比赛几场(2)一个队的积分情况有哪几种可能(3)若某队只积3分,那么该队的输赢情况有哪几种可能(不考虑三场比赛的先后顺序)(4)若某队只积3分,那么该队有可能出线吗请简单叙述理由.(5)至少需要积多少分才能保证一定出线请简单叙述理由.(6)至少需要积多少分才有可能出线请简单叙述理由.答案:(1)6(2)0至7分及9分均有可能,共9种(3)1胜2负或3平,共2种(4)可能(5)7(6)2解析:(1)场.(2)可能为、、、、、、、、、,共9种.(3),故可能为1胜2负或3平.(4)可能,如6场均为平局,每队均为3分,则必有2只可以出线.(5)7分.9分显然小组第一出现.若为7分,其战胜的两支球队最多为6分,故7分可确保前两名.若1队3负,另3队均为2胜1负,则必有1只积6分的无法出线.(6)2分.若一支球队全胜,另三只均为2平1负,则必有2分的可以出线.而若积1分或0分,其至少输给过2只球队,那两只至少3分,排名一定在前,即此时必无法出线.题模五得失球相关例、现有A、B、C共3支足球队举行单循环比赛,即每两队之间都要比赛一场.比赛积分的规定是胜一场积2分,平一场积1分,负一场积0分.图1是一张记有比赛详细情况的表格.但是,经过核对,发现表中恰好有4个数字是错误的,请你把正确的结果填入图2中.答案:<解析:对于A,赛2场,2胜1平0负,这里至少有一个数字有误,如果只有一个数字有误,那有三种可能:(1)赛3场,2胜0负1平;(2)赛2场,1胜0负1平;(3)赛2场,2胜0负0平.对于(1)、(3)两种情况,后面的积分都是错误的,对于(2)这种情况,后面的进球是错误的,所以对A来说,至少有两个数字是错误的.对于C,赛1场,0胜2平1负,这里至少有一个数字有误,如果只有一个数字有误,那有两种可能:(1)赛3场,0胜2平1负;(2)赛1场,0胜0平1负.无论哪种情况,后面的积分都是错误的,所以对C来说,也至少有两个数字是错误的.A和C一共至少有4个错误的数字,而总共只有4个数字错误,所以它们各错了两个,B的数字全部正确.三个球队打单循环,每支球队的比赛场数不多于2.对A来说,如果它的两个错误全部出现在前4个数字上,那么它进0球就是对的,所以它没有赢.这时它最多平2场得2分,这样积分出错,矛盾.因此前4个数字只有一个错误,那它的结果是一胜一平或者两胜.如果A的比赛结果是2胜,那进球数是错的,积分也是错的,一共有3个错误,所以A的比赛结果是一胜一平,另一个错误的数字是进球数.用类似的方法可以写出正确的表格,如图所示.我们还容易看出,A平C而胜了B,B胜了C而负于A,C平了A而负于B.再从C的进球数与失球数就可以判断出三场比赛比分分别是:Avs BAvs CBvs C例、A、B、C三队比赛篮球,A队以83∶73战胜B队,B队以88∶79战胜C队,C 队以84∶76战胜A队,三队中得失分率最高的出线.一个队的得失分率为,如,A队得失分率为.三队中__________队出线.答案:A解析:这道题没必要算出三队得失分率,得失分率就是衡量一个球队总共是赢了还是输了.A:赢了10分,输了8分,一共赢了2分.B:赢了9分,输了10分,一共输了1分.C:赢了8分,输了9分,一共输了1分,所以A的得失分率最大.随堂练习随练、6支足球队,每两队间至多比赛一场.如果每队恰好比赛了2场,那么符合条件的比赛安排共有_________种.70解析:把六个球队看做六个点,这之间进行连线.则可能形成一个六边形或者两个三角形.如果形成一个六边形,则有种;如果形成两个三角形,则有种.所以共有种.随练、六个人传球,每两人之间至多传一次,那么最多共进行____次传球.答案:13解析:本题是一道比赛场数计数问题,“每两个之间至多传一次”让六个人最多次地传球,则是5+4+3+2+1=15次.但得看是否可传递回去,在传递过程中同两人是否重复.(15条线,代表传球15次)根据一笔画问题:一笔画要求只有2个奇点(不需要回到出发点时)或0个奇点(需要回到出发点时),行不通.所以应减少奇点个数,共有6个奇点,应该去掉两条两条直线,即去掉了4个奇点,剩下2个奇点,可以传递成功,共15-2=13次传球.五支球队进行足球比赛,每两支队之间都要赛一场,那么每支队要赛几场一共要进行多少场比赛若这五支球队进行淘汰赛,为了决出冠军,一共需要进行多少场比赛答案:4;10;4解析:每支队要赛场,共进行场.淘汰赛每场淘汰1支球队,故为了决出冠军,一共需要进行场淘汰赛.随练、6支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分.请问:(1)各队总分之和最多是__________分,最少是__________分。
体育比赛中的数学对于体育比赛形式的逻辑推理题,注意“一队的胜、负、平”必然对应着“另一队的负、胜、平”。
有时综合性的逻辑推理题需要将比赛情况用点以及连接这些点的线来表示,从整体考虑,通过数量比较、整数分解等方式寻找解题的突破口。
【例 1】 四年级四个班进行足球比赛,每两个班之间都要赛一场,那么每个班要赛几场?一共要进行多少场比赛? (如果参赛队每两队之间都要赛一场,这种比赛称为单循环赛)【巩固】 市里举行足球联赛,有5个区参加比赛,每个区出2个代表队.每个队都要与其他队赛一场,这些比赛分别在5个区的体育场进行,那么平均每个体育场都要举行多少场比赛?【例 2】 学校进行乒乓球选拔赛,每个参赛选手都要和其他所有选手各赛一场,一共进行了36场比赛,有 人参加了选拔赛.A .8B .9C .10【巩固】 朝阳区的几个学校举行篮球比赛,每两个学校都要赛一场,共赛了28场,那么有几个学校参加例题精讲知识结构逻辑推理(三)了比赛?【例 3】趣味滑冰锦标赛最后进行的是花样滑冰双人滑的表演,规定男女双方都不能和自己的原搭档在一起表演.男士用A、B、C表示,女士用甲、乙、丙表示.已知前面表演过程中A和甲一起滑过,B和丙一起滑过,C和甲一起滑过,B和乙一起滑过,C的新搭档不可能是丙,那么乙的新搭档是谁?【例 4】参加世界杯足球赛的国家共有32个(称32强),每四个国家编入一个小组,在第一轮单循环赛中,每个国家都必须而且只能分别和本小组的其他各国进行一场比赛,赛出16强后,进入淘汰赛,每两个国家用一场比赛定胜负,产生8强、4强、2强,最后决出冠军、亚军、第三名,第四名.至此,本届世界杯的所有比赛结束.根据以上信息,算一算,世界杯的足球赛全程共有几场?【巩固】有8个选手进行乒乓球单循环赛,结果每人获胜局数各不相同,那么冠军胜了几局?【例 5】A、B、C、D、E五位同学一起比赛象棋,每两人都要比赛一盘.到现在为止,A已经赛4盘,B赛3盘,C赛2盘,D赛1盘.问:此时E同学赛了几盘?【巩固】八一队、北京队、江苏队、山东队、广东队五队进行象棋友谊赛,每两个队都要赛一场,一个月过后,八一队赛了4场,北京队赛了3场,江苏队赛了2场,山东队赛了1场.那么广东队赛了几场?【例 6】东东、西西、南南、北北四人进行乒乓球单循环赛,结果有三人获胜的场数相同.问另一个人胜了几场?【巩固】东东、西西、北北三人进行乒乓球单循环赛,结果3人获胜的场数各不相同.问第一名胜了几场?【例 7】四个人进行象棋单循环赛,规定胜者得2分,负者得0分,和棋双方各得1分,比赛结束后统计发现,四个人的得分和加起来一定是多少?【巩固】五个人进行象棋单循环赛,规定胜者得2分,负者得0分,和棋双方各得1分,比赛结束后统计发现,五个人的得分和加起来一定是多少?【例 8】A、B、C、D、E五人参加乒乓球比赛,每两个人都要赛一盘,并且只赛一盘,规定胜者得2分,负者不得分,已知比赛结果如下:①A与E并列第一名②B是第三名③C和D并列第四名。
8-3逻辑推理教学目标1.掌握逻辑推理的解题思路与基本方法:列表、假设、对比分析、数论分析法等2.培养学生的逻辑推理能力,掌握解不同题型的突破口3.能够利用所学的数论等知识解复杂的逻辑推理题知识点拨逻辑推理作为数学思维中重要的一部分,经常出现在各种数学竞赛中,除此以外,逻辑推理还经常作为专项的内容出现在各类选拔考试,甚至是面向成年人的考试当中。
对于学生学习数学来说,逻辑推理既有趣又可以开发智力,学生自主学习研究性比较高。
本讲我们主要从各个角度总结逻辑推理的解题方法。
一列表推理法逻辑推理问题的显着特点是层次多,条件纵横交错.如何从较繁杂的信息中选准突破口,层层剖析,一步步向结论靠近,是解决问题的关键.因此在推理过程中,我们也常常采用列表的方式,把错综复杂的约束条件用符号和图形表示出来,这样可以借助几何直观,把令人眼花缭乱的条件变得一目了然,答案也就容易找到了.二、假设推理用假设法解逻辑推理问题,就是根据题目的几种可能情况,逐一假设.如果推出矛盾,那么假设不成立;如果推不出矛盾,而是符合题意,那么假设成立.解题突破口:找题目所给的矛盾点进行假设三、体育比赛中的数学对于体育比赛形式的逻辑推理题,注意“一队的胜、负、平”必然对应着“另一队的负、胜、平”。
有时综合性的逻辑推理题需要将比赛情况用点以及连接这些点的线来表示,从整体考虑,通过数量比较、整数分解等方式寻找解题的突破口。
四、计算中的逻辑推理能够利用数论等知识通过计算解决逻辑推理题.例题精讲模块一、列表推理法【例 1】刘刚、马辉、李强三个男孩各有一个妹妹,六个人进行乒乓球混合双打比赛.事先规定:兄妹二人不许搭伴.第一盘:刘刚和小丽对李强和小英;第二盘:李强和小红对刘刚和马辉的妹妹.问:三个男孩的妹妹分别是谁?【例 2】张明、席辉和李刚在北京、上海和天津工作,他们的职业是工人、农民和教师,已知:⑴张明不在北京工作,席辉不在上海工作;⑵在北京工作的不是教师;⑶在上海工作的是工人;⑷席辉不是农民.问:这三人各住哪里?各是什么职业?【例 3】甲、乙、丙、丁四个人的职业分别是教师、医生、律师、警察.已知:⑴教师不知道甲的职业;⑵医生曾给乙治过病;⑶律师是丙的法律顾问(经常见面);⑷丁不是律师;⑸乙和丙从未见过面.那么甲、乙、丙、丁的职业依次是:.【例 4】甲、乙、丙、丁每人只会中、英、法、日四种语言中的两种,其中有一种语言只有一人会说.他们在一起交谈可有趣啦:⑴乙不会说英语,当甲与丙交谈时,却请他当翻译;⑵甲会日语,丁不会日语,但他们却能相互交谈;⑶乙、丙、丁找不到三人都会的语言;⑷没有人同时会日、法两种语言.请问:甲、乙、丙、丁各会哪两种语言?【例 5】(2007年湖北省“创新杯”初赛)六年级四个班进行数学竞赛,小明猜想比赛的结果是:3班第一名,2班第二名,1班第三名,4班第四名.小华猜想比赛的结果是:2班第一名,4班第二名,3班第三名,1班第四名.结果只有小华猜到的4班为第二名是正确的.那么这次竞赛的名次是班第一名,班第二名,班第三名,班第四名。
计算与逻辑本讲通过解决一个简单的例子,掌握解决有关计算的逻辑推理题目的具体步骤:1、了解规则2、分析条件3、解决问题:可以使用直接进行计算,或者使用假设法等一些方法进行推理,然后再进行计算按照这三个步骤,解决关于计算的推理题目会使我们的思路变得十分清晰。
小赵的电话号码是一个五位数,它由五个不同的数字组成。
小王说:“它是93715。
”小张说:“它是79538。
”小李说:“它是15239。
”小赵说:“谁说的某一位上的数字与我的电话号码上的同一位数字相同,就算谁猜对了这个数字。
现在你们三个人每个人都猜对了两个数字,并且电话号码上的每一个数字都有人猜对。
而每个人猜对的数字的数位都不相邻。
”这个电话号码是_______。
1.1.小刚在纸条上写了一个四位数,让小明猜.小明问:“是6031吗?”小刚说:“猜对了1个数字,且位置正确.”小明问:“是5672吗?”小刚说:“猜对了2个数字,但位置都不正确.”小明问:“是4796吗?”小刚说:“猜对了4个数字,但位置都不正确.”根据以上信息,可以推断出小刚所写的四位数是______。
2.2.小赵的电话号码是一个五位数,它由五个不同的数字组成。
小张说:“它是84261。
”小王说:“它是26048。
”小李说:“它是49280。
”小赵说:“谁说的某一位上的数字与我的电话号码上的同一位数字相同,就算谁猜对了这个数字。
现在你们每人都猜对了位置不相邻的两个数字。
”这个电话号码是_______。
3.3.A、B、C、D三个人一起玩游戏。
D在纸上写下了一个三位数,让另外三个小朋友猜这个数是多少?A说:“我猜是765”B说:“我猜是364”C说:“我猜是784”如果三个人恰好都猜对了两个位置上的数字,那么这个三位数是______?甲、乙、丙、丁、戊、己六个人围坐在一圆桌边,乙是坐在甲左边的第二个人,丁坐在戊的正对面,戊、己不相邻。
________坐在甲、乙之间。
1.1.少年组乒乓球赛男子双打正在紧张进行。
体育比赛中的数学问题练习题一.夯实基础1.东东、西西、北北三人进行乒乓球单循环赛,结果3人获胜的场数各不相同.问第一名胜了几场?2.四个人进行象棋单循环赛,规定胜者得2分,负者得0分,和棋双方各得1分,比赛结束后统计发现,四个人的得分和加起来一定是多少?3. 8只球队进行淘汰赛,为了决出冠军,需要进行多少场比赛?4.振华小学组织了一次投篮比赛,规定投进一球得3分,投不进倒扣1分.小亮投了5个球,投进了3个.那么,他应该得多少分?5.八一队、北京队、江苏队、山东队、广东队五队进行象棋友谊赛,每两个队都要赛一场,一个月过后,八一队赛了4场,北京队赛了3场,江苏队赛了2场,山东队赛了1场.那么广东队赛了几场?二.拓展提高:6.班里举行投篮比赛,规定投中一个球得5分,投不进扣2分.小立一共投了6个球,得了16分,那么小立投中了几个球?7.学而思要举行足球联赛,有5个校区参加比赛,每个区出2个代表队.每个队都要与其他队赛一场,这些比赛分别在5个校区的体育场进行,那么平均每个体育场都要举行多少场比赛?8.学校组织了一次投篮比赛,规定投进一球得3分,投不进倒扣1分,如果大明得30分,且知他有6个球没有投进,那么大明共投了几个球?9. 编号为1,2,3,4,5,6的六个运动员进行乒乓球单循环赛。
到现在为止,编号为1,2,3,4,5的运动员已参加比赛的场数正好分别等于他们的编号数。
编号为6的运动员已经赛了几场?三.杯赛演练:10.(“IMC国际数学邀请赛”(新加坡)初赛)学校进行乒乓球选拔赛,每个参赛选手都要和其他所有选手各赛一场,一共进行了36场比赛,有多少人参加了选拔赛?11.(走进美妙数学花园少年数学邀请赛)三人打乒乓球,每场两人,输者退下换另一人,这样继续下去,在甲打了9场,乙打了6场时,丙最多打几场?12. (“迎春杯”决赛试题)四个足球队进行单循环比赛,每两队都要赛一场,如果踢平,每队各得l分,否则胜队得3分,负队得0分,比赛结果,各队的总得分恰好是四个连续的自然数,问:输给第一名的队的总分是多少?(要求说明理由)答案:1.解析:三人进行单循环赛,即每两人都要赛一场,共进行3×2÷2=3(场)比赛.每场比赛都有一人获胜,由三人获胜的场数各不相同,所以三人获胜的场数分别为2、1、0.显然,第一名是胜了2场.2.解析:四个人循环比赛总共比赛4×3÷2=6(场),每场无论分出胜负还是打平,两人的得分和一定是2分,因此最终四个人的得分加起来一定是2×6=12(分).3.解析:方法一:8进4进行了4场,4进2进行2场,最后决赛是1场,因此共进行了4+2+1=7(场)比赛.方法二:每进行一场比赛就淘汰一支球队,最后只剩下冠军了,也就是说淘汰了7只球队,因此进行了7场比赛.4.解析:方法一:小亮投的5个球中,投进的3个球得到3×3=9 (分),而没有投进的2个球被扣掉1×2=2 (分),于是他应得9-2=7 (分).方法二:如果小亮投的5个球都进了,那么他应得3×5=15 (分),但是实际上他只投进了3个球,未投进的2个球中每个球都由得3分变为扣1分,多计3+1=4分,共多计了4×2=8 (分),故小亮应得15-8=7 (分).5. 解析: 八一队赛了4场,说明八一队和其它四队都赛过了.山东队赛了1场,说明只和八一队赛过.北京队赛了3场,说明与八一队、江苏队、广东队赛过.江苏队赛了2场,说明与八一队、北京队赛过.由此可知,广东队只和八一队、北京队赛过,赛了2场.6.解析: 如果小立6个球全部投中,应该得6×5=30(分),实际上少了30-16=14(分),投中一个球得5分,投不进扣2分,投不进一个球就少5+2=7(分),所以一共没投进14÷7=2(个),投中了6-2=4(个)球.⨯-÷=(场),平均每个体育7. 解析:一共有5210⨯=(个)队参加比赛,共赛10(101)245场都要举行4559÷=(场)比赛.8.解析:大明有6个球没有投进,要被扣掉6分,如果不考虑这6个球,大明应该得30+6=36 (分),规定投进一球得3分,36÷3=12 (个),所以,大明投进了12个球,加上未投进的6个球,大明共投了12+6=18个球.9.解析:∵共有6队∴每队最多赛5场∴编号5和所有人赛过∴编号1只和编号5赛过∴编号4和编号2、3、5、6赛过∴编号2只和编号4、5赛过∴编号3和编号4、5、6赛过∴编号6和编号3、4、5赛过3场。
体育比赛中的数学问题1.(15届迎春杯决赛试题)四个足球队进行单循环比赛,每两队都要赛一场.如果踢平,每队各得1分,否则胜队得3分,负队得0分.比赛结果,各队的总得分恰好是四个连续的自然数.问:输给第一名的队的总分是多少?(要求说明理由)2.(09年迎春杯复赛)A B C D E F、、、、、六个足球队进行单循环比赛,每两个队之间都要赛一场,且只赛一场.胜者得3分,负者得0分,平局每队各得1分.比赛结果,各队得分由高到低恰好为一个等差数列,获得第3名的队得了8分,那么,这次比赛中共有3.(13年迎春杯初赛)五支足球队伍比赛,每两个队伍之间比赛一场:胜者得3分,负者得0分,平局各得1分.比赛完毕后,发现各队得分均不超过9分,且恰有两支队伍同分.设五支队伍的得分从高到低依次为A、B、C、D、E (有两个字母表示的数是相同的),若ABCDE恰好是15的倍数,那么此次比赛中共有__________场平局.4.(第十五届华杯赛决赛)足球队A,B,C,D,E进行单循环赛(每两队赛一场),每场比赛胜队得3分,负队得0分,平局两队各得1分。
若A,B,C,D队总分分别是1,4,7,8,请问:E队至多得几分?至少得几分?5.(97年13届迎春杯决赛试题)六个足球队进行单循环比赛,每两队都要赛一场.如果踢平,每队各得1分,否则胜队得3分,负队得0分.现在比赛已进行了四轮(每队都与4个队比赛过),各队4场得分之和互不相同.已知总得分居第三位的队共得7分,并且有4场球赛踢成平局,那么总得分居第五位的队最多可得分,最少可得分.6.(第四届华杯赛复赛)A、B、C、D、E、F六个选手进行乒乓球单打的单循环比赛(每人都与其他选手赛一场),每天同时在三张球台各进行一场比赛,已知第一天B对D,第二天C对E,第三天D 对 F,第四天B对C,问:第五天A与谁对阵?另外两张球台上是谁与谁对阵?7.(第06届华罗庚金杯少年数学邀请赛团体决赛口试试题)世界杯足球小组赛,每组四个队进行单循环比赛,每场比赛胜队得3分,败队记0分,平局时两队各记1分,小组各队全赛完以后,总积分最高的两个队出线进入下轮比赛,如果总积分相同,还要按小分排序.问:一个队至少要积几分才能保证本队必然出线?简述理由.8.某次象棋比赛有两名七年级学生和一些八年级学生参加.每两名参赛者都比赛一局,胜者得1分,负者得0分.若为和局,则各得半分.现知两名七年级学生共得8分,而所有八年级学生所得的分数都彼此相同.求参加象棋比赛的八年级学生的人数.9.20个足球队参加全国冠军赛,问最少应该进行多少场比赛,才能使得任何3个队中总有两个队彼此赛过? 10.有一种体育竞赛共含M 个项目,有运动员A ,B ,C 参加,在每一项目中,第一、二、三名分别得123p p p ,,分,其中123p p p ,,为正整数,且123p p p .最后A 得22分,B 与C 均得9分,B在百米赛中取得第一.求M 的值,并问在跳高中谁得第二名? 11.A 、B 、C 、D 四个队进行循环赛,即每两个队都比赛一场,每场比赛中,胜队得3分,负队得0分,平局则各得1分,每个队只知道自己3场比赛的情况。
2024-2025学年湖南省长沙市周南中学高三(上)第二次段考数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若复数z 满足z =1−i3−i ,则|z|=( )A.210B. 15C.25D.552.“x =1”是“x 2−1=0”的( )A. 充要条件B. 必要不充分条件C. 既非充分也非必要条件D. 充分不必要条件3.已知向量a ,b 满足|a |=2,(4a +b )⋅b =4,则|2a +b |=( )A. 25B. 26C. 125D.214.水果店有一批大小不一的橘子,某顾客从中选购了个头大且均匀的橘子若干个,设原有橘子的重量的平均数和方差分别是−x 1,S 21,该顾客选购的橘子的重量的平均数和方差分别是−x 2,S 22,则下列结论一定成立的是( )A. −x 1>−x 2B. −x 1=−x 2C. S 21>S 22 D. S 21=S 225.直线ax +y−1=0被圆(x−1)2+(y−4)2=4所截得的弦长为23,则a =( )A. −43B. −34C.3 D. 26.将函数f(x)=sin (x +π4)的图象上各点的横坐标缩短为原来的12倍(纵坐标不变),再向右平移π4个单位长度,所得函数图象的一条对称轴为( )A. x =π4B. x =3π8C. x =3π4D. x =π7.一个高为3的直三棱柱容器内装有水,将侧面ABB 1A 1水平放置如图(1),水面恰好经过棱AC ,BC ,A 1C 1,B 1C 1的中点,现将底面ABC 水平放置如图(2),则容器中水面的高度是( )A. 54B. 32C. 94D. 528.给定函数f(x)=x x(x>0),g(x)=xlnx+a,用M(x)表示f(x),g(x)中的最大者,记作M(x)=max{f(x),g(x)},若M(x)=f(x),则实数a的最大值为( )A. 1e B. 1 C. e D. e−1e+1e二、多选题:本题共3小题,共15分。
4⽀⾜球队进⾏单循环⽐赛,即每两队之间都⽐赛⼀场.每场⽐赛胜者得3分,负者得0分,平局各得1分.⽐赛结果,各队的总得分恰好是4个连续的⾃然数.问:输给第⼀名的队的总分是多少?
4×(4-1)÷2=6场,
即共要进⾏6场⽐赛.
⼜各队的总得分恰好是四个连续的⾃然数.
则第⼀名肯定不能是胜两场,否则得分不连续,
只胜⼀场的队有两个,另外两个队伍⼀场都没胜,因为胜⼀场⾄少3分,
⼀场没胜⾄多3分.得分只能是5、4、3、2或4、3、2、1.
如果是4、3、2、1,3分的队伍需要输两场,也就是别的⾄少两个队伍得到⾄少3分,
但最后两名都没胜过,因此不可能是4、3、2、1.只能是5、4、3、2.
由此可得:
第⼀名:1胜2平0负 5分(甲)胜⼄平丙平丁
第⼆名:1胜1平1负 4分(⼄)胜丁平丙负甲
第三名:0胜3平0负 3分(丙)平甲平⼄平丁
第四名:0胜2平1负 2负(丁)平甲负⼄平丙
所以输给第⼀名的是⼄,总分为4分.。
四个足球队进行单循环比赛,每两个队要赛一场,如果踢平,每队各得1分,否则胜队得三分,负队得0分,比赛结果,共出现4场平局,各队的总得分恰好是四个连续的自然数。
输给第一名的队的总分是多少?
4支队,单循环共打6场。
如果全分出胜负,则18分,根据条件,则有得分3、4、5、6.,和假设矛盾,则有得分2、3、4、5的形式,分析则有2胜4平的形式。
如图
a b c d
a 3 1 1
b 0 1 3
c 1 1 1
d 1 0 1
所以,输给第一名的总分是4分。
是第二名的成绩。
共比赛:3+2+1=6场
每队比:6*2/4=3场
4场平局共得:2*4=8分
6-4=2场胜3*(6-4)=6分
总得分:8+6=14分14=2+3+4+5
5>4>3>2 总分为4分
四个队的积分分别是5、4、3、2。
其它可能均不符合要求,你可以自己试试。
假设四个队为ABCD,根据胜场数等于负场数,且由于没有轮空现象,平局数
总和应为偶数的原则,可得
W D L
A 1 2 0
B 1 1 1
C 0 3 0
D 0 2 1
在每个队只打三场比赛的情况下,A、B、D三个队的胜平负战绩是确定的,C 的3分可能是3平,或者1胜2负。
若C为1胜2负,则胜场总数为3,负场总数为4,不符合要求。
所以C战绩为3平。
现在要算输给A队的球队积分,而只有B、D有负场,所以肯定是二者之一。
假设是D输给了A,那么B的负场和B的胜场是同一场,也就是说只能是B输给自己,这不可能,所以应该是B输给A,而D输给B。
即所求为B的积分,为4分。
附战绩表如下:
A B C D
A \ 胜平平
B 负\ 平胜
C 平平\ 平
D 平负平\
由上图可知,平局的四场分别为A对C,A对D,B对C,还有C对D。
四个足球队进行单循环比赛,规定:胜一场得2分,平一场得1分,负一场得0分。
全部比赛结束后,A、B两队的总分并列第一名,C队第二名,D队第三名,C队最多得多少分。
根据胜场数等于负场数,且由于没有轮空现象,平局数总和应为偶数的原则。
1、甲、乙、丙、丁四个同学进行象棋比赛,每两个都比赛一场,规定胜者得2分,平局各得1分,输者得0分,结果甲得第一,乙、丙并列第二,丁最后一名,那么乙得多少分?
2、12个队参加一次足球比赛,每两个队都比赛一场,每场比赛中,胜队得3分,负队得0分,平局则各得1分,比赛完毕后,获得第3名和第4名的两个队的得分最多可以相差多少分?
3、在一次“25分制”的女子排球比赛中,中国队以3:0战胜俄罗斯队,中国队三局的总分为77分,俄罗斯队三局的总分是68分,且每一局的比分差不超过4分,3局的比分分别是多少?
4、有A、B、C、D四支足球队进行单循环比赛,规定胜一场得2分,平一场得1分,负一场得0分,全部比赛结束后,A、B两队的总分并列第一名,C队第二名,D队第三名,C队最多得多少分?
5、四队足球队进行单循环比赛,每两队都要赛一场,如果赛和,每队各得1分,否则胜队得3分,负队得0分。
比赛结果,四队得分恰好是四个连续的整数,问输给第一名的队得了几分?
6、A、B、C、D四个队举行足球循环赛(即每两个队都要赛一场),胜一场得3分,平一场得1分,负一场得0分,已知:(1)比赛结束后四个队的得分都是奇数;(2)A队总分第一;(3)B队恰有两场,并且其中一场与C队平局,那么D队得多少分?
7、世界杯足球赛,每个小组有4支球队,每两支球队之间各要赛一场,胜一场得3分,负一场得0分,平局各得1分。
每个小组总分最多的两支球队出线,如果第一小组比赛中出现
了一场平局,问:在第一小组中一支球队至少得多少分,一定能够出线?在第一小组中一支
球队至多得多少分,必定不能出线?
8、10个队进行循环赛,胜队得2分,负队得1分,无平局,其中有两队并列第一,两队并
列第三,有两个队并列第五,以后无并列情况,请计算出各队得分。
9、在世界杯预选赛上,A、B、C、D四支足球队进行双循环小组比赛,采用主客场制,即每
两支队之间都比赛两场,规定胜一场得3分,负0分,平双方各得1分,已知第一场比赛A 与B战平,如果规定比赛的前两名出线进入下一轮比赛(大分相同的时候计算小分如净胜球、
进球数等等),如果C队想小组出线,最少要得几分才能确保出线?试说明理由。
10、象棋比赛共有10名选手参加,分别来自甲、乙、丙队,每个选手与其余9名选手各赛1盘,每盘棋的胜者得1分,负者得0分,平局双方各得0.5分。
最后甲队选手平均得 4.5分,乙队平均3.6分,丙队选手平均得9分。
那么丙队参加比赛的选手人数为多少?
A 1
B 2
C 3
D 4
11、学校举办象棋比赛,有10名同学参加。
比赛采用单循环制,每名同学都要与其他同学
比赛一局。
比赛规则是,每局胜者得2分,负者得0分,平局两人各得一分。
比赛结束后
10名同学的得分各不相同。
已知:①第一名和第二名都是一局都没有输过②前两名的得分总和比第三名多20分③第四名的得分与最后四名的得分和相等
那么第5名同学得得分是:
A.8 分
B. 9 分
C. 10 分
D. 11分。