电磁场与电磁波第三版之
- 格式:pptx
- 大小:1.19 MB
- 文档页数:43
8.9 谐振腔随着频率的增高,电磁波的波长接近元件尺寸,◇随着频率的增高,电磁波的波长接近元件尺寸,由集总参数元件组成的振荡回路容易产生辐射,损耗增大。
故采用空腔谐振器。
容易产生辐射,损耗增大。
故采用空腔谐振器。
空腔谐振器的形成过程。
◇空腔谐振器的形成过程。
fo = 1 2 π LC d f 0 ↑ , L ,C ↓ d ↑, N ↓ (b (a fo ↑ d ↑ , N并联f0 ↑ d ↑ , N连续 (c (d 几种常见的微波谐振腔。
◇几种常见的微波谐振腔。
谐振腔的主要参量是;谐振腔的主要参量是;谐振波长和品质因素。
振波长和品质因素。
(a)矩形腔(b)圆柱腔(c)同轴腔以矩形谐振腔为例,说明有关参数的计算方法。
以矩形谐振腔为例,说明有关参数的计算方法。
y x a b O 矩形谐振腔 d z 的矩形波导。
考虑横截面为 a × b 的矩形波导。
假轴为参考的“传播的方向” 设z轴为参考的“传播的方向”。
由于在z=0和 z=d 处存在导体壁,波将在其间处存在导体壁,和来回反射形成驻波,来回反射形成驻波,所以在空腔内不可能有波的传播。
能有波的传播。
由此构成一个矩形谐振腔。
知矩形波导中TMmn和TEmn的相位系数由式(8.2.21(见教材 191知矩形波导中(见教材P 知矩形波导中和的相位系数由于在z=0,d处存在电壁,要求处存在电壁,由于在处存在电壁 k zm n d = l π k = kmnl ( l = 1, 2,..... 2 2 2 与之对应的频率即为谐振腔的谐振频率式中v = 1 µε模式的谐振频率和场结构。
教材例教材例8.9.1 例8.9.1 求矩形谐振腔内TE101 模式的谐振频率和场结构。
(教材例解:由矩形波导中TE10模的场分布式由矩形波导中由条件得于是得矩形谐振腔内TE 得矩形谐振腔内 101模式的场量为沿+z方向传播方向传播的分量沿-z方向传方向传播的分量=0 H 0+ = − H 0− H 0+ e − jk z10 z + H 0−e jkz 10 z = −2 jH 0+ sin ( k z10 z H得由条件则Ey z =d =0 π d k z10 d = π ⇒ k z10 = 相应的k为相应的为故谐振频率为谐振腔的另一重要参数是品质因素谐振腔的另一重要参数是品质因素 Q ,其定义为Q =ω W Pl 储存的能量损耗的功率。
电磁场与电磁波第三版课后答案本文是对《电磁场与电磁波》第三版的课后习题答案的整理与解答。
本书是电磁场与电磁波领域的经典教材,其中的习题对于巩固和加深对电磁场与电磁波知识的理解非常重要。
以下是本文对第三版的习题答案的详细解析。
第一章电磁场基本概念1.1 电磁场基本概念习题答案:1.电磁场的基本概念是指在空间中存在着电场和磁场,它们相互作用产生相互关联的现象;它们是由带电粒子的运动而产生的,是物理学的基本概念之一。
2.宏观电荷位移是指电荷在物体内部的移动;它的存在使得物体表面或其周围的电场产生变化,从而产生an内部电磁场。
3.电磁场的基本方程是麦克斯韦方程组,由四个方程组成:高斯定律、法拉第电磁感应定律、法拉第电磁感应定律的积分形式和安培环路定律。
1.2 矢量分析习题答案:1.根据题目所给的向量,求两个向量的点乘积:$\\vec{A}\\cdot\\vec{B}=A_{x}B_{x}+A_{y}B_{y}+A_{z}B_{ z}$2.根据题目所给的向量,求两个向量的叉乘积:$\\vec{A}\\times\\vec{B}=(A_{y}B_{z}-A_{z}B_{y})\\hat{i}+(A_{z}B_{x}-A_{x}B_{z})\\hat{j}+(A_{x}B_{y}-A_{y}B_{x})\\hat{k}$3.定义标量和矢量场,然后利用高斯定理得出结论。
1.3 电场与静电场习题答案:1.静电场是指电场的源是静止电荷,不会随时间变化,不产生磁场。
2.在静电场中,高斯定律表示为:$\ abla \\cdot\\vec{E} = \\frac{1}{\\varepsilon_0}\\rho$,其中$\ abla\\cdot \\vec{E}$表示电场的散度,$\\varepsilon_0$表示真空介电常数,$\\rho$表示电荷密度。
3.电场的位移矢量$\\vec{D}$定义为$\\vec{D} =\\varepsilon_0 \\vec{E} + \\vec{P}$,其中$\\varepsilon_0$表示真空介电常数,$\\vec{E}$表示电场强度,$\\vec{P}$表示极化强度。
电磁场与电磁波第三版-郭辉萍-第三章习题答案第一题题目一个半径为R的均匀带电球壳的电荷面密度为σ,以电荷面密度为0的球心C为球心作半径为R的球面S,球面上一点P的电场强度E的大小与距离R的关系。
### 答案由于球壳上各点带电量的方向相反,由球壳对球内外各一点的电场叠加,所以无论球面内或球面外,点P的电场强度大小与距离R 无关。
即E不随R的变化而变化。
第二题题目电势能缺少的条件是什么? ### 答案电势能缺少的条件有两个:第一是电势为零点的规定,第二是确定电势差。
电势能只能说是一个与地球或其他准零电位的参考体系有关的概念,它取决于选取零点时电势与参考体系的差,而不是取决于问题中的具体点或场点的电势。
题目在有限导体平面上有一面密度为质量面密度σ的均匀带电薄片,试推导在它所在面的垂直平分线上的电势。
### 答案在面上任选此点坐标为(x,0),显然它距离面上各点的距离和面在此点的电势分别为:r = (x^2 + y^2) ^ (1/2),V = kq / r。
这里面的q = σdx。
由于对称性可知任一垂直平分线上的电势是相等的,所以我们可以通过积分的方法求出垂直平分线上的电势。
电势V为此线两边同号。
所以,由于σdx$$ V=\\int_0^{+\\infty}\\frac{k\\sigma dx}{x^2}+\\int_0^{-\\infty}\\frac{k\\sigma dx}{x^2} =+\\infty $$两项分别收敛。
所以原版电势。
题目试推导导体表面任意点上电场强度的切线与导体表面的夹角θ与电势的关系。
### 答案任意一个点r(k)在导体表面上,电场E的方向就垂直于导体表面,从而与该点处的法向量n垂直。
另一方面,根据高斯定理得出E.EA=Φ/ε,导体表面n方向上在2S表面积内的电荷为,即σ*2S,而2S又等于dA。
从而得到该方向上场强为E的切向分量EEE=2EE其中,E=dΦ/dA=-dΦ2S/εdA这样就有了场强与导体表面的法线方向上单位面积上电荷量与电势的关系题目试设内半径为a,外半径为b,中心位于轴线上的两同心导体球壳A、B,A球壳带正电+q,B球壳不带电,试详细分析以下两种情况:(1)球壳之间无绝缘介质;(2)球壳之间有绝缘介质。
电磁场与电磁波(第三版)课后答案第2章第⼆章习题解答⼀个平⾏板真空⼆极管内的电荷体密度为43230049U d x ρε--=-,式中阴极板位于0x =,阳极板位于x d =,极间电压为0U 。
如果040V U =、1cm d =、横截⾯210cm S =,求:(1)0x =和x d =区域内的总电荷量Q ;(2)2x d =和x d =区域内的总电荷量Q '。
解(1) 43230004d ()d 9dQ U d x S x τρτε--==-=??110044.7210C 3U S dε--=-? (2)4320024d ()d 9dd Q U d x S x τρτε--''==-=?11004(10.9710C 3U S d ε--=-? ⼀个体密度为732.3210C m ρ-=?的质⼦束,通过1000V 的电压加速后形成等速的质⼦束,质⼦束内的电荷均匀分布,束直径为2mm ,束外没有电荷分布,试求电流密度和电流。
解质⼦的质量271.710kg m -=?、电量191.610C q -=?。
由21mv qU = 得 61.3710v ==? m s故 0.318J v ρ== 2A m26(2)10I J d π-== A⼀个半径为a 的球体内均匀分布总电荷量为Q 的电荷,球体以匀⾓速度ω绕⼀个直径旋转,求球内的电流密度。
解以球⼼为坐标原点,转轴(⼀直径)为z 轴。
设球内任⼀点P 的位置⽮量为r ,且r 与z 轴的夹⾓为θ,则P 点的线速度为sin r φωθ=?=v r e ω球内的电荷体密度为343Qa ρπ=故 333sin sin 434Q Q r r a a φφωρωθθππ===J v e e ⼀个半径为a 的导体球带总电荷量为Q ,同样以匀⾓速度ω绕⼀个直径旋转,求球表⾯的⾯电流密度。
解以球⼼为坐标原点,转轴(⼀直径)为z 轴。
设球⾯上任⼀点P 的位置⽮量为r ,且r 与z 轴的夹⾓为θ,则P 点的线速度为sin a φωθ=?=v r e ω球⾯的上电荷⾯密度为24Q a σπ=故 2sin sin 44S Q Q a a aφφωσωθθππ===J v e e 两点电荷18C q =位于z 轴上4z =处,24C q =-位于y 轴上4y =处,求(4,0,0)处的电场强度。
电磁场与电磁波第三版-郭辉萍-第三章习题答案第一题问题一个磁感应强度为B的均匀磁场,在其中有一个长为l、电阻为R的长直导线。
导线与磁感应强度方向成夹角θ。
若导线被引出的两个端头A、B相距d,则导线两个端头的电势差是多大?解答根据电磁感应定律,导线两个端头的电势差可以通过导线所受的磁场力与电阻的乘积来计算。
设电流的方向与磁场方向成夹角α,则磁场力的大小为F = BIL sinα,其中I为电流的大小。
电流可以通过欧姆定律来计算,即I = U / R,其中U为电阻两端的电势差。
将电流的表达式代入磁场力的表达式中,得到F = B(U / R)l sinα。
根据电势差的定义,有U = Fd = B(U / R)l sinα * d. 移项整理得到U(1 - Bld sinα / R) = 0,解得U = 0 或者 1 - Bld sinα / R = 0。
如果U = 0,则代表导线两个端头的电势差为0,即没有电势差。
这种情况下,导线两个端头之间的电势相等。
如果1 - Bld sinα / R = 0,则导线两个端头的电势差为U = Bld sinα / R。
综上所述,导线两个端头的电势差为U = Bld sinα / R。
第二题问题一个半径为R的导线圈,通过其中的电流为I,产生的磁感应强度为B。
若导线圈的匝数为N,导线圈中心处的磁感应强度是多少?解答根据长直导线的磁场公式,通过导线圈中心点的磁感应强度的大小可以通过长直导线的磁场公式来计算。
长直导线的磁场公式为B = μ0I / (2πd),其中B为磁感应强度,μ0为真空中的磁导率,I为电流的大小,d为测量点到导线的距离。
对于导线圈来说,可以将导线分成无数个长直导线,然后将它们对应的磁场强度相加。
考虑到导线圈的几何形状,可以得到导线圈中心处的磁感应强度的大小为Bm = N * B,其中Bm为导线圈中心处的磁感应强度,N为导线圈的匝数,B为单根导线产生的磁感应强度。
第三章习题解答3.1 真空中半径为a 的一个球面,球的两极点处分别设置点电荷q 和q -,试计算球赤道平面上电通密度的通量Φ(如题3.1图所示)。
解 由点电荷q 和q -共同产生的电通密度为33[]4q R R π+-+-=-=R R D 22322232()(){}4[()][()]r z r z r z a r z a q r z a r z a π+-++-+-++e e e e 则球赤道平面上电通密度的通量d d zz SSS Φ====⎰⎰D S D e22322232()[]2d 4()()aq a arr r a r a ππ--=++⎰ 221201)0.293()aqa q q r a =-=-+ 3.2 1911年卢瑟福在实验中使用的是半径为a r 的球体原子模型,其球体内均匀分布有总电荷量为Ze -的电子云,在球心有一正电荷Ze (Z 是原子序数,e 是质子电荷量),通过实验得到球体内的电通量密度表达式为02314ra Ze r r r π⎛⎫=- ⎪⎝⎭D e ,试证明之。
解 位于球心的正电荷Ze 球体内产生的电通量密度为 124rZer π=D e 原子内电子云的电荷体密度为 333434a a Ze Zer r ρππ=-=- 电子云在原子内产生的电通量密度则为32234344r r ar Ze rr r ρπππ==-D e e 故原子内总的电通量密度为 122314ra Ze r r r π⎛⎫=+=- ⎪⎝⎭D D D e 3.3 电荷均匀分布于两圆柱面间的区域中,体密度为30C m ρ, 两圆柱面半径分别为a 和b ,轴线相距为c )(a b c -<,如题3.3图()a 所示。
求空间各部分的电场。
解 由于两圆柱面间的电荷不是轴对称分布,不能直接用高斯定律求解。
但可把半径为a 的小圆柱面内看作同时具有体密度分别为0ρ±的两种电荷分布,这样在半径为b 的整个圆柱体内具有体密度为0ρ的均匀电荷分布,而在半径为a 的整个圆柱体内则具有体密度为0ρ-的均匀电荷分布,如题3.3图()b 所示。