大跨径连续刚构桥的设计
- 格式:ppt
- 大小:64.13 MB
- 文档页数:87
连续刚构桥桥墩单、双肢构造形式的对比选择【摘要】连续刚构桥纵向和横向都具有较大的刚度,适合悬臂施工,并能满足横向抗风要求;主墩与主梁固结,不需布置造价高的支座;施工也无体系转换;其跨越能力大、整体性能强、受力合理、施工方便,本文以大跨径刚构桥的主墩刚度作为研究对象,对墩的单肢与双肢构造形式进行研究比较。
【关键词】连续刚构;双薄壁墩;单柱式墩;对比分析1、引言连续刚构墩柱与梁体的弯矩分配决定于两者的相对刚度,而梁体的收缩、徐变及温度应力与刚构墩柱的抗推刚度也直接相关。
合适的刚度比既能满足全桥的纵向刚度,又能尽可能的改善梁体内力分布,充分发挥材料的受力性能,达到节约投资、增大跨径的目的。
因此确定合适的墩梁刚度比是连续刚构设计中的一个重要内容。
显然,尽量减少梁体自重是设计的首要目标。
为此,首先要在满足施工、运营各阶段结构和预应力构造要求的前提下确定梁体截面的最小尺寸,而理想的墩柱除满足结构以及施工、运营阶段的最小纵、横向刚度要求外,应尽可能使其具有较大的抗弯刚度和较小的抗推刚度,墩柱的结构形式也正是从这方面考虑确定的。
2、主墩的形式连续刚构桥主墩的形式主要有竖直双肢薄壁墩和竖直单肢薄壁墩,采用V 形墩等其他形式较少,且跨径也不大。
竖直双肢薄壁墩是在墩位上有两个相互平行的墩壁与主梁固结的桥墩。
它可增加桥墩刚度,同时其抗推能力小,在桥梁纵向允许的变位大,不仅可以减小梁墩顶负弯矩,使结构内力分配更趋合理,而且由于其为双墩柱,墩顶负弯矩的峰值也不像单肢墩出现在支点中心,它的峰值出现在两支墩的墩顶,峰值也较单肢墩小得多,两支墩之间负弯矩为下凹的曲线,可减小墩顶截面的尺寸,充分发挥材料的受力性能,增加桥梁美感。
因此在预应力混凝土连续刚构桥中是理想的柔性墩,能支撑上部结构,保持桥墩稳定性,适应上部结构位移的需要。
竖直单肢薄壁墩是在墩位上只有一个截面形式为空心或实心的“一”字形矩形截面或箱梁截面的桥墩。
单肢薄壁墩与双肢薄壁墩相比,一般说来,单薄壁墩特别是箱形截面单薄壁墩的抗扭性能好,抗推能力强,但其柔性不如双薄壁墩,双薄壁墩的综合抗弯刚度大,整体稳定性好,墩身允许的水平位移较大,但随着墩身高度的不断增加单薄壁墩的柔性逐渐增强,允许的纵向变位增大。
连续刚构主桥计算报告1概述1.1 桥梁概况本桥主桥为连续刚构桥,采用预应力混凝土变高截面箱梁,跨径组合:37.5m+68m+68m+37.5m,采用单箱单室截面,箱梁截面高2m~4.2m,按二次抛物线变化,全桥面标准宽度为25.5m,单幅桥面宽度为12.5m。
主梁采用悬臂浇筑施工,其他详细尺寸见初步设计图纸。
图1.1 主墩处箱梁截面1.2 主要材料1.混凝土标号箱梁混凝土等级:C55,计算容重:26 kN/m3。
2.预应力参数预应力钢绞线抗拉强度标准值:f pk=1860MPa;弹性模量:E p=1.95×105MPa;松弛系数:0.3(低松弛);张拉控制应力:σcon=0.75×f pk =1395MPa;管道摩阻系数:μ=0.15(塑料波纹管);偏差系数:k=0.0015;锚具单端回缩量:6mm。
1.3 荷载取值计算采用的设计参数按照《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)的有关规定取值,按照A类预应力混凝土构件计算。
荷载参数取值如下:(1)、汽车荷载:公路-Ⅰ级半幅桥车道按3个车道计,横向折减系数0.78。
(2)、温度荷载:①整体温差:整体升温20℃,整体降温-20℃;②局部温差:按《公路桥涵设计通用规范》(JTG D60-2015)规定的混凝土箱梁沥青铺装层温度梯度来计算。
(3)、收缩、徐变:按《公路桥规》JTG D62-2004附录F算法取用,收缩徐变天数按3650天考虑。
(4)、基础不均匀沉降:主墩按照1.5cm计,边墩按1cm计。
(5)、二期恒载:二期恒载包括防撞护栏、泄水管、桥面铺装等,按49.5kN/m计。
(6)、汽车冲击力:冲击系数:按《公路桥涵设计通用规范》(JTG D60-2015)中连续梁的计算方法计算。
1.4 主要规范标准(1)、《公路桥涵设计通用规范》(JTG D60-2015)(2)、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)(3)、《公路桥涵施工技术规范》(JTG/T F50-2011)(4)、《公路桥梁抗震设计细则》(JTG/T B02-01-2008)1.5 主要施工顺序施工工序如下所示:(1)、桥墩浇筑完成以后,在柱墩上进行0#块施工;(2)、箱梁悬臂施工,并张拉预应力钢束;(3)、边墩支架上现浇,张拉预应力钢束进行边跨合龙;(4)、中跨现浇段施工,全桥合龙;(5)、施工桥面铺装、防撞栏等二期恒载。
连续刚构桥工程设计方案第一章概述1.1 地质条件图1-1 桥址纵断面图1.2 主要技术指标桥面净宽:2×12m+0.5m (分离式)设计荷载:公路-I级行车速度:80km/h桥面横坡:2%通航要求:无温度:最高年平均温度34℃,最低年平均温度-10℃。
1.3 设计规范及标准1、《公路桥涵设计通用规范》(JTG D60-2004)。
2、《公路桥涵地基与基础设计规范》(JTG D63-2007)。
3、《公路桥涵施工技术规范》(JTJ 041-2000)。
4、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)。
5、《公路桥涵圬工设计规范》(JTG D61-2005)第二章方案比选2.1 概述桥式方案比选是初步设计阶段的工作重点,一般要进行多个方案比较。
各方案均要求提供桥式布置图,图上必须标明桥跨位置,高程布置,上、下部结构形式及工程数量。
对推荐方案,还要提供上、下部结构的结构布置图,以及一些主要的及特殊部位的细节处理图。
设计方案的评价和比较,要全面考虑各项指标,综合分析每一方案的优缺点,最后选定一个符合当前条件的最佳推荐方案。
有时,占优势的方案还应吸取其他方案的优点进一步加以改善。
2.2 比选原则设计从安全性、技术适用性、施工难度、设计施工周期、经济性、实用性和观赏性等几方面对各比选方案进行评比,其中安全性为主要因素。
2.3 比选方案根据设计任务要求,依据现行公路桥梁设计规范,综合考虑桥位地质地形条件,拟定了三个比选方案:方案一:预应力混凝土连续刚构桥方案二:上承式钢管混凝土拱桥方案三:独塔斜拉桥2.3.1预应力混凝土连续刚构桥1.结构受力特点⑴在高墩大跨径桥梁中,与其它结构体系比较,预应力混凝土连续刚构桥常成为最佳的桥型方案。
⑵预应力砼充分发挥了高强材料的特性,具有强度高、刚度大、变形小以及抗裂性能好的优点。
⑶结构伸缩缝数量少,高速行车平顺舒适,维修工作量小,维护简单。
条文说明1.1针对目前大跨连续刚构较普遍存在的跨中下挠、腹板斜裂缝、底板裂缝等病害,本指南通过分析其可能存在的成因,结合对于这些病害的一些处理经验措施,从设计角度提出了一些在设计中需要注意和加强的要点,以便通过对一些设计指标的控制以及必要的构造措施的采取来降低和消除可能出现的病害。
本指南旨在细化《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)在大跨径预应力混凝土连续刚构设计上的应用,作为对现行《规范》的补充,从而希望大跨径预应力混凝土连续刚构健康发展。
2.2.1《桥涵施工规范》规定,桥梁结构断面尺寸允许有±5%误差,桥面铺装厚度允许超厚L/5000(L为连续刚构主跨跨径),预应力钢绞线容许±6%误差。
鉴于设计中考虑整个桥面铺装超厚L/5000(L为连续刚构主跨跨径)偏大,本指南建议设计中考虑桥面铺装超厚L/7000(L为连续刚构主跨跨径),但不得小于2cm,结构尺寸±5%误差和钢铰线±6%误差。
2.3.4 考虑到应充分估计混凝土收缩徐变对结构的影响,本指南建议在采用潮湿度计算徐变效应的同时,也采用混合理论来计算结构的收缩徐变,=2.0和徐变系数β=采用混合理论时分别取徐变系数β=0.021、终极值ψk0.0021、终极值ψ=2.5两种情况,取三种结果中徐变效应较大的作为结构的k徐变效应。
233.1.1进行承载力校和时除按照规范规定外,还需考虑以下三个方面的问题:1.计算内力组合时,建议计入结构自重(箱梁和铺装)的施工误差引起的内力增减。
2.进行内力组合时,宜充分估计施工误差引起的混凝土收缩徐变内力的变化。
3.计算结构抗力时宜考虑施工引起的预应力钢绞线误差对结构抗力的影响。
3.2计算主梁正截面承载能力时宜注意以下几个问题:1.安全等级的确定对于大跨径预应力混凝土连续刚构桥的安全等级均宜按照一级来控制,即结构的重要性系数取1.1。
2.主梁的承载能力计算要考虑施加预应力产生的次内力的影响。
工程设张浩,等:山区高墩大跨度连续刚构桥设计山区高墩大跨度连续刚构桥设计张浩!窦巍(安徽省交通规划设计研究总院股份有限公司;交通节能环保技术交通运输行业研发中心,安徽合肥230088)摘要:在科学技术高速发展的背景下,各种先进技术被应用于交通领域,促进了交通工程的建设和发展。
连续刚结构桥就是一种现代桥梁形式,适用于山岭重丘区。
本文介绍了宜宾至昭通高速公路控制性节点一一牛街特大桥主桥的结构设计思路和设计要点,通过结构分析,验证设计方案的合理性和安全性,可为同类建设条件下桥型设计提供参考*关键词:牛街特大桥;山岭重丘区;高墩大跨径连续刚构桥中图分类号:U442.5+2文献标志码:A文章编号:1673-5781(2020)06-1088-020引言山岭重丘区常规大跨、特大跨度桥梁设计在满足结构安全性及耐久性的条件下,重点考虑结构的经济性*设计将充分利用地形条件,力求建设方案经济、实用。
坚持灵活运用技术指标,减少工程建设对社会资源的浪费。
针对山岭重丘桥位区地形复杂,山谷宽深,呈V形、U形,山坡陡峭,该类桥梁在合适的跨径范围内应重点考虑连续刚构桥。
1项目简介宜宾至昭通高速公路是四川省宜宾市至云南省昭通市的重要通道,路线全长135.4km,牛街特大桥位于彝良县东北部,为本项目的控制性节点之一。
项目为双向四车道高速公路,设计速度为80km/h,路基宽24.5m,横向布置为0.5m (护栏)+11m(行车道)+1.5m(中央分隔带)+11m(行车道)+0.5m(护栏),地震动加速度峰值为0.05g,设计百年一遇基本风速为282m/s。
2主桥结构设计2.1总体设计主桥位于分离式路基,单幅桥梁全宽12.0m,主桥跨径布置为(85+2X160+85)m,最大墩高为130.0m,如图1所示。
主梁采用单箱变截面预应力混凝土连续箱梁,主墩采用双肢薄壁空心墩,过渡墩采用单肢薄壁空心墩,下部基础采用承台接群桩基础。
4Q000图1主桥总体布置图(单位:cm)2.2主梁结构设计上部结构主梁采用单箱单室预应力混凝土连续箱梁,箱梁按3.0m、3.5m和4.0m梁段长度分段;箱梁顶板宽12.0m,底板宽6.5m;中支点中心梁高10.0m,跨中中心梁高4.1m,梁高由跨中向墩顶按16次抛物线规律变化。
预应力混凝土连续梁、连续刚构桥设计指导意见0.目的和范围为提高预应力混凝土连续梁、连续刚构桥设计质量和使用寿命,防止混凝土箱梁梁体开裂、跨中下挠、跨中底板崩裂、大体积混凝土温度裂缝等质量通病,特制定有关设计指导意见。
本指导意见适用中交二公院承接的跨径大于或等于70米的预应力混凝土连续梁、连续刚构桥设计。
1.总体布置1.1 结构体系根据桥墩的高度,经计算确定是采用连续梁还是连续刚构,原则上尽量采用刚构体系,对于桥墩较矮、多跨或墩高相差较大的,可采用连续体系或连续——刚构组合体系。
1.2 跨径预应力混凝土连续梁、连续刚构桥主跨一般不宜大于200m,主跨大于200m时应与其他桥型进行充分比选论证;一般情况下边中跨比不小于0.55,在过渡墩较高、边跨现浇段难以采用落地支架现浇时,边中跨比最小可采用0.53,以保证结构在最不利荷载作用下边墩支座有一定压力。
2.构造尺寸2.1 梁高为提高箱梁的承载能力,改善主梁的应力状况,箱梁应有足够的高度。
箱梁根部梁高宜控制在主跨跨度的1/16~1/18,跨中梁高宜控制在主跨跨度的1/30~1/55,考虑到新的《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)的实施和荷载标准的调整,在净空不受限制的条件下可适当增加梁高,梁高宜按二次抛物线变化。
2.2 腹板厚度箱梁腹板厚度一般为40~80cm,为方便施工,腹板厚度变化宜在1~2个节段完成。
2.3 顶、底板宽度及厚度单箱单室截面箱梁底板宽度宜控制在8.0m 以内,翼缘板悬臂长宜控制在4.0m以内,否则采用单箱双室断面。
箱梁顶板厚度宜采用25~32cm,具体厚度根据箱梁宽度确定,以满足桥面横向受力和纵、横向预应力钢束的构造要求。
底板厚度自跨中至墩顶随负弯矩的增大而逐渐加厚,墩顶箱梁底板厚度一般为箱梁高度的1/10~1/12,跨中厚度一般为30~35cm。
厚度一般按二次抛物线变化。
2.4 横隔板箱梁应设端横隔板、墩顶横隔板、中跨跨中横隔板,横隔板应设检修人孔。
大跨径波形钢腹板连续箱梁桥设计与施工关键技术摘要:对桥梁施工来说,属于横跨河流和城市的构造物,它也是国家公路交通的重要基础设施。
但对于大跨径波形钢腹板的连续箱梁而言,是近些年所涌现的新型桥型,这一桥型也真正发挥出了钢材混凝土的性能,在一定程度上对自身的重量进行了减轻。
不过,也正因为这一工程的施工难度会比其他普通的桥梁施工更加复杂,因此我们也就需要对其进行更加深入的探讨。
基于此,本文主要对某一大跨径波形钢腹板连续箱梁桥施工进行了分析,并探索了施工的关键技术,以利于为今后的桥梁施工提供参考,促进我国桥梁建设事业的长远发展。
关键词:大跨径;波形钢腹板;关键技术引言:在改革开放以来,中国桥梁事业取得了质的飞跃,尤其是大跨度桥的迅速发展。
在中国大桥的整体荷载中,还存在着巨大的恒载。
而制约桥跨度的因素主要是桥自身,所以也就必须减轻现代桥的自重,从而增强现代桥的跨能。
也正是因为这样,在20世纪80年代法国CB公司就对将平面型钢以波形钢材所代替的构想进行了提出,从而形成一个全新的箱梁结构,也就是波形钢腹板式连续箱桥梁结构。
对于这一架构而言,由于主要是钢筋砼所组成的结构,可以发挥出抗压强度比较高的优点,提高材料的利用效率,与其他结构相比较会更加经济以及合理。
因此,我们也就有必要对这一结构的设计以及关键施工技术进行探究,进而使得建筑事业得到长足的发展。
一、工程概况某大桥属于大跨径波形钢腹板连续箱梁桥,跨径比较大,单箱也会更宽。
对这一桥梁来说,其主跨的跨径为88+156+88m,桥面的宽度为16.25×2m。
在这一桥梁当中,会将三跨波形的钢腹板预应力混凝土当做连续箱梁,并同时使用单箱单室断面结构来设置单幅的主桥箱梁。
在这一大桥的主梁顶的底层当中,会对C60混凝土进行使用,而钢腹板当中也会更加注重对Q345qC钢材进行使用。
在对这座大桥进行设计的过程当中,主要会以波形钢腹板当做节断腹板,而且钢板的厚度为1-3.4cm[1]。
目录1 总则 (1)2 作用 (2)2.1作用及其组合 (2)2.2设计中必须重点考虑的几个作用 (2)3 持久状况承载能力极限状态计算 (3)3.1永久作用内力的计算 (3)3.2主梁正截面承载能力极限状态计算 (3)3.3主梁斜截面承载能力极限状态计算 (3)3.4箱梁的剪力滞效应 (3)4 持久状况正常使用极限状态计算 (4)4.1抗裂验算 (4)4.2挠度的计算与控制 (5)4.3计算参数的取用 (5)5 持久状况和短暂状况构件的应力计算 (6)5.1正截面应力计算与控制 (6)5.2主拉应力计算与控制 (6)5.3箱梁横向计算 (6)5.4必要时进行有效预应力不足的敏感性分析 (7)6 构造及施工措施 (8)6.1箱梁一般构造尺寸的规定 (8)6.2墩身一般构造尺寸的规定 (9)6.3普通钢筋的构造要求 (9)6.4预应力的构造要求 (11)6.5施工措施 (12)6.6其他方面 (13)7 条文说明 (23)附件1 (52)附件2 (57)1.1 目的为避免大跨径预应力混凝土连续刚构桥在运营期出现跨中下挠、腹板斜裂缝、底板裂缝等病害,特制定本指南。
在制订时,充分吸取了现有大跨径混凝土连续刚构存在的跨中下挠、腹板斜裂缝、底板裂缝等病害教训,从而提出主梁的一些应力控制指标,以及改进缺陷的一些经验措施,作为《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)的补充。
1.2 适用范围本指南适用于新的大跨径、变截面、预应力混凝土连续刚构桥的设计,有关旧桥加固设计见《大跨径预应力混凝土连续刚构加固指南》。
2.1 作用及其组合按照《公路桥涵设计通用规范》(JTG D60-2004)中的相关条款进行。
2.2 设计中必须重点考虑的几个作用2.2.1结构自重和预应力考虑结构自重和预应力时,宜计入施工规范容许范围内的误差对结构的影响。
2.2.2 活载活载按照《公路桥涵设计通用规范》(JTG D60-2004)取用。
工程技术幸福生活指南 2019年第34期107幸福生活指南大跨径波形钢腹板预应力混凝土连续刚构桥施工技术翟田田嘉盛建设集团有限公司 江苏 南京 210000摘 要:本文以大跨径钢腹板预应力混凝土连续刚构桥施工为探讨主题,针对某实际工程的建设情况,分析波形钢腹板桥的施工工艺流程,从0#、1#块现浇、悬臂段与合龙段施工、钢筋绑扎、预应力管道架设、混凝土工程、预应力张拉与管道压浆等多个作业环节总结分部分项施工的具体内容与技术应用,为大跨径连续刚构桥施工的高质量发展提供可行性建议。
关键词:大跨径波形钢腹板;预应力混凝土;连续刚构桥引言: 近年来,为了适应社会经济的发展速度,我国不断扩大交通基础设施的建设规模,逐步增加交通工程建设数量。
由于波形钢腹板桥的施工工艺流程较为复杂,在进行施工时,必须严格要求前期设计的方案质量,保证后续作业的技术水平。
波形钢腹板桥是一种新型的工业材料,其具有自重较轻的优势特点,和优越的可操作性,耐久性极强,对于复杂的施工环境可以良好适应。
1、工程概况以某桥梁建设工程为例,在建造11#-14#墩上部结构时,利用波形钢腹板预应力混凝土连续结构,在施工过程中,设置桥面的横坡形式为3%,将箱梁底板以水平方式予以安置。
2、施工工艺流程 在0#、1#块的桥梁工程施工工艺流程(如图1)。
图1:桥梁工程施工工艺流程3、分部分项施工3.1 0#、1#块现浇施工(1)安装支架主墩墩顶施工是整个桥梁工程的关键环节,在开展支架现浇作业过程中,应遵循托架、分配梁到模板的有序安装原则。
三角支架与预埋件等器件是托架部分的主要组成部分,在安装支架结构时,应首先焊接三角支架,确保其稳固连接在预埋件上。
与此同时,利用精轧螺纹钢等专用器件,在顶部将二者对拉。
在横向安装分配梁结构时,应借助工字钢零件,选用型号为36a 的即可[1]。
(2)安装模板在安装侧模板或地模板时,应统一使用组合模板的构造形式,确保厚度达到6mm 即可。
大跨径连续刚构桥研究1、研究背景和必要性近年来许多大跨度的连续刚构(连续梁)桥在运营过程中出现了较多的工程病害,严重影响到了结构的安全。
病害主要表现在挠度和裂缝2个方面。
由于标准的不同,裂缝的分类方法有多种。
箱梁裂缝从发生的部位可以分为顶板裂缝、腹板裂缝、底板裂缝、横隔板裂缝;从裂缝的力学特性可以分为弯曲裂缝、剪切裂缝、扭曲裂缝、断开裂缝、局部应力引起的裂缝;从裂缝产生的外因可以分为荷载裂缝、温度裂缝、收缩裂缝、基础变形裂缝、钢筋锈蚀裂缝和冻胀裂缝等。
在这些裂缝类型中,以可能会影响结构正常使用或者结构耐久性的箱梁腹板斜裂缝破坏性最大,是国内外桥梁专家学者重点研究的裂缝类型。
这些腹板斜裂缝裂缝集中在25°~45°之间,主要出现在连续箱梁桥的边孔现浇段、L/4 截面附近或者梁腹厚度变化区段。
例如:河南省三门峡黄河公路大桥,该桥建成于1993 年,仅仅运营了短短的七年,主桥(连续刚构)箱梁很多梁段的腹板就出现了斜裂缝;风陵渡黄河公路大桥,在1994 年11 月竣工通车几年后,主桥(连续梁)箱梁梁体在一些部位产生了不同程度的腹板斜裂缝;黄石长江大桥(连续刚构)于1995 年竣工,使用一年后被发现腹板出现斜裂缝。
东明黄河大桥预应力混凝土箱梁在L/4 截面附近梁腹板表面出现的与顶板大致呈20°~60°夹角的斜向裂缝,大多由顶板与腹板交界处开始,向下延伸至1/3~1/2 梁高处,方向基本上与主拉应力方向垂直。
这些斜裂缝不仅会削弱桥梁结构的强度和刚度,还会加速钢筋锈蚀。
而钢筋锈蚀则会引起体积膨胀,从而使混凝土开裂,破坏混凝土的受力性能,降低材料的耐久性能和桥梁的承载能力,影响桥梁的美观及使用寿命,如果严重时很可能引起交通事故。
同时这种斜裂缝的普遍性使得工程界对箱梁桥的应用开始产生不安,甚至怀疑,直接影响其在公路工程建设中的进一步推广,因而对于箱梁斜裂缝的检测识别与加固研究也更加迫切。
高墩大跨径连续刚构桥设计与计算分析依托高山峡谷高墩大跨径连续刚构桥实际工程案例,介绍该桥的工程概况、总体设计、结构设计、计算分析,并对关键技术问题给出对策措施。
标签:高墩;大跨径;连续刚构桥;桥梁设计引言本桥是山区高速公路上的一座高墩连续刚构桥,主桥上部构造为85m+3×160m+85m连续刚构,主墩最高达104.5m,是山区桥梁跨径较大、墩高较高的曲线不对称连续刚构桥。
图1 主跨布置示意图桥位区为高山峡谷地貌,桥位区地形起伏较大,两岸桥台均位于山体斜坡上。
大桥两岸山坡上第四系覆盖层较薄,强-弱风化基岩埋藏较浅。
本区属温带大陆性季风性气候,年平均气温14.3°C,极端最低气温-20℃°C,极端最高气温43.3°C。
1 技术标准(1)设计车速:80km/h;(2)设计荷载:1.3倍公路-I级;(3)桥梁宽度:本桥为分离式双幅桥,单幅桥宽12.25m,组成为0.5m(防撞护栏)+11.25m(行车道)+0.5m(防撞护栏);(4)设计水位:SW1/300=407.788m;(5)地震基本烈度:地震动峰值加速度0.05g,地震动反应谱特征周期为0.35S;(6)基本风速:根据抗风设计规范设计基准风速22.9m/s。
2 总体设计大桥跨越典型的V型山谷,路线与谷底高差达140多米,桥梁规模大、设计复杂。
高墩连续刚构桥以其造价经济、施浇工工艺成熟、养护费用较少,在此具有比较明显的竞争优势,从经济性和施工方便考虑,主桥推荐采用160m桥跨方案。
同时,由于主桥边跨过渡墩较高,为避免边跨现浇段支架式施工,尽量减小边跨现浇段的长度,以适应导梁或托架式施工,边跨与主跨的比值以边墩不出现拉力为原则采用偏小的0.53。
故主桥桥跨布置设计为85m+160m+85m。
3 结构设计3.1 上部结构大桥上部构造采用85m+160m+85m预应力混凝土连续刚构箱梁,为单箱单室箱形截面。
上部箱梁顶宽12.25m,底宽6.25m,悬臂长3m。
边跨不平衡悬浇和墩顶托架无配重浇筑施工技术1前言1.1背景目前,边跨现浇段施工及边跨的合拢方式有以下几种:图4-1 导梁上合拢边跨1.1.1落地支架方式在落地支架上浇筑边跨现浇段和合拢段,合拢边跨,这是在大多数连续刚构桥上采用的方法。
在高墩的情况下,落地支架费材费力,如果支架搭在水中或边跨现浇段处于复杂地质地形条件下,难度更大,需探索不用落地支架的途径,这是连续刚构桥发展的必然趋势。
1.1.2导梁方式在边跨悬臂端设导梁,支承在边墩上,在导梁上挂模板浇筑边跨现浇段及合拢段(图4-1)。
为取消落地支架进行探索,结果发现当边、主跨跨径比在0.54~0.56时,边跨支点在任何荷载工况下,总保留有足够的压力,而不出现拉力,因此有可能利用导梁,合拢边跨,而又不过多增加预应力束。
这个设想,已经在跨径106 m的太平大桥(边跨59 m)以及跨径120 m(边跨66 m)的金沙大桥中实现,合拢情况良好,取消了落地支架。
1.1.3与引桥悬臂连接合拢与引桥悬臂连接合拢是取消落地支架的又一种方式。
中国的沅陵沅水大桥,主跨140 m,边跨85 m。
其引桥为跨径42 m的顶推连续梁桥,按(9×42 m)+(42+13.5 m)设两联,其间设有伸缩缝,由预应力束临时连接,顶推就位后解体,悬臂的13.5 m与连续刚构悬臂空中固结,形成85 m+140 m+85 m+42m的连续刚构,缩短了工期,节省了投资。
澳大利亚的门道桥,边跨的刚构悬臂与引桥的悬臂在距边墩16 m处,以弹性支承连接。
该连接装置为内设钢箱,有盆式滑动支座与刚构与引桥相连,可以传递剪力及一定的弯矩,但不能传递轴向力和不能约束轴向变位。
1.2工程概况葫芦河特大桥主桥“T”构为90+3×160+90m预应力混凝土连续刚构箱梁桥,主桥两幅连续刚构箱梁均采用挂篮悬臂浇筑法施工,各单“T”箱梁除0#块外,分20对梁段,即6×3.0+6×3.5+4×4.0+4×4.5m进行对称悬臂浇筑,0#块长12.0m,边跨现浇段长度为8.9m,合拢段长2.0m,合拢顺序为:边跨→次边跨→中跨。
连续刚构桥设计方法一、连续刚构桥的特点作为梁桥的一种,连续梁桥有着结构刚度大、变形小;动力性能好;无伸缩缝、行车平顺的优点。
而连续刚构桥是由t型刚构桥演变而来的,其结构特点是梁体连续、梁墩固结。
这样既保持了连续梁无伸缩缝、行车平顺的优点,又保持了t型刚构不设支座、不需转换体系的优点。
且有很大的顺桥向抗弯刚度和横向抗扭刚度,能满足大跨度桥梁的受力要求。
二、连续刚构桥的适用范围连续刚构桥上部主梁的受力与连续梁桥基本相似;下部桥墩由于结构的整体性,温度和收缩徐变造成的内力十分显著。
因此其桥墩应该有一定的柔度。
使用高强度、轻质混凝土是大跨度梁桥的发展方向之一。
目前世界上已建成的连续刚构桥最大单跨为挪威斯托尔马桥(stolma),主跨301米,国内最大单跨为虎门大桥辅航道桥,主跨270米。
三、设计时需收集的基础资料设计时应围绕桥位选择、桥墩位置、跨径、立面布置、结构体系、施工方法等因素,对桥梁建设的自然条件和功能要求有充分的了解。
1、自然条件包括(1)地形地貌、控制物等;(2)工程地质条件;(3)水文条件;(4)气象条件;(5)地震。
2、功能要求包括(1)桥梁本身使用功能,如铁路桥梁、公路桥梁、城市桥梁、轨道交通、人行桥等;(2)桥下功能要求,如通车、通航等。
四、桥型方案的选择设计时应根据桥梁建设条件,结合技术可行性、施工难度、工程风险与进度、经济合理性、景观协调性等因素,进行桥型比选,确定桥梁的跨径布置。
五、上部结构构造尺寸连续刚构桥设计时,可根据工程实践统计,初步拟定构造尺寸,再进行具体计算复核。
1、边、中跨跨径比一般在0.52~0.58之间。
当边、中跨比较小时,边跨现浇段较短,可减少边跨现浇段支架,对施工有利,但应保证各种工况下边墩处支座不出现负反力。
2、梁的截面形式连续刚构桥多采用箱形截面,其具有良好的抗弯和抗扭性能。
根据桥梁宽度,可采用单箱单室、单箱多室等截面形式。
3、梁高桥梁跨度在60米以内时,可考虑采用等截面高度,构造简单,施工快捷。
赵氏河特大桥主跨160m连续刚构施工组织设计一、工程概况(一)简介赵氏河特大桥跨赵氏河90+160×4+90m预应力混凝土连续梁,一联全长820m;桥梁双幅总宽为34.5米,单幅宽17.25米,0.5米(防护栏)+15.25米(行车道)+3.0(防护栏)+15.25米(行车道)+0.5米(防护栏)。
单幅桥面总宽16.9m,梁部截面为单箱双室、变截面结构,箱底外宽11.4m;中支点处梁高10m,梁端及跨中梁高3.5m。
顶板厚30~50cm,腹板厚从45cm 变化到80cm,底板厚从30cm变化至120cm。
箱梁采用三向预应力体系,梁部采用C50聚丙烯纤维混凝土。
主梁采用挂蓝悬臂现浇法施工。
各单“T”除0号块外分为22对梁端,其纵向分段长度为5×2.5m+5×3m+6×3.5m+6×4m,对于边跨梁,增加了一段(4m)不对称段施工。
0#块总长13m,中跨、边跨合拢段长度均为2m,边跨现浇段为4.6m。
悬臂现浇梁段最大重量为228吨,挂篮自重按120吨考虑。
桥面铺装层为10cm厚的沥青混凝土+8cm厚的C40混凝土,混凝土铺装内掺加聚丙烯纤维。
桥面横坡为双向2%,由箱梁顶面形成,箱梁底板横向保持水平。
赵氏河特大桥主跨160m连续梁基本数据统计表表11、技术含量高,施工复杂赵氏河特大桥连续梁为单箱双室结构,采用三项预应力体系,聚丙烯纤维混凝土,最大跨度为160m,技术含量高,施工过程控制困难。
2、施工安全要求高160m连续梁由于墩高均在86m以上,施工时,对于安全及安全防护要求高,时刻监督检查施工中存在的安全隐患。
二、施工计划安排(一)总体施工计划安排赵氏河特大桥90+160×4+90m连续梁2009年11月1日开始施工,到2011年03月31日结束(包括底板张拉完成),计划13月的时间。
(二)各主要分项工程施工计划安排表表2三、总体施工方案该连续梁的主要施工工序和关键技术包括:0#梁段支架的设计与搭设、0#梁段混凝土浇筑施工、挂篮设计拼装、连续梁悬臂灌注、合拢段施工、预应力施工、边孔现浇段施工、边孔不均衡段施工。
大跨径预应力混凝土连续刚构桥的现状和发展趋势一、概述大跨径预应力混凝土连续刚构桥作为现代桥梁工程中的重要类型,具有显著的结构特点和广泛的应用价值。
在当前交通建设日益发展的背景下,这种桥型以其独特的跨越能力和结构优势,逐渐成为了桥梁工程领域的研究热点和实践重点。
预应力混凝土连续刚构桥以其强大的承载能力和优越的耐久性,在大跨径桥梁中占据了重要地位。
其结构特点主要表现为上部结构轻型化、整体性强以及施工方便等。
通过采用预应力技术,桥梁在承受荷载时能够保持较好的稳定性,从而提高了桥梁的使用寿命和安全性。
随着新材料、新工艺的不断涌现,大跨径预应力混凝土连续刚构桥的设计和施工水平得到了显著提升。
在桥梁跨度、结构形式、施工方法等方面均取得了显著的进展。
随着人们对桥梁美学和环保要求的提高,这种桥型在景观设计、生态保护等方面也展现出了独特的优势。
大跨径预应力混凝土连续刚构桥在发展过程中也面临着一些挑战和问题。
随着桥梁跨度的增大,对材料的性能要求也越来越高施工过程中的质量控制、安全监测等方面也需要更加严格的管理和技术支持。
进一步研究和探索这种桥型的优化设计和施工技术,对于推动其持续发展具有重要意义。
大跨径预应力混凝土连续刚构桥作为现代桥梁工程的重要组成部分,其现状和发展趋势呈现出积极向好的态势。
随着科技的不断进步和工程实践的深入开展,这种桥型将会在桥梁工程领域发挥更加重要的作用,为人们的交通出行提供更加安全、便捷、美观的通道。
1. 介绍大跨径预应力混凝土连续刚构桥的基本概念与特点大跨径预应力混凝土连续刚构桥,作为一种重要的桥梁结构形式,在现代交通建设中发挥着举足轻重的作用。
该类桥梁采用预应力混凝土作为主要材料,通过连续刚构的设计,实现了桥梁的高强度、高稳定性和优良的跨越能力。
在基本概念上,大跨径预应力混凝土连续刚构桥是指桥跨结构采用预应力混凝土材料,通过连续刚构的方式连接桥墩和主梁,形成整体受力体系的桥梁。
这种桥梁结构形式充分发挥了预应力混凝土的高强度、高耐久性和高稳定性等特点,使得桥梁在承受大跨度、大荷载时依然能够保持稳定的结构性能。