2019年贵州数学竞赛试题
- 格式:pdf
- 大小:136.87 KB
- 文档页数:2
全国高中数学联合竞赛试题(A 卷)一试一、填空题(本大题共8小题,每小题8分,共64分)1. 若正数,a b 满足()2362log 3log log a b a b +=+=+,则11a b+的值为________.答案:设连等式值为k ,则232,3,6k k ka b a b --==+=,可得答案108分析:对数式恒等变形问题,集训队讲义专门训练并重点强调过2. 设集合3|12b a b a ⎧⎫+≤≤≤⎨⎬⎩⎭中的最大元素与最小你别为,M m ,则M m -的值为______.答案:33251b a +≤+=,33b a a a+≥+≥,均能取到,故答案为5-分析:简单最值问题,与均值、对勾函数、放缩有关,集训队讲义上有类似题 3. 若函数()21f x x a x =+-在[0,)+∞上单调递增,则实数a 的取值范围是______.答案:零点分类讨论去绝对值,答案[]2,0-分析:含绝对值的函数单调性问题,集训队讲义专门训练并重点强调过4. 数列{}n a 满足12a =,()()*1221n n n a a n N n ++=∈+,则2014122013a a a a =+++______. 答案:()1221n n n aa n ++=+,迭乘得()121n n a n -=+,()212232421n n S n -=+⨯+⨯+++,乘以公比错位相减,得2n n S n =,故答案为20152013.分析:迭乘法求通项,等差等比乘积求前n 项和,集训队讲义专门训练并重点强调过5. 正四棱锥P ABCD -中,侧面是边长为1的正三角形,,M N 分别是边,AB BC 的中点,则异面直线MN与PC 之间的距离是________.答案:OB 为公垂线方向向量,故距离为12OB =分析:异面直线距离,也可以用向量法做,集训队讲义专门练并重点强调过6. 设椭圆Γ的两个焦点是12,F F ,过点1F 的直线与Γ交于点,P Q .若212PF F F =,且1134PF QF =,则椭圆Γ的短轴与长轴的比值为________.答案:不妨设焦点在x 轴(画图方便),设114,3PF QF ==,焦距为2c ,224a c =+,可得△2PQF 三边长为7,21,2c c +,过2F 作高,利用勾股可得5c =. 分析:椭圆中常规计算,与勾股定理、解三角形、斯特瓦尔特等有关,集训队讲义训练过相关7. 设等边三角形ABC 的内切圆半径为2,圆心为I .若点P 满足1PI =,则△APB 与△APC 的面积之比的最大值为________.答案:sin sin APB APC S PABS PAC ∠=∠,又两角和为60最大,即AP 与(),1I 切于对称轴右侧2分析:平面几何最值、面积、三角函数、轨迹8. 设,,,A B C D 是空间中四个不共面的点,以12的概率在每对点之间连一条边,任意两点之间是否连边是相互独立的,则,A B 之间可以用空间折线(一条边或者若干条边组成)连结的概率为_______. 答案:总连法64种,按由A 到B 最短路线的长度分类.长度为1,即AB 连其余随意,32种; 长度为2,即AB 不连,ACB 或ADB 连,其余随意,ACB 连8种,故共88214+-=种 (一定注意,ACB ADB 同时连被算了2次,根据CD 是否连有2种情形);长度为3,两种情形考虑ACDB ,ACDB 连、,,AB CB AD 均不连只有1种,故连法为2种;综上,答案483644=分析:组合计数,分类枚举,难度不大但容易算错,集训队讲义训练过类似题目二、解答题(本大题共3小题,共56分)9. (本题满分16分)平面直角坐标系xOy 中,P 是不在x 轴上的一个动点,满足条件:过P 可作抛物线24y x =的两条切线,两切点连线P l 与PO 垂直.设直线P l 与直线PO ,x 轴的交点分别为,Q R . (1)证明:R 是一个定点;(2)求PQQR的最小值.答案:(1)设(),P a b ,()()1122,,,A x y B x y ,0,0a b ≠≠,()11:2PA yy x x =+,()22:2PB yy x x =+ 故,A B 两点均适合方程()2by a x =+,利用垂直,可得2a =-,故交点为定点()2,0(2)∵2a =-,故,2PO PR b bk k =-=-,设OPR α∠=,则α为锐角,1tan PQ QR α=,利用两角差 的正切公式,可得282PQ b QR b+=≥. 分析:涉及圆锥曲线切点弦方程、两直线夹角公式、不等式求最值,集训队讲义专门训练并重点过10. (本题满分20分)数列{}n a 满足16a π=,()()*1arctan sec n n a a n N +=∈.求正整数m ,使得121sin sin sin 100m a a a ⋅⋅⋅=. 答案:由反函数值域,知,22n a ππ⎛⎫∈- ⎪⎝⎭,2222132tan sec tan 1tan 3n n n n a a a +-==+==,1212112122311tan tan tan tan tan tan tan sin sin sin sec sec sec tan tan tan tan m m m m m m a a a a a a a a a a a a a a a a a ++⋅⋅⋅=⋅=⋅==故3333m =分析:涉及简单反三角函数、数列通项公式求法,集训队讲义对类似题目进行过训练11. (本题满分20分)确定所有的复数α,使得对任意复数()121212,,1,z z z z z z <≠,均有()()221122z z z z αααα++≠++.答案:转换命题为计算存在12,z z 使得相等时的充要条件存在12,z z 使得相等,记()()2f z z z αα=++,()()()()()1212121220f z f z z z z z z z αα-=++-+-=, 则()()()1212122z z z z z z αα-=-++-,故12122222z z z z a ααα=++≥-->-, 故2α<; 若2α<,令12,22z i z i ααββ=-+=--,其中012αβ<<-,则12z z ≠,122i ααββ-±≤-+<,计算121212,2,2z z z z i z z i αββ+=--=-=-并代入,知()()12f z f z =.综上,满足条件的α为,2Z αα∈≥二试一、(本题满分40分)设实数,,a b c满足1a b c++=,0abc>.求证:14ab bc ca++<.a b c≥≥>,则1a≥1c≤.)ab bc ca c++-+⎭12c-,故有()()111122c c cc cc c⎛---≤-+-⎭⎝⎭由于1110,3333c-≥+≥>310c->,故原不等式成立.方法2:不妨设0a b c≥≥>,则13a≥c,设()()1f b ab bc ca ab c c=++=+-,()f b递增f⇔,()())()1f b ab a b a b⎛'=--=-⎝,()010f b'≥⇔≥⇔≤≥故()f b a;题目转化为21ac+=,a c≥,记()()222212g a a ac a a a=+-=+--()()262621g a a a⎫'=-+=-⎪⎭,由于13a≥1=,得1532a=,115,332a⎛⎫∈ ⎪⎝⎭时g'151,322⎫⎪⎝⎭时()g a在13或12max1124g g⎛⎫==⎪⎝⎭分析:一道偏函数化的不等式题,可以将其放缩为一元函数,也可以拿导数与调整法很快做出来,集训队讲义上两种方法都训练过.二、(本题满分40分)在锐角三角形ABC中,60BAC∠≠,过点,B C分别作三角形ABC的外接圆的切线,BD CE,且满足BD CE BC==.直线DE与,AB AC的延长线分别交于点,F G.设CF与BD交于点M,CE与BG交于点N.证明:AM AN=.答案:设△ABC三边为,,a b c,则BD CE a==,先计算AM,∵,BFD ABC BDF DBC BAC∠=∠∠=∠=∠,∴△BFD∽△CBA.由比例可知acDFb=,故BM BC bBDDF c==,故abBMb c=+,故由余弦定理知()2222cosab abAM c c A Bb c b c⎛⎫=+-⋅+⎪++⎝⎭222cosab abcc Cb c b c⎛⎫=++⎪++⎝⎭,整理可得此式关于,b c对称故可知22AM AN=分析:由于一旦,,a b c三边确定则图形固定,所以通过相似、比例、余弦定理计算的思路比较显然GF ED三、(本题满分50分)设{}1,2,3,,100S =.求最大的整数k ,使得S 有k 个互不相同的非空子集,具有性质:对这k 个子集中任意两个不同子集,若它们的交非空,则它们交集中的最小元素与这两个子集中的最大元素均不相同.答案:一方面,取包含1的、至少含2个元素的所有子集,共9921-个,显然满足题意; 另外归纳证对于{}1,2,3,,S n =,任取()123n n -≥个子集,均存在两个的交集中最小的等于某个中最大的当3n =时,将7个非空子集分为三类:{}{}{}31,32,3,{}{}21,2,{}{}11,2,3.任取四个必有两个同类. 假设n k =时命题成立,当1n k =+时,如果取出的2k 个子集中至少有12k -个不含1k +,利用归纳假设知成 立;如果不含1k +的不足12k -,则至少有121k -+个含有1k +,而S 含有1k +的子集共2k 个,可以配成12k - 对,使得每对中除了公共元素1k +外,其余恰为1到n 的互补子集,这样,如果选出121k -+个,则必有两 个除1k +外不交,故命题成立. 综上,k 的最大值为9921-.分析:集合中的组合最值问题,比较常规的一道题,类似感觉的题集训队讲义在组合中的归纳法中有过四、(本题满分50分)设整数122014,,,x x x 模2014互不同余,整数122014,,,y y y 模2014也互不同余.证明:可将122014,,,y y y 重新排列为122014,,,z z z ,使得112220142014,,,x z x z x z +++模4028互不同余.答案:不妨设()mod 2014i i x y i ≡≡,1,2,,2014i =.下面对i y 序列进行1007次调整从而构成i z 序列:若i i x y +与10071007i i x y +++模4028不同余,则1007,i i y y +不调整;否则,交换1007,i i y y +位置,1,2,,2014i =.下证,进行1007次调整后,得到的i z 序列一定满足条件. 任意挑选一列()1,2,,1007i i x z i +=,只需证其与10071007i i x z +++、()1,2,,1007,j j x z j j i +=≠、10071007j j x z +++模4028不同余即可由i z 构造方法,i i x z +与10071007i i x z +++不同余是显然的,因为不可能调整前后均同余,故只需看另两个; 首先,对于不同的,i j ,2i 与2j 模4028不同余,否则会导致()mod 2014i j ≡.若,i j y y 均未调整,则()2mod 2014i i x z i +≡,()100710072mod 2014j j j j x z x z j +++≡+≡,故成立;若,i j y y 均已调整,则()21007mod 2014i i x z i +≡+,()1007100721007mod 2014j j j j x z x z j +++≡+≡+,故成立; 若只有一个被调整过,不妨设i y 未调整、j y 已调整,则()2mod 2014i i x z i +≡, ()1007100721007mod 2014j j j j x z x z j +++≡+≡+,若()4028|21007i j --,则()1007|i j -,矛盾,故同样成立. 综上,构造的i z 序列满足条件.全国高中数学联赛试题及解答2014高中联赛试题分析从试题类型来看,今年代数、几何、数论、组合4部分所占的比例为:代数37.3%,几何26.7%,数论16.7%,组合19.3%.这方面和历年情况差不多,但具体的知识点差别极大.一试第7题填空题可谓出人意表,虽然解答是用三角函数的方法处理的,对比历年试题,这题毫无疑问也是顶替了三角函数的位置.但本题却是一道彻头彻尾的平面几何题.从图中不难看出,最值情况在相切时取到,剩下的只是利用三角函数处理了一下计算上的问题.其余填空题中,第1~6题和往年出题风格类似,第8题概率计算略显突兀,本题几乎不需要用到计数的技巧,而是用单纯枚举的方法即可解决.放在填空题最后一题的位置不免显得难度不够.一试三道解答题中,第9题和第10题均不太难,所考知识点也和往年类似,无需多说.第11题又再次爆了冷门,考了一道复数问题.联赛已经多年没有考复数的大题了,许多学生都没有准备.可以说,这次一下戳中了学生的罩门.相信本题最终的得分率不容乐观.而本次试题中最特殊的要数加试中的平面几何题了.一反从1997年开始保持到如今的惯例,没有将平面几何题放在加试的第一题.而且本题实则为《中等数学》2012年第12期中的数学奥利匹克高中训练题中的原题,这无疑又让此题失色不少.今年的加试第一题放了一道不等式问题,虽然近几年不等式考察得较少,但是不等式一直是数学竞赛中的热门,在历年联赛中多有出现.考虑到本题难度并不大,放在联赛加试第一题还是非常合适的.加试第三题组合最值问题的出题风格一如既往,可以从很极端的情况下猜出答案,再进行证明.值得全国高中数学联赛试题及解答一提的是本题题干描述有歧义,最后一句“则它们交集中的最小元素与这两个子集中的最大元素均不相同”中,记最小元素为a ,两个最大元素为b 和c .本句话中到底是指a 、b 、c 这3个数互不相同还是指a b ≠且a c ≠,无疑是容易让人误解的.希望今后联赛试题中能避免出现这种情况.加试第四题虽说考察的是数论中的同余知识,但更多考察的是构造法技巧,这也符合联赛加试中试题综合各方面知识的出题思想.从难度上来说本题难度不算太大,只要能从较小的数开始构造并寻找规律,找出2014的构造并不显得困难.但本题的出题背景无疑和以下题目相关:“n 为给定正整数,()122,,,n x x x 和()122,,,n y y y 均为1~2n 的一个排列,则112222,,,n n x y x y x y +++这2n 个数不可能模2n 互不同余.” 总的说来,本次联赛考察的知识点和往年比差别较大,但从试卷难度来说,和前两年是相当的.预计今年联赛的分数线可能比去年略低.。
æ 4ö 【竞赛试题】2019 年全高中数学联合竞赛一试(B 卷) 参考答案及评分标准1. 评阅试卷时,请依据本评分标准. 填空题只设 8 分和 0 分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分,解答题中第 9 小题 4 分为一个档次,第 10、 11 小题 5 分为一个档次,不得增加其他中间档次.一、填空题:本大题共 8 小题,每小题 8 分,满分 64 分.1. 已知实数集合{1, 2, 3, x } 的最大元素等于该集合的所有元素之和,则 x 的 值为 .答案:-3 .解:条件等价于1, 2, 3, x 中除最大数以外的另三个数之和为 0 .显然 x < 0 , 从而1 + 2 + x = 0 ,得 x = -3 .2. 若平面向量 a = (2m , -1) 与 b = (2m -1, 2m +1) 垂直,其中 m 为实数,则 a 的 模为 . 答案: 10 . 解:令 2m = t ,则 t > 0 .条件等价于 t ⋅ (t -1) + (-1) ⋅ 2t = 0 ,解得 t = 3 .因此 a 的模为 32 + (-1)2 = 10 .3. 设a , b Î (0, p ) ,cos a , cos b 是方程5x 2 -3x -1 = 0 的两根,则sin a sin b 的 值为. 答案:7 .5解:由条件知 cos a + cos b = 3 , cos a cos b = - 1,从而5 5(s i n a sin b )2 = (1- c os 2 a )(1- c os 2 b ) = 1- cos 2 a - cos 2 b + cos 2 a cos 2 b2 2= (1+ cos a cos b )2 - (cos a + cos b )2 = ÷ æ 3ö - = 7 . ç ÷ ç ÷ çè 5 ø çè5ø 25又由a , b Î (0, p ) 知sin a sin b > 0 ,从而sin a sin b = 7.54. 设三棱锥 P - ABC 满足 PA = PB = 3, AB = BC = CA = 2 ,则该三棱锥的 体积的最大值为 .答案: 2 6 .3解:设三棱锥 P - ABC 的高为 h .取M 为棱 AB 的中点,则h £ PM = 32 -12 = 2 2 .当平面 PAB 垂直于平面 ABC 时, h 取到最大值 2 2 .此时三棱锥 P - ABC 的体r n -rnn积取到最大值 1S⋅= 1 ⋅ = 2 6 .3 D ABC3 35. 将 5 个数 2, 0, 1, 9, 2019 按任意次序排成一行,拼成一个 8 位数(首位不为 0),则产生的不同的 8 位数的个数为 . 答案:95 . 解:易知 2, 0, 1, 9, 2019 的所有不以 0 为开头的排列共有 4´ 4! = 96 个.其中, 除了 (2, 0, 1, 9, 2019) 和 (2019, 2, 0, 1, 9) 这两种排列对应同一个数 20192019 ,其余 的数互不相等.因此满足条件的 8 位数的个数为96 -1 = 95 .6. 设整数 n > 4 ,( x + 2 的值为. 答案:51. y -1)n 的展开式中x n -4 与 xy 两项的系数相等,则 nn解:注意到 ( x + 2 y -1)n= år =0C n x (2 y -1)r . 其中 x n -4 项仅出现在求和指标 r = 4 时的展开式 C 4 x n -4 (2 y -1)4中,其 x n -4 项系数为 (-1)4 C 4 = n (n -1)(n - 2)(n -3) .n24而 xy 项仅出现在求和指标 r = n -1 时的展开式 C n -1x ⋅ (2y -1)n -1 中,其 xy 项系数为 n -1 2 n -3 n -3C n C n -1 4⋅ (-1) = (-1) 2n (n -1)(n - 2) .因此有 n (n -1)(n - 2)(n - 3)= (-1)n -3 2n (n -1)(n - 2) .注意到 n > 4 ,化简得24n - 3 = (-1)n -3 48 ,故只能是 n 为奇数且 n - 3 = 48 .解得 n = 51 .7. 在平面直角坐标系中,若以 (r +1, 0) 为圆心、 r 为半径的圆上存在一点 (a , b ) 满足b 2 ³ 4a ,则 r 的最小值为.答案: 4 .解:由条件知 (a - r -1)2 + b 2 = r 2 ,故4a £ b 2 = r 2 - (a - r -1)2 = 2r (a -1) - (a -1)2 . 即 a 2 - 2(r -1)a + 2r +1 £ 0 . 上述关于 a 的一元二次不等式有解,故判别式(2(r -1))2 - 4(2r +1) = 4r (r - 4) ³ 0 ,解得 r ³ 4 .经检验,当 r = 4 时, (a , b ) = (3, 2 3) 满足条件.因此 r 的最小值为 4 .8. 设等差数列{a n } 的各项均为整数,首项 a 1 = 2019 ,且对任意正整数 n ,总 存在正整数 m ,使得 a 1+ a 2 ++ a n = a m .这样的数列{a n } 的个数为.答案:5 .解:设{a n } 的公差为 d .由条件知 a 1 + a 2 = a k ( k 是某个正整数),则2a 1 + d = a 1 + (k -1)d ,a 1即 (k - 2)d = a 1 ,因此必有 k ¹ 2 ,且d =k - 2.这样就有 a = a + (n -1)d = a + n -1a , n 1 1 k - 2 1í而此时对任意正整数 n ,a +a++ a = a n + n (n -1) d = a + (n -1)a + n (n -1) d 1 2 n 1 2 1 12æ n (n -1) ö = a + (n -1)(k - 2) + d ,确实为{a n } 中的一项.ç 1 çè 2 ø 因此,仅需考虑使 k - 2| a 1 成立的正整数 k 的个数.注意到 2019 为两个素数3 与 673 之积,易知 k - 2 可取-1, 1, 3, 673, 2019 这5 个值,对应得到5 个满足条 件的等差数列.二、解答题:本大题共 3 小题,满分 56 分.解答应写出文字说明、证明过 程或演算步骤.9.(本题满分 16 分)在椭圆G 中, F 为一个焦点, A , B 为两个顶点.若 FA = 3, FB = 2 ,求 AB 的所有可能值.解:不妨设平面直角坐标系中椭圆 G 的标准方程为 x2y 2+= 1 (a > b > 0) ,并记 c = a 2 b 2a 2 -b 2 .由对称性,可设 F 为 G 的右焦点. 易知 F 到 G 的左顶点的距离为 a +c ,到右顶点的距离为 a - c ,到上、下顶点的距离均为 a .分以下情况讨论:(1) A , B 分别为左、右顶点.此时a + c = 3, a - c = 2 ,故 AB = 2a = 5 (相应地,b 2= (a + c )(a - c ) = 6 ,G 的方程为4 x 2y 2+ = 1 ). …………………4 分25 6(2) A 为左顶点,B 为上顶点或下顶点.此时 a + c = 3, a = 2 ,故 c = 1 ,进2 2而 b 2 = a 2 - c 2 = 3 ,所以 AB =a 2 +b 2= 7(相应的 G 的方程为 x + y = 1 ).4 3…………………8 分(3) A 为上顶点或下顶点, B 为右顶点.此时 a = 3, a - c = 2 ,故 c = 1 ,进2 2而 b 2 = a 2 - c 2 = 8 ,所以 AB =a 2 +b 2 = 17(相应的 G 的方程为 x + y= 1 ).9 8…………………12 分综上可知, AB 的所有可能值为5, 7, 17 . …………………16 分10. (本题满分 20 分)设 a , b , c 均大于 1,满足ìïlg a + log b c = 3, ïîlg b + log a c = 4. 求 lg a ⋅ lg c 的最大值.解:设lg a = x , lg b = y , lg c = z ,由 a , b , c >1可知 x , y , z > 0 . 由条件及换底公式知 x + z = 3, y + z= 4 ,即xy + z = 3y = 4x . y x…………………5 分。
高中数学联赛试题 一、选择题:每小题6分,本大题共30分. 1.小王在word 文档中设计好一张4A 规格的表格,根据要求,这种规格的表格需要设计1000张,小王欲使用“复制——粘贴”(用鼠标选中表格,右键点击“复制”,然后在本word 文档中“粘贴”)的办法满足要求.请问:小王需要使用“复制——粘贴”的次数至少为( )A .9次B .10次C .11次D .12次2.已知一双曲线的两条渐近线方程为30x y -=和30x y +=,则它的离心率是( )A .2B .3C .22D .31+3.在空间直角坐标系中,已知(0,0,0)O ,(1,0,0)A ,(0,1,0)B ,(0,0,1)C ,则到面OAB 、面OBC 、面OAC 、面ABC 的距离相等的点的个数是( )A .1B .4C .5D .无穷多4.若圆柱被一平面所截,其截面椭圆的离心率为223,则此截面与圆柱底面所成的锐二面角是( ) A .1arcsin 3 B .1arccos 3 C .2arcsin 3 D .2arccos 35.已知等差数列{}n a 及{}n b ,设12n n A a a a =++⋅⋅⋅+,12n n B b b b =++⋅⋅⋅+,若对*n N ∀∈,有3553n n A n B n +=+,则106a b =( ) A .3533B .3129C .17599D .15587 二、填空题(每小题6分,本大题共60分) 6.已知O 为ABC ∆所在平面上一定点,动点P 满足()ABAC OP OA AB AC λ=++,其[0,)λ∈+∞,则P 点的轨迹为 .7.牛得亨先生、他的妹妹、他的儿子,还有他的女儿都是网球选手.这四人中有以下情况:①最佳选手的孪生同胞与最差选手性别不同;②最佳选手与最差选手年龄相同.则这四人中最佳选手是 . 8.方程组2226()6x y xy x y ⎧+=⎨+=-⎩的实数解为 .9.如图,在ABD ∆中,点C 在AD 上,2ABC π∠=,6DBC π∠=,1AB CD ==,则AC = .10.函数z 的最小值是 .11.若边长为6的正ABC ∆的三个顶点到平面α的距离分别为1,2,3,则ABC ∆的重心G 到平面α的距离为 .12.若实数a 使得不等式222x a x a a -+-≥对任意实数x 恒成立,则实数a 的取值范围 .13.若方程(0,1)xa x a a =>≠有两个不等实根,则实数a 的取值范围是 .14.顺次连结圆229x y +=与双曲线3xy =的交点,得到一个凸四边形.则此凸四边形的面积为 .15.函数2(5)sin 1(010)y x x x π=--≤≤的所有零点之和等于 . 三、解答题(每小题15分,本大题共60分)16.已知函数3y x =.17.已知椭圆C :22221(0)x y a b a b+=>>的离心率2e =,直线21y x =-与C 交于A 、B两点,且AB =(1)求椭圆C 的方程;(2)过点(2,0)M 的直线l (斜率不为零)与椭圆C 交于不同的两点E 、F (E 在点F 、M 之间),记OME OMFS S λ∆∆=,求λ的取值范围.18.证明:(1)1111112212221k k k k ++++⋅⋅⋅+<++-(2,)n n N ≥∈; (2)分别以1,12,13, (1)19.已知梯形ABCD ,边CD 、AB 分别为上、下底,且90ADC ∠=,对角线AC BD ⊥,过D 作DE BC ⊥于点E .(1)证明:22AC CD AB CD =+⋅;(2)证明:22AE AC CD BE AC CD⋅=-.。
中国教育学会中学数学教学专业委员会《数学周报》杯” 2013年全国初中数学竞赛试题参考答案题号-一一 _ 二 _ 三总分1〜56〜1011121314得分评卷人复查人答题时注意:1用圆珠笔或钢笔作答2•解答书写时不要超过装订线. 3.草稿纸不上交.一、选择题(共5小题,每小题6分,满分30分.以下每道小题均给出了代号为 A , B , C , D 的四个选项,其中有且只有一个选项是正确的 .请将正确选项的代号填入题后的括号 里.不填、多填或错填都得0分)1.已知实数x , y 满足 刍二=3, y 4 - y^3,则-44 y 4的值为().XXx(A ) 7 (B )(C ) 7 "3(D )52 2【答】(A ) 解:因为x 20,y 2 > 0,由已知条件得-1,13244 y 4 乡 3 3-y 2£ -y 2 6 =7.X XX程为t 2 +t-3=0,所以(一W )+ y 2 =-1, (―寸=-3X X2.把一枚六个面编号分别为1, 2, 3, 4, 5, 6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为 m , n ,则二次函数y = x 2 • mx • n 的图象与X 轴 有两个不同交点的概率是().(D)所以另解:由已知得: 2 2 2」(一P )2+(—P )—3=0 X X Q 2) + y 2-3 = 0显然 2 2 2 2 2 -y 2,以- 2 ,y 2为根的一元二次方 XX42故 4y 4 二[(- 2)y 2]2 -2XX2 2 22)y =(T) -2 (-3)=7 X12.4 4 4 3[答]( C )解:基本事件总数有60 = 36,即可以得到36个二次函数.由题意知;_ =_4n >0,即卩 m 2 >4n .通过枚举知,满足条件的 m, n 有 17 对.363.有两个同心圆,大圆周上有 4个不同的点,小圆周上有 可以确定的不同直线最少有().2个不同的点,则这6个点 (A ) 6条 (B ) 8 条(C ) 10 条(D ) 12 条【答](B )解:如图,大圆周上有4个不同的点A ,B ,C ,D ,两两连线 可以确定6条不同的直线;小圆周上的两个点 E ,F 中,至少有一 个不是四边形ABCD 的对角线AC 与BD 的交点,则它与A ,B ,C , D 的连线中,至少有两条不同于 A ,B ,C ,D 的两两连线.从而这 6个点可以确定的直线不少于 8条.当这6个点如图所示放置时,恰好可以确定 8条直线. 所以,满足条件的6个点可以确定的直线最少有8条.4 .已知AB 是半径为1的圆O 的一条弦,且 AB 二a :::1 .以AB 为一边在圆O 内作正△ ABC ,点D 为圆O 上不同于点A 的一点,且DB 二AB 二a , AE 的长为().(B) 1(C )乎【答](B )解:女口图,连接 OE ,OA ,OB .设.D =:,贝UECA=120- EAC .11又因为 ABO ABD 60180 -2:-120 -:22所以△ ACE 也△ ABO ,于是AE = OA = 1 .另解:如图,作直径EF ,连结AF ,以点B 为圆心,AB 为半径 作。
2019年全国初中数学联合竞赛试题及详解第一试一、选择题:(本题满分42分,每小题7分)1. 若,,a b c 均为整数且满足1010()()1a b a c -+-=,则||||||a b b c c a -+-+-= ( B )A .1.B .2.C .3.D .4.解: 由已知可推得011a b b c a c -=⎧⇒-=±⎨-=±⎩ 或 110a b b c a c -=±⎧⇒-=±⎨-=⎩,分别代入即得。
2.若实数,,a b c 满足等式23||6a b =,9||6a b c =,则c 可能取的最大值为 ( C )A .0.B .1.C .2.D .3.解:由已知,6492(23)15121512c a b a b b b ==-=-≤,∴2c ≤.3.若b a ,是两个正数,且,0111=+-+-ab b a 则 ( C ) A .103a b <+≤. B .113a b <+≤. C .413a b <+≤. D .423a b <+≤. 解:当a b =时,可计算得23a b ==,从而43a b +=。
观察4个选项,只能选C. 4.若方程2310x x --=的两根也是方程420x ax bx c +++=的根,则2a b c +-的值为 ( A )A .-13.B .-9.C .6.D . 0.解:由已知:42x ax bx c +++一定能被231x x --整除。
∵4222(31)(310)[(333)(10)]x ax bx c x x x x a a b x a c +++=--+++++++++∴(333)(10)0a b x a c +++++=,故3330213100a b a b c a c ++=⎧⇒+-=-⎨++=⎩5.在△ABC 中,已知︒=∠60CAB ,D ,E 分别是边AB ,AC 上的点,且︒=∠60AED ,CE DB ED =+,CDE CDB ∠=∠2,则=∠DCB ( B )A .15°.B .20°.C .25°.D .30°.解:如图,由已知,ADE 是正三角形。
2019年全国高中数学联合竞赛一试(B 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 已知实数集合{1,2,3,}x 的最大元素等于该集合的所有元素之和,则x 的值为 .答案:3-.解:条件等价于1,2,3,x 中除最大数以外的另三个数之和为0.显然0x <,从而120x ++=,得3x =-.2. 若平面向量(2,1)m a =-与1(21,2)m m b +=-垂直,其中m 为实数,则a 的模为 .答案解:令2m t =,则0t >.条件等价于(1)(1)20t t t ⋅-+-⋅=,解得3t =.因此a=.3. 设,(0,)a b p Î,cos ,cos a b 是方程25310x x --=的两根,则sin sin a b 的值为 .答案:5. 解:由条件知31cos cos ,cos cos 55a b a b +==-,从而222(sin sin )(1cos )(1cos )a b a b =--22221cos cos cos cos a b a b=--+2222437(1cos cos )(cos cos )5525a b a b æöæö÷çç=+-+=-=÷çç÷ççèøè.又由,(0,)a b p Î知sin sin 0a b >,从而sin sin 5a b =. 4. 设三棱锥P ABC -满足3,2PA PB AB BC CA =====,则该三棱锥的体积的最大值为 .答案:3. 解:设三棱锥P ABC -的高为h .取M 为棱AB 的中点,则h PM £==.当平面PAB 垂直于平面ABC 时,h 取到最大值.此时三棱锥P ABC -的体积取到最大值11333ABC S D ⋅==.5. 将5个数2,0,1,9,2019按任意次序排成一行,拼成一个8位数(首位不为0),则产生的不同的8位数的个数为 .答案:95. 解:易知2,0,1,9,2019的所有不以0为开头的排列共有44!96´=个.其中,除了(2,0,1,9,2019)和(2019,2,0,1,9)这两种排列对应同一个数20192019,其余的数互不相等.因此满足条件的8位数的个数为96195-=.6. 设整数4n >,(1)n x +的展开式中4n x -与xy 两项的系数相等,则n 的值为 .答案:51.解:注意到0(1)C 1)nnr n r r nr x x -=+=å.其中4n x -项仅出现在求和指标4r =时的展开式444C 1)n n x-中,其4n x -项系数为44(1)(2)(3)(1)C 24n n n n n ----=.而xy 项仅出现在求和指标1r n =-时的展开式11C 1)n n nx --⋅中,其xy 项系数为12331C C 4(1)(1)2(1)(2)n n n n n n n n ----⋅-=---. 因此有3(1)(2)(3)(1)2(1)(2)24n n n n n n n n ----=---.注意到4n >,化简得33(1)48n n --=-,故只能是n 为奇数且348n -=.解得51n =.7. 在平面直角坐标系中,若以(1,0)r +为圆心、r 为半径的圆上存在一点(,)a b 满足24b a ³,则r 的最小值为 .答案:4.解:由条件知222(1)a r b r --+=,故22224(1)2(1)(1)a b r a r r a a £=---=---.即22(1)210a r a r --++£.上述关于a 的一元二次不等式有解,故判别式2(2(1))4(21)4(4)0r r r r --+=-³,解得4r ³.经检验,当4r =时,(,)(3,a b =满足条件.因此r 的最小值为4.8. 设等差数列{}n a 的各项均为整数,首项12019a =,且对任意正整数n ,总存在正整数m ,使得12n m a a a a +++=.这样的数列{}n a 的个数为 .答案:5.解:设{}n a 的公差为d .由条件知12k a a a +=(k 是某个正整数),则 112(1)a d a k d +=+-,即1(2)k d a -=,因此必有2k ¹,且12ad k =-.这样就有1111(1)2n n a a n d a a k -=+-=+-,而此时对任意正整数n ,12111(1)(1)(1)22n n n n n a a a a n d a n a d --+++=+=+-+ 1(1)(1)(2)2n n a n k d æö-÷ç=+--+÷ç÷çèø, 确实为{}n a 中的一项.因此,仅需考虑使12|k a -成立的正整数k 的个数.注意到2019为两个素数3与673之积,易知2k -可取1,1,3,673,2019-这5个值,对应得到5个满足条件的等差数列.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)在椭圆G 中,F 为一个焦点,,A B 为两个顶点.若3,2FA FB ==,求AB 的所有可能值.解:不妨设平面直角坐标系中椭圆G 的标准方程为22221(0)x y a b a b+=>>,并记c =F 为G 的右焦点.易知F 到G 的左顶点的距离为a c +,到右顶点的距离为a c -,到上、下顶点的距离均为a .分以下情况讨论:(1) ,A B 分别为左、右顶点.此时3,2a c a c +=-=,故25AB a ==(相应地,2()()6b a c a c =+-=,G 的方程为2241256x y +=). …………………4分(2) A 为左顶点,B 为上顶点或下顶点.此时3,2a c a +==,故1c =,进而2223b a c =-=,所以AB ==G 的方程为22143x y +=). …………………8分 (3) A 为上顶点或下顶点,B 为右顶点.此时3,2a a c =-=,故1c =,进而2228b a c =-=,所以AB ==G 的方程为22198x y +=).…………………12分 综上可知,AB的所有可能值为5,. …………………16分10. (本题满分20分)设,,a b c 均大于1,满足lg log 3,lg log 4.b a a c b c ì+=ïïíï+=ïî求lg lg a c ⋅的最大值.解:设lg ,lg ,lg a x b y c z ===,由,,1a b c >可知,,0x y z >.由条件及换底公式知3,4z zx y y x+=+=,即34xy z y x +==.…………………5分由此,令3,4(0)x t y t t ==>,则241212z x xy t t =-=-.其中由0z >可知(0,1)t Î. …………………10分因此,结合三元平均值不等式得2lg lg 312(1)18(22)a c xz t t t t t ==⋅-=⋅-33(22)2161818333t t t æöæö++-÷çç£⋅=⋅=÷çç÷ççèèø. 当22t t =-,即23t =(相应的,,a b c 分别为8833100,10,10)时,lg lg a c 取到最大值163. …………………20分11. (本题满分20分)设复数数列{}n z 满足:11z =,且对任意正整数n ,均有2211420n n n n z z z z ++++=.证明:对任意正整数m ,均有123m z z z +++<. 证明:归纳地可知*0()n z n N ¹Î.由条件得2*114210()n n n n z z n z z N ++æöæö÷çç÷++=Îçç÷çç÷èøèø,解得*11()4N n n z n z +-=Î. …………………5分因此1112n n nnz z z z ++===,故*11111()22N n n n z z n --=⋅=Î. ①进而有*11111()22N n n n n n n n z z z z n z ++-+=⋅+==Î. ②…………………10分当m 为偶数时,设*2()N m s s =Î.利用②可得122122122111123sm k k k k k k k k z z z z z z z ¥¥---===+++£+<+==ååå. …………………15分 当m 为奇数时,设21()N m s s =+Î.由①、②可知21212221211112322s k k s s k k s k s z z z ¥¥+---=+=+=<==+⋅åå, 故1221221212113s m k k s k k k k z z z z z z z z ¥-+-==æö÷ç+++£++<+=÷ç÷çèøåå. 综上,结论获证. …………………20分2019年全国高中数学联合竞赛加试(B 卷)参考答案及评分标准说明:1. 评阅试卷时,请严格按照本评分标准的评分档次给分.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一、(本题满分40分)设正实数12100,,,a a a 满足101(1,2,,50)i i a a i -³=.记112(1,2,,99)k k kka x k a a a +==+++.证明:29912991x x x £.证明:注意到12100,,,0a a a >.对1,2,,99k =,由平均值不等式知121210kk k k a a a a a a æöç<£çç+++èø, ……………10分 从而有9999299112991111212kk k k k k k k ka k x x x a a a a a a a ++==æö÷ç÷=£ç÷÷ç+++èø . ①………………20分记①的右端为T ,则对任意1,2,,100i =,i a 在T 的分子中的次数为1i -,在T 的分母中的次数为100i -.从而10121005050210121012(101)101101101111ii i i i i i i i i i ia T a a a a -------===æö÷ç÷===ç÷ç÷èø .………………30分又1010(1,2,,50)i i a a i -<£=,故1T £,结合①得29912991x x x T ££. ………………40分二、(本题满分40分)求满足以下条件的所有正整数n :(1) n 至少有4个正约数;(2) 若12k d d d <<< 是n 的所有正约数,则21321,,,k k d d d d d d ---- 构成等比数列.解:由条件可知4k ≥,且3212112kk k k d d d d d d d d -----=--. ………………10分 易知112231,,,k k k n nd d n d d d d --====,代入上式得3222231n n d d d n n d d d --=--, 化简得223223()(1)d d d d -=-. ………………20分由此可知3d 是完全平方数.由于2d p =是n 的最小素因子,3d 是平方数,故只能23d p =. ………………30分从而序列21321,,,k k d d d d d d ---- 为23212,1,,,k k p p p p p p p ------ ,即123,,,,k d d d d 为21,1,,,k p p p - ,而此时相应的n 为1k p -.综上可知,满足条件的n 为所有形如a p 的数,其中p 是素数,整数3a ≥. ………………40分三、(本题满分50分)如图,点,,,,A B C D E在一条直线上顺次排列,满足BC CD ==,点P 在该直线外,满足PB PD =.点,K L 分别在线段,PB PD 上,满足KC 平分BKE ,LC 平分ALD .证明:,,,A K L E 四点共圆.(答题时请将图画在答卷纸上)证明:令1,(0)AB BC CD t ===>,由条件知2DE t =.注意到180BKE ABK PDE DEK < = < - ,可在CB 延长线上取一点A ¢,使得A KE ABK A BK ¢¢ = = . ………………10分此时有A BK A KE ∽¢¢D D ,故A B A K BKA K A E KE¢¢==¢¢. ………………20分 又KC 平分BKE ,故211BK BC t KE CE t t t===++.于是有 22112A B A B A K BK AB A E A K A E KE t t AEæö¢¢¢÷ç=⋅===÷ç÷碢¢èø++. …………30分 由上式两端减1,得BE BEA E AE=¢,从而A A ¢=.因此AKE A KE ABK ¢ = = . 同理可得ALE EDL = .而ABK EDL = ,所以AKE ALE = .因此,,,A K L E 四点共圆. ………………50分四、(本题满分50分)将一个凸2019边形的每条边任意染为红、黄、蓝三种颜色之一,每种颜色的边各673条.证明:可作这个凸2019边形的2016条在内部互不相交的对角线将其剖分成2017个三角形,并将所作的每条对角线也染AA (为红、黄、蓝三种颜色之一,使得每个三角形的三条边或者颜色全部相同,或者颜色互不相同.证明:我们对5n ≥归纳证明加强的命题:如果将凸n 边形的边染为三种颜色,,a b c ,并且三种颜色的边均至少有一条,那么可作满足要求的三角形剖分. ………………10分当5n =时,若三种颜色的边数为1,1,3,由对称性,只需考虑如下两种情形,分别可作图中所示的三角形剖分.若三种颜色的边数为1,2,2,由对称性,只需考虑如下三种情形,分别可作图中所示的三角形剖分.………………20分假设结论对(5)n n ≥成立,考虑1n +的情形,将凸1n +边形记为121n A A A + . 情形1:有两种颜色的边各只有一条.不妨设,a b 色边各只有一条.由于16n +≥,故存在连续两条边均为c 色,不妨设是111,n n n A A A A ++.作对角线1n A A ,并将1n A A 染为c 色,则三角形11n n A A A +的三边全部同色.此时凸n 边形12n A A A 的三种颜色的边均至少有一条,由归纳假设,可对其作符合要求的三角形剖分.………………30分 情形2:某种颜色的边只有一条,其余颜色的边均至少两条.不妨设a 色边只有一条,于是可以选择两条相邻边均不是a 色,不妨设111,n n n A A A A ++均不是a 色,作对角线1n A A ,则1n A A 有唯一的染色方式,使得三角形11n n A A A +的三边全部同色或互不同色.此时凸n 边形12n A A A 的三种颜色的边均至少有一条,由归纳假设,可对其作符合要求的三角形剖分. ………………40分情形3:每种颜色的边均至少两条.作对角线1n A A ,则1n A A 有唯一的染色方式,使得三角形11n n A A A +的三边全部同色或互不同色.此时凸n 边形12n A A A 的三种颜色的边均至少有一条,由归纳假设,可对其作符合要求的三角形剖分.综合以上3种情形,可知1n +的情形下结论也成立.由数学归纳法,结论获证. ………………50分。
中国教育学会中学数学教学专业委员会《数学周报》杯” 2013年全国初中数学竞赛试题参考答案题号-一一 _ 二 _ 三总分1〜56〜1011121314得分评卷人复查人答题时注意:1用圆珠笔或钢笔作答2•解答书写时不要超过装订线. 3.草稿纸不上交.一、选择题(共5小题,每小题6分,满分30分.以下每道小题均给出了代号为 A , B , C , D 的四个选项,其中有且只有一个选项是正确的 .请将正确选项的代号填入题后的括号 里.不填、多填或错填都得0分)1.已知实数x , y 满足 刍二=3, y 4 - y^3,则-44 y 4的值为().XXx(A ) 7 (B )(C ) 7 "3(D )52 2【答】(A ) 解:因为x 20,y 2 > 0,由已知条件得-1,13244 y 4 乡 3 3-y 2£ -y 2 6 =7.X XX程为t 2 +t-3=0,所以(一W )+ y 2 =-1, (―寸=-3X X2.把一枚六个面编号分别为1, 2, 3, 4, 5, 6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为 m , n ,则二次函数y = x 2 • mx • n 的图象与X 轴 有两个不同交点的概率是().(D)所以另解:由已知得: 2 2 2」(一P )2+(—P )—3=0 X X Q 2) + y 2-3 = 0显然 2 2 2 2 2 -y 2,以- 2 ,y 2为根的一元二次方 XX42故 4y 4 二[(- 2)y 2]2 -2XX2 2 22)y =(T) -2 (-3)=7 X12.4 4 4 3[答]( C )解:基本事件总数有60 = 36,即可以得到36个二次函数.由题意知;_ =_4n >0,即卩 m 2 >4n .通过枚举知,满足条件的 m, n 有 17 对.363.有两个同心圆,大圆周上有 4个不同的点,小圆周上有 可以确定的不同直线最少有().2个不同的点,则这6个点 (A ) 6条 (B ) 8 条(C ) 10 条(D ) 12 条【答](B )解:如图,大圆周上有4个不同的点A ,B ,C ,D ,两两连线 可以确定6条不同的直线;小圆周上的两个点 E ,F 中,至少有一 个不是四边形ABCD 的对角线AC 与BD 的交点,则它与A ,B ,C , D 的连线中,至少有两条不同于 A ,B ,C ,D 的两两连线.从而这 6个点可以确定的直线不少于 8条.当这6个点如图所示放置时,恰好可以确定 8条直线. 所以,满足条件的6个点可以确定的直线最少有8条.4 .已知AB 是半径为1的圆O 的一条弦,且 AB 二a :::1 .以AB 为一边在圆O 内作正△ ABC ,点D 为圆O 上不同于点A 的一点,且DB 二AB 二a , AE 的长为().(B) 1(C )乎【答](B )解:女口图,连接 OE ,OA ,OB .设.D =:,贝UECA=120- EAC .11又因为 ABO ABD 60180 -2:-120 -:22所以△ ACE 也△ ABO ,于是AE = OA = 1 .另解:如图,作直径EF ,连结AF ,以点B 为圆心,AB 为半径 作。
贵州省遵义市八年级数学竞赛试卷姓名:________班级:________成绩:________一、单选题(共8题;共16分)1.(2分)(2019七下·赣榆期中)下列各多项式中,能用公式法分解因式的是()A . a2-b2+2abB . a2+b2+abC . 25n2+15n+9D . 4a2+12a+92.(2分)(2017七下·东莞期末)在平面直角坐标系中,点(-2,3)所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限3.(2分)(2017·通辽)空气是混合物,为直观介绍空气各成分的百分比,最适合用的统计图是(A .折线图B .条形图C .直方图D .扇形图4.(2分)(2016九上·达拉特旗期末)以下图形中,是中央对称图形的是()A .B .C .D .5.(2分)已知正比例函数y=(2m-1)x的图像上两点A(x1,y1),B(x2,y2),当x1<x2时,有y1>y2,的取值范围是()A . m<B . m>)那么mC . m<2D . m>06.(2分)(2020八上·莲湖期末)若点M(a+3,2a-4)在x轴上,则点M的坐标为()A . (0,-10)B .(5,)C .(10,)D . (0,5)7.(2分)(2017·武汉模仿)如图,正方形ABCD和CEFG 的边长划分为m、n,那么△AEG的面积的值()A .与m、n的大小都有关B .与m、n的大小都无关C .只与m的大小有关D .只与n的大小有关8.(2分)(2019七下·东莞月考)窥察图中菱形四个极点所标的数字纪律,可知数2019应标在()A .第504个菱形的左侧B .第505个菱形的左边C .第504个菱形的上边D .第505个菱形的下边2、填空题(共8题;共8分)9.(1分)(2019七下·安阳期末)已知关于的值是________.10.(1分)(2017·岳麓模仿)的平方根是________.,则________.的二元一次方程组的解为,则11.(1分)(2019七上·露台月考)已知12.(1分)(2020·开远模拟)函数中自变量x的取值范围是________.13.(1分)如图所示,在一张长为4cm、宽为3cm的矩形纸片上,现要剪下一个腰长2cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,另两个顶点在矩形的边上),则剪下的等腰三角形面积为________14.(1分)(2019七下·天河期末)把方程________.15.(1分)(2020七上·鹿城月考)在一条可以折叠的数轴上,点,表示的数分别是,5,如写成用含的式子透露表现的方式,则图,以点为折点,将此数轴向右对折,使点落在点右边处,若到点的间隔是1,则点透露表现的数是________.16.(1分)(2019八下·长春期中)当满足________时,一次函数于负半轴.的图象与轴交3、解答题(共10题;共93分)17.(10分)如图,一只蚂蚁从原点O动身,它先向右爬了2个单元长度抵达点A,再向右爬了3个单元长度抵达点B,然后向左爬了9个单元长度抵达点C。
2019年第十一届全国大学生数学竞赛数学专业竞赛(B 卷)试题一、(本题15分)设1L 和2L 是空间中的两条不垂直的异面直线,点B 是它们公垂线段的中点。
点1A 和2A 分别在1L 和2L 上滑动,使得12A B A B ⊥. 证明直线12A A 的轨迹是单叶双曲面。
二、(本题10分)计算()()220190d 11x x x +∞++⎰三、(本题15分)设数列{}n x 满足:()110,ln 1,1,2,n n x x x n +>=+= . 证明:{}n x 收敛并求其极限值. 四、(本题15分)设{}1,,n 是n 维实线性空间V 的一组基,令1210n n +++++=证明:(1)对{}11111,2,,1,,,,,,i i n i n -++=+ 都构成V 的基;(2)V α∀∈,在(1)中的1n +组基中,必存在一组基使α在此基下的坐标分量均非负;(3)若1122n n a a a α=+++ ,且(1,2,,)i a i n = 互不相同,则在(1)中的1n +组基中,满足(2)中非负坐标表示的基是唯一的.五、(本题20分)设A 是数域F 上的n 阶矩阵,若(2n n A I I =表示单位矩阵),则称A 为对合矩阵. 试证:(1)若A 是n 阶对合矩阵,则()()rank rank n n I A I A n ++-=;(2)n 阶对合矩阵A 一定可以对角化,其相似对角形为00r n r I I -⎛⎫ ⎪ ⎪ ⎪- ⎪⎝⎭,其中 ()rank n A r I =+;(3)若A ,B 均是n 阶对合矩阵,且AB BA =,则存在可逆矩阵P ,使得1P AP -和1P BP -同时为对角矩阵.六、(本题15分)设函数()f x 为闭区间,a b ⎡⎤⎢⎥⎣⎦上的连续凹函数,满足()()0,0f a f b =>且()f x 在x a =处存在非零的右导数. 对2n ≥,记()11:(),[,]n n n k k k k k S kx kf x f b x a b ==⎧⎫⎪⎪⎪⎪==∈⎨⎬⎪⎪⎪⎪⎩⎭∑∑(1)证明对(0,())f b α∀∈,存在唯一(,)x a b ∈使得()f x α=;(2)求()lim sup inf .n n n S S →∞-七、(本题10分)设正项级数11n n a ∞=∑收敛. 证明级数221n n nn a S ∞=∑收敛,其中1n k k n a S ==∑.。
贵州省2019年7月普通高中学业水平考试数 学 试 卷参考公式:柱体体积公式:V=Sh ;锥体体积公式:V=31Sh(S 为底面面积,h 为高)。
第I 卷(第Ⅰ卷包括35小题,每题3分,共计105分)一、选择题:每小题给出的四个选项中,只有一项是符合题意的。
1.已知A={x|x<2},B={1,2,3},则A ∩B=A .{ 1}B .{2}C .{2,3}D .{0,1,3} 2.函数f (x)=2-x 的定义域为A .{x|x ≥1}B .{x ≥2}C .{x|x ≤1}D .{x|x ≤2} 3.以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体是A .圆柱B .圆锥C .圆台D .球体 4.已知向量a =(1,-2),b =(2,3),则a -b =A .(4,-1)B .(2,5))C .(-3,2)D .(-1,-5) 5.设等差数列{a n }的前n 项和是S n ,若首项a 1=1,公差d =2,则S 3=A .7B .9C .11D .13 6.函数f (x)=(k+3)x+1在R 上是增函数,则实数k 的取值范围是A .k>-3B .k<-3C .k>-2D . k<-27.如图,九宫格由九个小正方形组成在该九宫格内随机取一点P ,则点P 在阴影部分的概率为A .91 B .61 C .31 D .21 8.已知向量a =(2,7),则|a |=A .2B .3C .4D .59.各项均为正数的等比数列{a n }满足a 3=1.a 5=36,则a 4=A .3B .4C .5D .6 10.函数y=|x-1|的图象是A B C D11已知直线/:y=4x-5,其斜率为A .1B .2C .3D .412.右图是某城市2017年各月的平均气温(°C)数据的茎叶图,则这组数据的众数为A .17B .19C .21D .2313.角a 的顶点与原点O 重合,始边与x 轴的非负半轴重合,若a 的终边经过点P(2,2),则tan a 的值为A .1B .2C .3D .4 14.幂函数f (x)=x a 的图象经过点(2,4),则f (x)的解析式为A .f (x)=x -1B . f(x)=xC . f(x)=x 2D . f(x)=x 3 15.已知sin a =31,则sin(a +2 )的值为 A .-31 B .31 C .-61 D .6116.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .若A=60°,a =3,b=1,则BA .30°B .45°C .60°D .135°17.某班有男生30名,女生24名.现用分层抽样的方法从全班同学中抽取若干名同学参加一项活动,若男生抽取5名,则女生抽取的人数为A .2B .3C .4D .518.如图,在直二面角A-BC-D 中,M ,N 分别是线段AB ,AC 的中点,则直线MN 与平面BCD 的位置关系是A .直线M 在平面BCD 内B .直线MN 与平面BCD 平行C .直线MN 与平面BCD 相交1 1xy 01 1xy1 1xy1 1xyAB CDMND .以上位置关系均有可能 19.已知函数f (x)=e x +e -x ,则f (x)为A .奇函数B .偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数20.掷一枚质地均匀的骰子一次,出现点数不大于5的的概率为A .31 B .21 C .32D .65 21.已知a ,b ,c 均为实数,且a >b ,则以下选项正确的是A .a 2>b 2B . ac> bcC .a-c>b-cD .ba 11> 22.计算sin17°cos28°+cos17°sin28°的结果等于A .-23 B .-22 C .22 D .2323.已知log a 4=1,则a 的值为A .3B .4C .5D .624已知e 1与e 2为两个不共线的向量,则与e 1+2e 2平行的向量是A .e 1+ e 2B .2 e 1+ e 2C .2 e 1+3 e 2D .2 e 1+4 e 2 25.△ABC 的内角A ,B ,C 对边分是a ,b ,c ,a =3,b =5,c =7,则C 的大小为A .120°B .90°C . 45°D .30° 26.函数f (x)=x 3-10的零点所在的区间是A .(0,1)B .(1,2)C .(2,3)D .(3,4) 27.甲与乙进行象棋比赛,甲获胜的概率为31,甲与乙和棋(平局)的概率为61,则乙获胜的概率为A .21 B .41 C .61D .8128.若变量x ,y 满足约束条件⎪⎩⎪⎨⎧≥+≥+≤-0,2y -x 0,y x ,02x ,则z=3x+y 的最大值是A .-2B .4C .8D .10 29.已知a =30.2,b =30.5,c =30.9,则a ,b ,c 的大小关系为A .a<b<cB . c<a<bC . a<c<bD .b<c<a30.为了落实“振兴乡村战略”,某市拟定从2018年至2023年,年投入“振兴乡村战略”的项目资金从200亿元增加到300亿元,则这几年间该市投入该项目资金的年平均增长率x 应满足的关系式为A.200(1+x)=300B .200x=300C .200(1+x)5=300D .200x 5=300 31.将函数y=cos 2x-sin 2x 的图象上所有点向左平移6π个单位长度,所得图象的函数解析式为A .y=cos(2x+6π) B . y =cos(2x-6π) C .y=cos(2x+3π) D . y=cos(2x-3π)32.已知正实数a ,b 满足a +b =2,则b a 11+,的最小值是A .2B .49C .38D .82533.△ABC 的内角A ,B ,C 的对边分别是a ,b ,c .若△ABC 的面积是)(123222a cb -+则A=A .90°B .60°C .45°D .30° 34.定义bc ad dc b a -=,则函数f (x)=132cos 2sin x x 的图象的一个对称中心为A .(4π,0) B .(3π,0) C .(125π,0) D .(32π,0)35.若函数f (x)=x 2-2x+m 在区间[1,n]上的值域仍为[1,n] ( n>1),则m+n 的值为A .3B .4C .3或4D .0第Ⅱ卷(第Ⅱ卷包括8小题,共45分)二、填空题:本大题共5小题,每小题3分,共15分。
2019年贵州省贵阳市第十九中学高一数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若M={x|x>1},N={x|x≥a},且N?M,则()A.a≤1B.a≥1C.a<1 D.a>1参考答案:D【考点】集合的包含关系判断及应用.【专题】计算题;集合.【分析】由M={x|x>1},N={x|x≥a},且N?M可得a>1.【解答】解:∵M={x|x>1},N={x|x≥a},且N?M,∴a>1,故选D.【点评】本题考查了集合的运算及集合包含关系的应用,属于基础题.2. 在△ABC中,角A,B,C所对的边分别为a,b,c.若acos A=bsin B,则sin Acos A +cos2B等于A.- B. C.-1 D.1参考答案:D3. 设函数f(x)=如果f(x0)>1,则x0的取值范围是()A.(﹣1,1)B.(﹣1,0)∪(1,+∞) C.(﹣∞,﹣1)∪(1,+∞)D.(﹣∞,﹣1)∪(0,1)参考答案:C【考点】分段函数的应用.【分析】根据分段函数的表达式,进行求解即可.【解答】解:若x0>0,由f(x0)>1得=>1得x0>1,若x0≤0,由f(x0)>1得﹣1>1得>2,即﹣x0>1,则x0<﹣1,综上x0>1或x0<﹣1,故选:C4. 下列四个算式:;;;中,正确的有()A.0个 B.1个 C.2个 D.3个参考答案:C5. 函数的定义域为,则实数的取值范围是()A.B. C. D.参考答案:B6. 二次函数y=图像的顶点在()A.第一象限B.第二象限C.第三象限 D.第四象限参考答案:B略7. 函数f(x)=+lg(x+1)的定义域为()A.(﹣1,1)B.(﹣1,+∞)C.(1,+∞)D.(﹣∞,1)参考答案:A【考点】函数的定义域及其求法.【分析】结合对数函数以及二次根式的性质,得到不等式组,解出即可.【解答】解:由题意得:,解得:﹣1<x<1,故选:A.8. 在等差数列中,,则参考答案:B9. 已知函数f(x)=ln(|x|+1)+,则使得f(x)>f(2x﹣1)的x的取值范围是( )A.B.C.(1,+∞)D.参考答案:A【考点】对数函数的图像与性质.【专题】转化思想;转化法;函数的性质及应用.【分析】判断函数f(x)是定义域R上的偶函数,且在x≥0时单调递增,把不等式f(x)>f(2x﹣1)转化为|x|>|2x﹣1|,求出解集即可.【解答】解:∵函数f(x)=ln(|x|+1)+为定义域R上的偶函数,且在x≥0时,函数单调递增,∴f(x)>f(2x﹣1)等价为f(|x|)>f(|2x﹣1|),即|x|>|2x﹣1|,两边平方得x2>(2x﹣1)2,即3x2﹣4x+1<0,解得<x<1;∴使得f(x)>f(2x﹣1)的x的取值范围是(,1).故选:A.【点评】本题考查了函数的奇偶性与单调性的应用问题,也考查了转化思想的应用问题,是综合性题目.10. 已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是()A. B. C. D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 计算的值是______________ .参考答案:略12. 结合下面的算法:第一步,输入x.第二步,若x<0,则y=x+3;否则,y=x﹣1.第三步,输出y.当输入的x的值为3时,输出的结果为.参考答案:2【考点】ED:条件语句.【分析】执行算法,x=3,y=x﹣1=2,即可得到结论.【解答】解:执行算法,有x=3,y=x﹣1=2输出y的值为2故答案为:2.13. 已知是以为周期的偶函数,且时,,则当时,=___________.参考答案:略14. 已知定义在R上的奇函数y=f(x)满足:①当x∈(0,1]时,f(x)=()x;②f (x)的图象关于直线x=1对称,则f(﹣log224)= .参考答案:【考点】函数奇偶性的性质.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】由f(x)的图象关于x=1对称可以得出f(x)=f(x﹣4),从而可以得到f(﹣log224)=﹣f(log224﹣4)=﹣f(log23﹣1),可判断log23﹣1∈(0,1),从而可以求出,这样根据指数式和对数式的互化及指数的运算即可求得答案.【解答】解:f(x)的图象关于x=1对称;∴f(x)=f(2﹣x)=﹣f(x﹣2)=f(x﹣4);即f(x)=f(x﹣4);∴f(﹣log224)=﹣f(log224)=﹣f(log224﹣4)=﹣f(log23﹣1);∵log23﹣1∈(0,1);∴==;∴.故答案为:.【点评】考查奇函数的定义,f(x)关于x=a对称时有f(x)=f(2a﹣x),以及对数的运算,指数的运算,对数式和指数式的互化.15. 某单位有职工200名,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1﹣200编号,并按编号顺序平均分为40组(1﹣5号,6﹣10号,…,196﹣200号).若第5组抽出的号码为22,则第8组抽出的号码应是.参考答案:37考点:系统抽样方法.专题:应用题.分析:由分组可知,抽号的间隔为5,第5组抽出的号码为22,可以一次加上5得到下一组的编号,第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.解答:解:由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.故答案为:37.点评:本题考查系统抽样,在系统抽样过程中得到的样本号码是最规则的一组编号,注意要能从一系列样本中选择出来.本题还考查分层抽样,是一个抽样的综合题目.16. 不等式≤0的解集是.参考答案:{x|x≤或x>4}【考点】其他不等式的解法.【分析】原不等式等价于,解不等式组可得.【解答】解:不等式≤0等价于,解得x≤或x>4,∴不等式≤0的解集为:{x|x≤或x>4}故答案为:{x|x≤或x>4}.17. 设集合,,若,则a的取值范围为________.参考答案:.【分析】先化简集合A,再根据得到关于a的不等式求出a的取值范围.【详解】由得,∴,由得,∴.又当时,满足,时,也满足,∴.故答案为【点睛】(1)本题主要考查集合的化简和关系运算,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 利用数轴处理集合的交集、并集、补集运算时,要注意端点是实心还是空心,在含有参数时,要注意验证区间端点是否符合题意.三、解答题:本大题共5小题,共72分。
2019年贵州省高中数学联赛试题
一、选择题:每小题6分,本大题共30分.
1.已知等差数列{}n a 的公差0≠d ,且21129272516a a d a a +=++,则{}n a 的前15项之和=
15S 为
A.15B.16C.30D.32
2.方程组⎩
⎨⎧=--=1||||||||y x e e y x 的解的组数是A.5B.6
C.7D.83.在ABC Rt ∆中,︒=∠90B ,15=AB ,20=BC .则顶点B 与斜边各点的连线中(含边BC AB ,)长度为整数的线段的条数是
A.9B.10C.11D.124.已知正三棱锥侧面与底面所成二面角的余弦值为
6
1,则此三棱锥的高h 与其内切球半径r 之比
=r h A.5B.6C.7D.85.设椭圆)0(1:22
22>>=+b a b
y a x C 的左、右焦点分别为1F ,2F ,其焦距为c 2,点2
2,23(c c N 在椭圆内部,点M 是椭圆C 上的动点,且||32||||211F F MN MF <+恒成立,则椭圆C 的离心率的取值范围是A.)33,0(B.)1,33(C.)1,2134(D.)3
3,2134(二、填空题(每小题7分,本大题共70分)
6.在ABC ∆中,30=AB ,20=AC ,210=∆ABC S ,D ,E
分别为边,AB ,AC 的中点,BAC ∠的平分线分别与DE ,BC
交于F ,G 点.则四边形BGFD 的面积为.
7.已知函数3)()(x e e x f x x ⋅-=-,若m 满足1(2)(log )(log 25.02e e m f m f -≤+,则实数m 的取值范围是
.8.若半径为cm R 62+=的空心球内部装有四个半径为r 的实心球,则r 所能取得的最大值为cm .
9.在ABC ∆中,0=++GC GB GA ,0=⋅GB GA ,则
=⋅+B A C B A tan tan tan )tan (tan .10.已知正项数列{}n a 的前项和为n S .若{}n a ,{}n
S 均为公差为d 的等差数列,则=n S .11.已知}19,17,15,13,11{∈m ,}2019,,2001,2000{ ∈n .则n m 的个位数是1的概率为.
12.已知方程0525=+-x x 的五个根分别为,,,,,54321x x x x x 1)(2
+=x x f .则=
∏=51)(k k
x f .13.若n b a )(+的展开式中有连续三项的二项式系数成等差数列,则最大的三位正整数
=n .14.平面区域}4
3sin sin sin sin ],2,0[,|),{(22≤+⋅-∈=y y x x y x y x S π的面积为.15.已知集合}2019,,3,2,1{ =A ,对于集合A 的每一个非空子集的所有元素,计算它们乘积的倒数,则所有这些倒数的和为.
三、解答题(本大题共50分.其中16题10分,17题、18题各20分)
16.我们知道,目前最常见的骰子是六面骰,它是一颗正立方体,上面分别有一到六个洞(或数字),其相对两面之数字和必为七。
显然,掷一次六面骰,只能产生六个数之一(正上面)。
现欲要求你设计一个“十进制骰”,使其掷一次能产生0∽9这十个数之一,而且每个数字产生的可能性一样。
请问:你能设计出这样的骰子吗?若能,请写出你的设计方案;若不能,写出理由。
17.已知定长为4的线段AB 的两端点分别在两条相交直线02=±y x 上移动。
(1)设线段AB 的中点为G ,求点G 的轨迹C 的方程。
(2)若由点P 向曲线C 作出的两条切线互相垂直,求证:动点P 在定圆上.
18.已知正项数列{}n a 的前项和为n S ,且∑==n i i n a
S 132.
(1)求数列{}n a 的通项公式;(2)求证:312<=∑=n i k n a k S .。