有理数的加法2
- 格式:ppt
- 大小:479.50 KB
- 文档页数:16
有理数的加法教学目标:知识与技能:1、理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;2、能根据有理数加法法则熟练地实行有理数加法运算,弄清有理数加法与非负数加法的区别;3、本节课通过行程问题说明有理数的加法法则的合理性,然后又通过实例说明如何使用法则实行计算,让学生感知到数学知识来源于生活,并应用于生活。
教学重点:依据有理数的加法法则熟练实行有理数的加法运算。
教学难点:有理数的加法法则的理解教学准备:多媒体教室,配套课件。
教学过程:一、引入,师:同学们,老师听说了一个很有意思发生在南方的故事,是一个数学计算题,题目是,小明去商场花60 元买了一个好看的书包,回家后碰到了小刚,小刚非常喜欢小明的包,愿意花70 元买走此包,小明同意了。
第二天,小红也非常喜欢此包,于是找到了小明,希望小明能够想办法,帮忙从小刚手里转卖给她,自己愿意花90 元,于是小明花了80 元从小刚手里买回了包,接着卖给小红90 元。
问题是,在整个过程中,小明一共赚了多少钱?生1 :很简单,赚了10 元钱。
理由是,第一次卖,赚了10 元钱,第二次买,亏本10 元钱,再卖,又赚了10元钱。
所以一共赚了10 元钱。
生2 :赚了30 元钱。
理由是,第一次卖,赚了10 元钱,第二次又赚了10 元钱,第三次又赚了10元钱,所以一共赚了30 元钱。
生3:赚了20 元钱。
老师:商人的做法是,这就是两次生意,第一次进价是60 元,卖70 元,赚了10 元钱;第二次进价是80 元,卖90元,又赚了10 元钱。
总共赚了20元钱。
商人的做法用纯数学的理论表示就是:-60+70-80+90=20 元。
师:同学们想像这个商人一样聪明吗?生:想!师:通过这节课的学习,同学们一定能学会!、突出主题,突出主体师:看大屏幕,独立思考下列问题,然后回答问题。
某人从原点0 出发,如果第一次走了5米,第二次接着又走了3 米,求两次行走后某人在什么地方?(两次行走后距原点0 为8 米,应该用加法。
课题 1.3.1有理数的加法(2)备课时间序号授课时间主备人授课班级七年级课标要求理解有理数的运算律,能解决简单问题。
教学目标知识与技能:能用运算律简化有理数加法的运算。
过程与方法:经历有理数加法运算律的探索过程,理解有理数加法的运算律。
情感态度价值观:使学生逐渐养成,“算必讲理”的习惯,培养学生初步的推理能力与表达能力。
教学重点加法交换律和结合律,及其合理、灵活的运用教学难点合理运用运算律教学方法类比教学过程设计师生活动设计意图一、引出课题回顾复习:小学时已学过的加法运算律有哪几条?提出问题:这些运算律在有理数加法中适用吗?这就是这节课我们要研究的课题。
二、分析问题、探究新知1.有理数加法交换律的学习问题1:我们如何知道加法交换律在有理数范围内是否适用?问题2:我们如何用语言来叙述有理数加法的交换律呢?教师归纳后板书:“有理数加法中,两个数相加,交换加数的位置,和不变。
”问题3 :你能把有理数加法的交换律用字母来表示吗?〔1〕式子中的字母分别表示任意的一个有理数。
(如:既可成表示整数,也可以表示分数;既可以表示正数,也可以表示负数或0)。
(2)在同一个式子中,同一个字母表示同一个数.2.有理数加法结合律的学习.(基本步骤同于加法交换律的学习)学生回答后教师接着问:你能用自己的语言或举例子来说明一下加法的交换律与结合律吗?先由教师举一些实际例子来说明,然后鼓励学生举不同的数来验证由学生回答得出a+b=b+a后,教师说明“加法运算律对所有有理数都成立”目前只能直接给出,让学生举例尝试只起到验证的作用.要让学生举不同的数验证,是为避免学生只由一个例子即得出某种结论.鼓动学生用自己的语言表达所发现的贻论或规律.让学生感受字母表示数的含义,同时也让学生体会到数学符号语言的简洁性板书设计:1.3.1 有理数的加法有理数的加法中,两个数相加, 交换加数的位置,和不变。
加法交换律:a+b=b+a有理数的加法中,三个数相加, 先把前两个数相加,或者先把 后两数相加,和不变。
《有理数的加法二》教案教学内容课本第30-33页.教学目标1、经历探索有理数运算律的过程,理解有理数的运算律.2、能用运算律简化运算.教学重点理解有理数加法交换律、结合律及对其合理灵活的运用.教学难点灵活的运用有理数加法运算律.教学过程一、复习回顾1、做一做:计算下列各式:(1)(-8)+(-9), (-9)+(-8)(2)4+(-7), (-7)+4(3)[2+(-3)]+(-8),2+[(-3)+(-8)](4)[10+(-10)]+(-5),10+[(-10)+(-5)]2、想一想:在有理数运算中,加法的交换律、结合律还成立吗?再换一些数试试.请用字母表示加法的交换律、结合律.加法的交换律:__________________加法的结合律:__________________二、应用新知计算:31+(-28)+28+69解一:31+(-28)+28+69=31+[(-28)+28]+69=31+0+69=100得出:若有互为相反数存在,先加得零(凑零).解二:31+(-28)+28+69=(31+69)+[(-28)+28]=100+0=100得出:能凑整的结合在一起(凑整).解三:31+(-28)+28+69=(31+69+28)+(-28)=128+(-28)=100得出:同号数相加.有一批食品罐头,标准质量为每听454克,现抽取10听样品进行检测,结果如下表(单位:克):这10解法一:这10听罐头的总质量为444+459+454+459+454+454+449+454+459+464=4550(克)解法二:把超标准质量的克数用正数表示,不足的用负数表示,列出10听罐头与标准质量的差值表:(单位:克):这(-10)+5+0+5+0+0+(-5)+0+5+10=[(-10)+10]+[(-5)+5]+5+5=10(克)因此,这10听罐头的总质量为454×10+10=4540+10=4550(克)3、随堂练习:某潜水员先潜入水下61m,然后又上升32m,这时潜水员处在什么位置?4、试一试:将-8、-6、-4、-2、0、2、4、6、8这9个数分别填入右图的9个空格中,使得每行的3个数,每列的3个数,斜对角的3个数相加均为0.三、课堂小结:这节课我们学习了有理数加法的交换律和结合律,在利用它简化多个有理数相加的计算时,要先看看有无相反数,有则先相加得零,再利用凑整或同号相加,计算出结果.。
1.3.1 有理数的加法(2)授课时间: 班级: 姓名: 教学目标:理解加法运算律在加法运算中的作用,适当进行推理训练.教学重点:能运用加法运算律简化加法运算;教学难点:加法交换律和结合律合理、灵活的运用.一、问题引入:1、小学时已学过的加法运算律有哪几条?2、猜一猜:在有理数的加法中,这两条运算律仍然适用吗?探究:计算:(1) 30+(-20)=_____________=______, -20+30=_________________=_____;(2) [8+(-5)]+(-4)=_____ =______; 8+[(-5)+(-4)]=_____________ =______.二、归纳概括:1、加法交换律:两个数相加, _________,和不变;符号语言:_______.a b +=2、加法结合律:三个数相加, ,和不变;符号语言:(_______)(_______).a b c c a ++=+=+三、课堂试一试:例1:计算: (1) 16+(-25)十24+(-35); (2)158+(-26)+16+(-208)练习:(1)23(17)6(22)+-++-. (2)(2)31(3)2(4)-+++-++-例2、简便运算:(1) (+ 341)+(–253)+ 543+(–852);(2) (+52)+(-2.4)+(+51)+(+3.8)+(-53)+(-3.7);例3、应用题:(1)10袋小麦称后记录为:91 ,91 ,91.5 ,89 ,91.2 ,91.3 ,88.7 ,88.8 ,91.8, 91.1 (单位:千克),10袋小麦一共多少千克?如果每袋小麦以90千克为标准,10袋小麦总计超过多少千克或不足多少千克?2、某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自O 地出发到收工时所走路线(单位:千米)为:+10、-3、+4、+2、-8、+13、-2、+12、+8、+5(1)问收工时距O 地多远?(2)若每千米耗油0.2升,从O 地出发到收工时共耗油多少升?四、课堂小结及小测;P20、练习。
1.3.1 有理数的加法(二)◆课堂测控知识点一加法运算律1.计算:(1)(-2)+(+5)+(-8)+7=______;(2)(-0.6)+0.3+(-0.4)+0.7=_____.2.(-12)+14+(-25)+(+310)运用运算律计算恰当的是()A.[(-12+14)]+[(-25)+(+310)] B.[14+(-25)]+[(-12)+(+310)]C.(-12)+[14+(-25)]+(+310) D.以上都不对3.下列计算运用运算律恰当的有()(1)28+(-18)+6+(-21)=[(-18)+(-21)]+28+6(2)(-12)+1+(-14)+13=[(-12)+(-14)]+1+13(3)3.25+(-235)+534+(-8.4)=(3.25+534)+[(-235)+(-8.4)]A.1个 B.2个 C.3个 D.都不恰当4.计算:(1)(-8)+3+(-2)+7 (2)(-12)+14+(-18)(3)0.75+(-234)+(+0.125)+(-1257)+(-418)知识点二加法交换律的应用5.8筐蔬菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称重记录如下(单位:千克):1.5,3,2,-0.5,1,-2,-2,+1.5.则8筐蔬菜总重量为______kg.6.飞机飞行的高度是8000米,上升300米,又下降500米,又上升200米,•最后飞机的高度为______米.7.小于5的正整数与不小于-4的负整数的和是______.8.(教材变式题)某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,•某天自A地出发到收工时所跑的路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5.问收工时距A地多远?◆课后测控9.绝对值不小于5但小于7的所有整数的和是_____.10.计算:(-12)+5+(-10)+15=______.11.如图所示,则下列结论错误的是()A.b+c<0 B.a+b<0 C.a+b+c<0 D.│a+b│=a+bc o a12.下列运算正确的个数为()(1)(+34)+(-734)+(-6)=-13 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3 (4)1+(-3)+5+(-7)+9+(-1)=-4A.3个 B.4个 C.2个 D.1个13.用简便方法计算:(1)(-6.8)+425+(-3.2)+635+(-5.7)+(+5.7)(2)(-1)+2+(-3)+4+…+(-99)+100(3)(-23)+(+0.25)+(-16)+1214.阅读下列(1)题解法,计算(2)题(1)计算-556+(-923)+1734+(-312)[解]原式=[(-5)+(-56)]+[(-9)+(-23)]+(17+34)+[(-3)+(-12)]=[(-5)+(-9)+17+(-3)]+[(-56)+(-23)+34+(-12)]=0+(-114)=-114.上述方法叫拆项法.(2)计算4.5+(-2.5)+913+(-1523)+213.◆拓展测控15.(经典题)股民吉姆上星期五买进某公司股票1000股,每股27元,•下表为本周内每日该股票的涨跌情况(单位:元).(1)星期三收盘时,每股是多少元?(2)本周内每股最高价多少元?最低价是多少元?(3)已知吉姆买进股票时付了1.5‰的手续费,卖出时还需付成交额1.5‰的手续费和1‰的交易税,如果吉姆在星期五收盘前将全部股票卖出,他的收益情况如何?答案:课堂测控1.(1)2 (2)0 2.A 3.C4.解:(1)原式=-8+(-2)+3+7=0(2)原式=-24+14+(-18)=-14+(-18)=-38(3)原式=34+(-234)+18+(-418)+(-1257)=-1857[总结反思](1)正数,负数分别相加;(2)分数,整数分别相加.5.204.5 6.8000 7.08.解:(+10)+(-3)+(+4)+(+2)+(-8)+(+13)+(-2)+(+12)+(+8)+(+5)=10+4+2+13+12+8+5-3-8-2=41[解题技巧]正数一起加,负数一起加.课后测控9.0 10.-2 11.D 12.A13.解:(1)原式=(-6.8)+(-3.2)+425+635+(-5.7)+5.7=-10+11=1. (2)原式=50111+++个=50(3)原式=-23+(-16)+(+14)+12=-411264+++=-56+34=-10912-+=-112 [解题思路]运用交换律结合律进行计算.14.解:(2)原式=4+0.5+(-2)+(-0.5)+9+13+(-15)+(-23)+2+13=[4+(-2)+9+(-15)+2]+[0.5+(-0.5)+[13+(-23)+13] =-2+0+0=-2[解题思路]把各个数能拆项进行拆项,运用交换律结合律,将相反数,整数,分数分别相加.拓展测控15.解:(1)星期三收盘每股价为:27+4+4.5+(-1)=34.5(元);(2)本周内每股最高价是35.5元,最低价是每股28元;(3)星期五每股卖出价为:27+4+4.5+(-1)+(-2.5)+(-4)=28(元),共收益:•28•×1000×(1-1.5‰-1‰)-27×1000×(1+1.5‰)=889.5(元).所以吉姆收益889.5元.[解题思路](1)起始价为27元,把第一到三天的涨跌数相加再加上27得周三收盘价.(2)把一周每天计算出来.再比较.(3)收入减交易中的手续费及交易税,得利润.。
2.1有理数的加法(2)(教案)课题 2.1有理数的加法(2)单元第2章有理数的运算学科数学年级七年级学习目标情感态度和价值观目标体验数学公式的简洁美,对称美,感受数学与生活的密切联系,增强自信心.能力目标通过经历有理数加法运算律的探索过程,感悟有理数加法运算的技巧及运算规律,发展学生的抽象概括能力.知识目标1.理解有理数加法的运算律;2.能运用加法运算律简化有理数加法的运算.重点有理数加法运算律.难点合理灵活地运用运算律使运算简便.学法合作探究法.教法引导发现法、直观演示法.教学过程教学环节教师活动学生活动设计意图导入新课复习回顾回顾有理数加法法则:导入新课请在下面图案内任意填入一个有理数,要求相同的图案内填入相同的数.(1)比较各算式的结果,比较左,右两边算式的结果是否相同.(2)换不同的几个有理数试一试,结果如何?你发现了什么?回顾法则.完成数据填写并计算.让学生自己复述,增强复习的效果.培养学生的归纳能力.讲授新课加法运算律探究:计算下列各式,验证你发现的规律是否成立?通过上面计算你发现了什么规律?归纳:加法交换律:两个数相加,交换加数的位置,和不变.a+b=b+a.计算下列各式,验证你发现的规律是否成立?(1)[7+(-4)]+(-3)(2)7+[(-4)+(-3)](3)[(-7)+(-8)]+(+11)(4)(-7)+[(-8)+(+11)]通过上面计算你发现了什么规律?归纳:加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.(a+b)+c=a+(b+c).一般地,任意若干个数相加,无论各数相加的先后次序如何,其和都不变.典例解析:例1 计算:(1)15+(-13)+18;(2)(-2.48)+4.33+(-7.52)+(-4.33);(3)5116()()() 6767+-+-+-.归纳:使用运算律通常有下列几种方法:(1)能凑整的先凑整简称凑整结合法;完成探究问题,合作学习.完成例题的解答.培养学生探究的习惯,渗透字母表示数的意识,体验公式表达的简洁美和对称美.强调算理,让学生在具体运算中体会运算律对简化运算的作用.针对练习:某升降机第一次上升8米,第二次又上升6米,第三次下降7米,第四次又下降了9米,这时升降机在初试位置的什么位置?升降机共运行了多少米?巩固提升1、大于-3且小于4的所有整数的和为()A.0 B.-1 C.3 D.72、下列各式中正确利用了加法运算律的是()A.(+5)+(-7)+(-5)=(+5)+(-5)+(-7)B.1111 ()()()() 2332 -++=-++C.(-1)+(-2)+(+3)=(-3)+(+l)+(-2)D.(-1.5)+(+2.5)=(-2.5)+(+1.5)3、计算(-2.8)+3+1+(-3)+2.8+(-4)的结果为()A.0 B.-3 C.-8 D.54、利用运算律计算:(1)(-1.9)+3.6+(-10.1)+1.4;(2)(-7)+(+11)+(-13)+9;(3)33+ 311+(-2.16)+8911+(21325-);(4)491921+(-78.21)+22721+(-21.79).5、计算:1+(-2)+3+(-4)+5+(-6)+…+(+99)完成练习.通过练习,灵活运用运算律进行简化计算,进一步提高学生的运算能力.。
`有理数的加法一、教材分析本节是有理数的加法的第二课时,它是在有理数加法的基础上进行简便运算的一种方法,为以后进行混合运算打下基础,因此,这一节在本章中占有不可取代的位置。
这节主要通过简化加法运算,让学生体会运算律的作用,让学生知道每进行一步运算都要有根有据,逐步培养学生的逻辑思维能力。
二、学情分析在小学阶段学生学习了加法交换律和结合律,因此学生对运用加法交换律和结合律进行运算并不陌生也很容易掌握,并且初一的学生学习积极性高,探索欲望强烈,所以在教学活动中我紧紧抓住学生的这种心理,鼓励学生参与教学活动,多探索,培养学生的合作交流的能力。
三、教学目标知识与技能:经历探索加法交换律和结合律的验证过程,理解加法交换律和结合律,熟练地运用加法交换律和结合律解题。
过程与方法:通过小组合作交流,验证加法交换律和结合律过程,通过综合运用有理数加法法则及加法运算律,培养学生的观察、比较、归纳及运算能力。
情感态度与价值观:鼓励学生积极参与数学活动,养成认真勤奋、独立思考、合作交流等学习习惯,形成严谨求实的科学态度。
四、教学重点、难点教学重点:运用加法运算律简化运算。
教学难点:如何灵活运用加法运算律五、教法与学法分析教法分析:教学活动的本质是一种合作,一种交流。
学生是学习的主人,教师是学习的组织者、引导者与合作者。
根据学生的年龄特点和已有的知识基础,本节课注重加强知识间横向和纵向联系,拓展探索的空间,体现由具体到抽象的认识过程。
学法分析:新课程指出:学生是学生的主体。
要学生成为真正的主人,需要在数学教学中的过程中,教师引导学生自主思考、合作探究、共同总结,从而体现学生学习的主体地位。
本节课主要采用自主学习、合作探究、引领提升、讲练结合的方法展开教学。
六、教学环节及课时安排:复合运拓自达知习作用展我标识巩探规应小检延固究律用结测伸引验快培提巩分入证速养升固层新规解能能新作课律题力力知业课时安排:1课时七、教学过程教师活动学生活动设计意图环节复习巩固,引入新课回顾一有理数的加法分哪几种情况?分别如何运算?回顾二在小学中我们学过哪些加法的运算律?师:小学的加法交换律、结合律在有理数范围内适合吗?让我们一起来探究。