2020年南京市中考数学模拟预测试题(附答案)
- 格式:doc
- 大小:196.00 KB
- 文档页数:9
2020年江苏省南京市中考数学全真模拟试卷 _1 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,点 0是△ABC 的内切圆的圆心,若∠BAC=80°,则∠BOCc=()A.130°B.100°C. 65°D. 50°2.如图,Rt△OAC中,∠OAC=90°,OA=6,AC=4,扇形OAB的半径为OA,交OC于点B,如果⌒AB的长等于3,则图中阴影部分的面积为()A.15B.6 C.4 D.33.若A(-4,y1),B(-3,y2),C(1,y3)为二次函数y=x2+4x-5的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y24.关于二次函数247y x x=+-的最值,叙述正确的是()A.当x=2 时,函数有最大值B.当 x=2时,函数有最小值C.当 x=-2 时,函数有是大值D.当 x= 一2 时,函数有最小值5.如图,四边形ABCD是正方形,延长 BC至点E,使CE=CA,连结AE交CD于点F,则∠AFC的度数是()A. 150°B. 135°C.125°D. 112.5°6.下列图形放在一起能镶嵌平面的是()A.正五边形与长方形B.正方形与长方形C.正方形与正六边形D.正三角形与正八边形7.下列说法错误的是()A.x=1是方程x+1=2 的解B.x= -1 是不等式13x+<的一个解C.x=3 是不等式13x+<的一个解D.不等式13x+<的解有无数个8.如图,将四边形AEFG变换到四边形ABCD,其中E、G分别是AB、AD的中点.下列叙述不正确的是()A.这种变换是相似变换B.对应边扩大原来的2倍C.各对应角度不变D.面积扩大到原来的2倍9.如图,有 6 个全等的等边三角形,下列图形中可由△OBC 平移得到的是()A.△OCD B.△OAB C.△OAF D.△OEF10.在边长为a的正方形中挖掉一个边长为b的小正方形(a b>),把余下的部分剪拼成一个矩形(如图). 根据图示可以验证的等式是()A.22()()a b a b a b-=+-B.222()2a b a ab b+=++C.222()2a b a ab b-=-+D.2()a ab a a b-=-11.将一圆形纸片对折后再对折,得到右图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是()12.下列事件中,属于必然事件的是()A.如果 a>b,那么a+c>b+c B.如果 a>b,那么 ac>bcC.如果 a>b,那么 a2>b2 D.如果 a>b,那么a b>13.钟表上的时针从l0点到ll点,所旋转的角度是()A.10°B.15°C.30°D.60°14.当a=8,b=4时,代数式22baba-的值是()A.62 B.63 C.126 D.102215.阅读下列命题:①圆是轴对称图形,每一条直径都是它的对称轴;②垂直于弦的直线平分这条弦,并且平分弦所对的两条弧;③平分弦的直径垂直于弦,并且平分弦所对的两条弧;④垂直于弦且平分这条弦的直线是这个圆的对称轴.其中判断不正确的命题个数是( ) A .1 个B .2 个C .3 个D .4 个二、填空题16.已知△ABC 中,ACB=AC ,过点A 的直线把三角形分成两个等腰三角形,则∠B= . 解答题17.钢筋的横截面面积是0.25π,长度为h ,则钢筋的体积V=0.257πh ,这里常量是 ,变量是 .18.如图 ,直线a ∥b ,则∠ACB = .19.如图,1l ⊥2l , 3l ⊥2l ,则1l 3l ,理由是 .20. 世界上最轻的昆虫是膜翅目缨小蜂科的一种卵蜂,其质量只有0.000005 g ,用科学记数法表示3只卵蜂的质量是 g.21.若代数式23x y +的值是4,则369x y --的值是 .三、解答题22.有两个可以自由转动的均匀转盘A B ,都被分成了3等份,并在每一份内均标有数字,如图所示,规则如下:①分别转动转盘A B ,;②两个转盘停止后观察两个指针所指份内的数字(若指针停在等份线上,那么重转一次,直到指针指向某一份内为止).(1)用列表法(或树状图)分别求出“两个指针所指的数字都是..方程2560x x -+=的解”的概率和“两个指针所指的数字都不是...方程2560x x -+=的解”的概率; (2)王磊和张浩想用这两个转盘作游戏,他们规定:若“两个指针所指的数字都是..2560x x -+=的解”时,王磊得1分;若“两个指针所指的数字都不是...2560x x -+=的解”时,张浩得3分,这个游戏公平吗?若认为不公平,请修改得分规定,使游戏对双方公平.23.剪一块面积为150cm2的长方形铁片,使它的长比宽多5 cm,这块铁片应怎样剪?24.:请你在3×3 的方格纸上,以其中的格点为顶点分别画出,三个形状不同的三角形(工具不限,只要求画出图形,不必写结论).25.具有自主知识产权的“汉芯三号”于 2004年初在上海诞生,它每秒可处理指令8⨯次以610上,那么它工作3310⨯s至少可处理多少次指令?12⨯1.81026.如图所示,A,B两地之间有一条小河,现在想在河岸搭一座桥(桥与河岸垂直),搭在什么地方才能使A点过桥到B点的路程最短?请你在图中画出示意图.27.如图所示,已知AB=AE,∠B=∠E,BC=ED,F是CD的中点,说出AF是CD的中垂线的理由.解:连结AC,AD,在△ABC和△AED中,AB=AE(已知),∠B=∠E(已知),BC=ED(已知),∴△ABC≌△AED(SAS).∴AC=AD(全等三角形的对应边相等).请把后面的过程补充完整:28.我国国民经济保持良好发展势头,国内生产总值持续较快增长,下图是1998年~2002年国内生产总值统计图:根据图中信息,解答下列问题:(1)1999年国内生产总值是;(2)已知2002年国内生产总值比2000年增加l2956亿元,2001年比2000年增加6491亿元,求2002年国内生产总值比2001年增长的百分率(结果保留2个有效数字);(3)在(2)的条件下,将统计图改为折线统计图;(4)本题哪幅统计图可以较好地反映我国国内生产总值持续较快增长?29.2008年5月12日,四川省汶川发生8.0级强烈地震,给当地人民造成巨大的经济损失.某学校积极组织捐款支援灾区,七年级(1)班55名同学共捐款274元,捐款情况如下表;表中捐款2元和 5元的人数不小心被墨水污染已看不清楚,请你帮助确定表中数据,并说明理由.30.一个重为 10 kg 的大西瓜,它重量的90%是水分,将西瓜放在太阳下晒,被蒸发的水分是西瓜水分的 10%,求晒后西瓜的重量.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.D3.B4.D5.D6.B7.C8.D9.C10.A11.C12.A13.C14.C15.C二、填空题 16. 45°或36°17.0.25π;V,h18.78°19.∥;∠l=∠2=90°,同位角相等,两直线平行20.51.510-⨯21.15三、解答题 22.解:(1)解方程2560x x -+=得1223x x ==, 列表:2 3 4 1 1,2 1,3 1,4 2 2,2 2,3 2,4 33,23,33,4(或用树状图)由表知:指针所指两数都是该方程解的概率是:49指针所指两数都不是该方程解的概率是:19(2)不公平!411399⨯≠⨯∵. 修改得分规则为:指针所指两个数字都是该方程解时,王磊得1分. 指针所指两个数字都不是该方程解时,张浩得4分. 此时411499⨯=⨯. 23.长 15 cm ,宽 10 cm24.25.121.810⨯26.略27.略28.(1)82067亿元 (2)6.7% (3)略 (4)折线统计图29.捐2元的有4人,捐5元的有38人.理由如下:设捐款2元的有x 人,则捐款5元的有(5567x ---)人. 根据题意,得1625(5567)107274x x ⨯++---+⨯=,解得4x =, ∴556738x ---=(人)30.9.1 kg。
2020年江苏省南京市中考数学模拟试题含答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号...........涂.黑.) 1.-2的倒数是( )A .-12B .12 C .±2 D .22.函数y =x -2中自变量x 的取值范围是( )A .x >2B .x ≥2C .x ≤2D .x ≠2 3.s in45°的值是( )A .12B .22C .32D .1 4.下列地方银行的标志中,既不是轴对称图形,也不是中心对称图形的是 ( )5.已知某圆锥的底面半径为3 cm ,母线长5 cm ,则它的侧面展开图的面积为( )A .30 cm 2B .15 cm 2C .30π cm 2D .15π cm 2 6.六多边形的内角和为( )A .180°B .360°C .720°D .1080° 7.已知,AB 是⊙O 的弦,且OA =AB ,则∠AOB 的度数为( )A .30°B .45°C .60°D .90°8.某区新教师招聘中,七位评委独立给出分数,得到一列数.若去掉一个最高分和一个最低分,得到一列新数,那么这两列数的相关统计量中,一定相等的是 ( ) A .中位数 B .众数 C .方差 D .平均数 9.在△ABC 中,AC =4,AB =5,则△ABC 面积的最大值为( ) A .6 B .10 C .12 D .2010.直线l :y =mx -m +1(m 为常数,且m ≠0)与坐标轴交于A 、B 两点,若△AOB (O 是原点)的面积恰为2,则符合要求的直线l 有( )A .D .B .C .A .1条B .2条C .3条D .4条二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置.........) 11.分解因式:xy ―x = .12.去年无锡GDP(国民生产总值)总量实现约916 000 000 000元,该数据用科学记数法表示为 元. 13.分式方程4x = 2x +1的解是 .14.若点A (1,m )在反比例函数y =3x的图像上,则m 的值为 .15.写出命题“两直线平行,同位角相等”的结论部分: . 16.如图,菱形ABCD 中,对角线AC 交BD 于O ,AB =8,E 是CD 的中点,则OE 的长等于___________.17.如图,∠A =110°,在边AN 上取B ,C ,使AB =BC .点P 为边AM 上一点,将△APB 沿PB 折叠,使点A 落在角内点E 处,连接CE ,则∠BPE +∠BCE = °.18.已知,在平面直角坐标系中,点A (4,0),点B (m ,33m ),点C 为线段OA 上一点(点O 为原点),则AB +BC 的最小值为 .三、解答题(本大题共10小题,共84分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)计算:(1)9- (-2)2+(-0.1)0; (2)(x ―2)2―(x +3)(x ―1).20.(本题满分8分)计算:ABC EPM N(第17题)(第16题) ABECDO(1)解不等式:5+x ≥3(x -1); (2)解方程组:⎩⎪⎨⎪⎧x =3-y , ……①2x +y =5.……②21.(本题满分8分)已知,如图,等边△ABC 中,点D 为BC 延长线上一点,点E 为CA 延长线上一点,且AE =DC ,求证:AD =BE .22.(本题满分8分)某校为迎接体育中考,了解学生的体育情况,学校随机调查了本校九年级50名学生“30秒跳绳”的次数,并将调查所得的数据整理如下:成绩段 频数 频率 0≤x <20 5 0.120≤x <40 10a40≤x <60 b 0.1460≤x <80 mc 80≤x <10012n根据以上图表信息,解答下列问题:AC BDE30秒跳绳次数的频数、频率分布表30秒跳绳次数的频数分布直方图5 10 155 10161220 40 60 80 100 频数(人)跳绳次数(1)表中的a = ,m = ;(2)请把频数分布直方图补充完整;(画图后请标注相应的数据)(3)若该校九年级共有600名学生,请你估计“30秒跳绳”的次数60次以上(含60次)的学生有多少人?23.(本题满分8分)在2017年“KFC ”篮球赛进校园活动中,某校甲、乙两队进行决赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且乙队已经赢得了第1局比赛,那么甲队获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)24.(本题满分8分)已知,如图,线段AB ,利用无刻度的直尺和圆规,作一个满足条件的△ABC :① △ABC 为直角三角形;② tan ∠A =13.(注:不要求写作法,但保留作图痕迹)25.(本题满分8分)在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD ,AB如图1,再在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒,底面为矩形EFGH ,如图2.设小正方形的边长为x 厘米. (1)当矩形纸板ABCD 的一边长为90厘米时,求纸盒的侧面积的最大值; (2)当EH :EF =7:2,且侧面积与底面积之比为9:7时,求x 的值.26.(本题满分8分)已知二次函数y =ax 2-8ax (a <0)的图像与x 轴的正半轴交于点A ,它的顶点为P .点C 为y 轴正半轴上一点,直线AC 与该图像的另一交点为B ,与过点P 且垂直于x 轴的直线交于点D ,且CB :AB =1:7. (1)求点A 的坐标及点C 的坐标(用含a 的代数式表示);(2)连接BP ,若△BDP 与△AOC 相似(点O 为原点),求此二次函数的关系式.(图2)(图1) ABCDE FGH27.(本题满分10分)如图,一次函数y =-12x +m (m >0)的图像与x 轴、y 轴分别交于点A 、B ,点C 在线段OA 上,点C 的横坐标为n ,点D 在线段AB 上,且AD =2BD ,将△ACD 绕点D旋转180°后得到△A 1C 1D .(1)若点C 1恰好落在y 轴上,试求n m的值;(2)当n =4时,若△A 1C 1D 被y 轴分得两部分图形的面积比为3:5,求该一次函数的解析式.O AB CD C 1 A 1 xy28.(本题满分10分)阅读理解:小明热爱数学,在课外书上看到了一个有趣的定理——“中线长定理”:三角形两边的平方和等于第三边的一半与第三边上的中线的平方和的两倍.如图1,在△ABC 中,点D 为BC 的中点,根据“中线长定理”,可得:AB 2+AC 2=2AD 2+2BD 2.小明尝试对它进行证明,部分过程如下:解:过点A 作AE ⊥BC 于点E ,如图2,在Rt △ABE 中,AB 2=AE 2+BE 2,同理可得:AC 2=AE 2+CE 2,AD 2=AE 2+DE 2, 为证明的方便,不妨设BD =CD =x ,DE =y , ∴AB 2+AC 2=AE 2+BE 2+AE 2+CE 2=…… (1)请你完成小明剩余的证明过程;理解运用:(2) ① 在△ABC 中,点D 为BC 的中点,AB =6,AC =4,BC =8,则AD =_______;② 如图3,⊙O 的半径为6,点A 在圆内,且OA =22,点B 和点C 在⊙O 上,且∠BAC =90°,点E 、F 分别为AO 、BC 的中点,则EF 的长为________;拓展延伸:(3)小明解决上述问题后,联想到《能力训练》上的题目:如图4,已知⊙O 的半径为55,以A (−3,4)为直角顶点的△ABC 的另两个顶点B ,C 都在⊙O 上,D 为BC 的中点,求AD 长的最大值.请你利用上面的方法和结论,求出AD 长的最大值.ABCD (图1)ABCD E (图2)OA E CBFAB CDO xy(图4)参考答案与评分标准一、选择题:1.A 2.B 3.B 4.D 5.D 6.C 7.C 8.A 9.B 10.C 二、填空题: 11.x (y -1)12.9.16×1011 13.x =-2 14.3 15.同位角相等 16.417.70°18.2 3三、解答题:19.解:(1)原式=3-4+1 ……(3分)(2)原式=x 2-4x +4-(x 2+2x -3) …(2分)=0. ………(4分) =x 2-4x +4-x 2-2x +3…(3分)=-6x +7.……(4分)20.解:(1)5+x ≥3x -3 …(2分) (2)把①代入②,得y =1; …(2分)∴2x ≤8 …(3分) 把y =1代入①,得x =2. …(3分)∴x ≤4.…(4分) ∴原方程组的解为⎩⎪⎨⎪⎧x =2,y =1.…(4分)21.证明:在等边△ABC 中,AB =CA ,∠BAC =∠ACB =60°,∴∠EAB =∠DCA =120°.………(2分)在△EAB 和△DCA 中,⎩⎪⎨⎪⎧AE =DC ,∠EAB =∠DCA ,AB =CA .………(5分)∴△EAB ≌△DCA ,………(6分) ∴AD =BE .………(8分) 22.(1)a =0.2,m =16;……(4分) (2)图略,柱高为7;……(6分)(3)600×16+1250=336(人).……(8分)23.解:画树状图,得(画树状图或列表正确,得5分)∵共有4种等可能的结果,其中甲队获胜的情况有1种,………(6分) ∴甲队获胜的概率为:P (甲队获胜)=14;……………………(8分)24.解:(1)延长AB 至M ,使得AM =3AB ;………(3分) (2)过点M 作MN ⊥AB ,且截取MN =AB ;………(5分)(3)过点B 作AB 的垂线,交AN 于点C .………(7分) ∴Rt △ABC 即为所求.………(8分)作出垂线或垂直,得2分;构出3倍或13,得3分;构图正确,得2分;结论1分.25.解:(1)S 侧=2[x (90-2x )+x (40-2x )] =-8x 2+260x …………………(2分)=-8(x -654)2+42252.………………………………………(3分)∵-8<0,∴当x =654时,S 侧最大=42252.…………………(4分)(2)设EF =2m ,则EH =7m ,………………………………………(5分)则侧面积为2(7mx +2mx )=18mx ,底面积为7m ·2m =14m 2, 由题意,得18mx :14m 2=9:7,∴m =x . …………………(7分) 则AD =7x +2x =9x ,AB =2x +2x =4x由4x ·9x =3600,且x >0,∴x =10.…………………………(8分)26.解:(1)P (4,-16a ),A (8,0),…………………………(2分)∵CB :AB =1:7,∴点B 的横坐标为1,…………(3分) ∴B (1,-7a ),∴C (0,-8a ).………………………(4分) (2)∵△AOC 为直角三角形,∴只可能∠PBD =90°,且△AOC ∽△PBD .………(5分) 设对称轴与x 轴交于点H ,过点B 作BF ⊥PD 于点F ,易知,BF =3,AH =4,DH =-4a ,则FD =-3a ,∴PF =-9a , 由相似,可知:BF 2=DF ·PF ,∴9=-9a ·(-3a ),……(6分)ABMNC 第2局 第3局甲乙甲乙甲 乙∴a =33, a =-33(舍去).…………………(7分) ∴y =-33x 2-833x .…………………(8分) 27.解:(1)由题意,得B (0,m ),A (2m ,0).……………………………(1分)如图,过点D 作x 轴的垂线,交x 轴于点E ,交直线A 1C 1于点F , 易知:DE =23m ,D (23m ,23m ) ,C 1(43m -n ,43m ).………………(3分)∴43m -n =0,∴n m =43;……………………………………………(4分) (2)由(1)得,当m >3时,点C 1在y 轴右侧;当2<m <3时,点C 1在y 轴左侧.① 当m >3时,设A 1C 1与y 轴交于点P ,连接C 1B ,由△A 1C 1D 被y 轴分得两部分图形的面积比为3:5,∴S △BA 1P :S △BC 1P =3:1, ∴A 1P :C 1P =3,∴23m =3(43m -4),∴m =185.……………………(6分)∴y =-12x +185.………………………………………………………(7分)② 当2<m <3时,同理可得:y =-12x +187.……(10分)(参照①给分)综上所述,y =-12x +187或y =-12x +185.28.解:(1)∴AB 2+AC 2=2AE 2+(x +y )2+(x -y )2=2AE 2+2x 2+2y 2=2AE 2+2BD 2+2DE 2=2AD 2+2BD 2.………………(3分) (2)①10;②4;………………(7分)(3)连接OA ,取OA 的中点E ,连接DE .………………(8分)由(2)的②可知:DE =152,………………(9分)在△ADE 中,AE =52, DE =152,∴AD 长的最大值为52+152=10.……(10分)注:只写答案,只给1分.。
2020年江苏省南京市中考数学模拟检测试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.∠A 是锐角,tanA>33,则∠A ( ) A .小于30° B .大于30° C .小于60° D .大于60°2.下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同一个圆中,相等的圆周角所对的弦相等;④三个点确定一个圆. 其中正确命题的个数为( )A .1 个B .2 个C .3 个D .4 个 3.已知ABC △内接于⊙O ,OD AC ⊥于D ,如果32COD =∠,那么B ∠的度数为( )A .16°B .32°C .16°或164°D .32°或148°4.如图,一块等边三角形的木板,边长为 1,现将木板沿水平线翻滚(如图),那么B 点从开始至结束所走过的路程长度为( )A .32πB .43πC .4D .322π+5.用反证法证明“a b >”时应假设( )A .a b >B .a b <C .a b =D .a b ≤6.证明下列结论不能运用公理“同位角相等,两直线平行”的是 ( )A .同旁内角互补,两直线平行B .内错角相等,两直线平行C .对顶角相等D .平行于同一直线的两条直线平行7.编织一副手套收费3.5元,则加工费y (元)与加工件数x (副)之间的函数解析式为 ( )A .y=3.5+xB .y=3.5-xC .y=3.5xD . 3.5y x = 8.2421-可以被在60 和 70 之间的两个数整除,这两个数是( )A .61,63B .63,65C . 65,67D . 67,699.从1 到 20 的 20 个自然数中任取一个,既是2 的倍数,又是 3 的倍数的概率是( )A .120B .310C . 12 D .320 10.下列英文字母中是轴对称图形的是( )A .SB .HC .PD .Q二、填空题11.在一个有两层的书架中,上层放有语文、数学两本书,下层放有科学、英语、社会 3 本书,由于封面都被同样的纸包起来,无法辨认,现分别从上下层中各抽出一本书,恰好分别是数学和社会的概率是 .12.已知矩形的面积为 24㎝2,那么矩形的长y(㎝)与宽 x(cm)之间的函数解析式为 ,比例系数是 .13.已知223x x --与7x +的值相等,则x 的值是 .14.如图所示,□ABCD 中,AB=8 cm ,64ABCD S =cm 2,OE ⊥AB 于E ,则OE= cm .15.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点:观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第l0个正方形(实线)四条边上的整点个数共有 个.16.在正数种运算“*”,其规则为a *b =11a b+,根据这个规则(1)*(1)0x x -+=的解为 . 17.(12a 3-8a 2+25a )÷4a= . 18.3227xy z -的次数是 ,系数是 . 19.33亿精确到 位,有 个有效数字,它们是 ;26.5万精确到 位,有 个有效数字,它们是 .三、解答题20.如图所示:大王站在墙前,小明站在墙后,大王不能让小明看见,请你画出小明的活动区域.21.已知:如图,P是正方形ABCD内一点,在正方形ABCD外有一点E,满足∠ABE=∠CBP,BE=BP,(1) 求证:△CPB≌△AEB;(2) 求证:PB⊥BE;(3) 若PA∶PB=1∶2,∠APB=135°,求PA∶AE的值.22.若规定两数a,b通过“※”运算,得到4ab,即a※b=4ab,例如 2※6=4×2×6 =48.(1)求3※5 的值;(2)求x※x+2※x-2※4=0中x的值.23.如图,在矩形ABCD中,AB=2BC,在CD上取一点E.使AE=AB,求∠EBC的度数.24.解不等式,并把不等式的解在数轴上表示出来:(1)3(3)4(1)2y y-<++;(2)323 228x x-≥-25.阅读下列解题过程:已知:a、b、c为△ABC一的三边,且满足222244a cbc a b-=-,试判定△ABC的形状.解:∵222244a cbc a b-=-(A)∴2222222()()()c a b a b a b-=+-,(B)∴222c a b=+, (C)∴△ABC是直角三角形.问:(1)上述解题过程中,从哪一步开始出现错误?请你写出该步的代号:.(2)错误的原因为:.(3)本题正确的结论是:.26.如图,已知∠ABC = 50°,∠ACB = 80°,∠ABC、∠ACB 的平分线交于点O.过点O 作BC 的平行线,分别交 AB、AC 于点D、E.求∠BOC的度数.27.探索发现:两个多项式相除,可以先把这两个多项式都按照同一字母降幂排列,然后再仿照两个多位数相除的计算方法,用竖式进行计算,例如(7x+2+6x2)÷(2x+1)•,•仿照672÷21计算如下:F E D C B A 因此(7x+2+6x 2)÷(2x+1)=3x+2,阅读上述材料后,试判断x 3-x 2-5x-3能否被x+1•整除,说明理由.28.如图,BD =CD ,∠ABD =∠ACD ,DE 、DF 分别垂直于AB 及AC 交延长线于E 、F . 求证:DE =DF .29. 已知一个角的补角比这个角小 30°,求这个角的度数.30.如图,射线OC 和OD 把平角AOB 三等分,OE 平分∠AOC ,OF 平分∠BOD .(1)求∠COD 的度数;(2)写出图中所有的直角;(3)写出∠COD 的所有余角和补角.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.D4.B5.D6.C7.C8.B9.D10.B二、填空题11. 1612. 24y x=,24 13.5 或-214.415.4016.0x =17.85232+-a a 18. 4,87- 19.亿两;3,3;千,三;2,6,5三、解答题20.如图,阴影部分即为小明的活动区域.21.解(1) 正方形ABCD ,∴AB=BC , ∠ABE =∠CBP ,BE =BP ,∴△CPB ≌△AEB(2) ∠ABC =∠CBP+∠ABP =90°,∠PBE =∠EBA+∠ABP而∠ABE =∠CBP ,∴∠ABC =∠PBE=90°,∴PB ⊥BE .(3)连结PE , △CPB ≌△AEB ∴PB=EB PB ⊥BE ,∴△EPB 为等腰直角三角形,∴∠BPE =∠BEP=45°,∠APB =135°,∴∠APE =90°,PA ∶PB =1∶2,设PA=x ,则PB=2x ,PE=x 22,∴由勾股定理得AE=22)22(x x +=3x ,∴PA ∶AE=x ∶3x =1∶3. 22.(1) 60 (2)12x =,24x =-23.15°24.(1)y>-15;(2)x ≤412图略 25.(1)C ;(2)220a b -=可能成立;(3)△ABC 为等腰三角形或直角三角形26.115°27.能,商式为322--x x .28.∠ABD=∠ACD ,则∠E+∠BDE =∠F+∠CDF, 由于 ∠E=∠F ,∴∠BDE =∠CDF ,∴△BED ≌△CFD(AAS),∴DE=DF .29.105°30.(1)60° (2)∠DOE 与∠COF (2)∠COD 的余角:∠AOE 、∠EOC 、∠DOF 、∠FOB ;∠COD 的补角:∠AOD 、∠EOF 、∠BOC。
江苏省南京市2020届中考数学仿真模拟试卷一、选择题(本大题共6小题,共12.0分)1.计算:−5−(−12)=()A. 17B. 7C. −17D. −72.(−5)2的平方根是()A. −5B. ±5C. 5D. 253.计算:(x4)2÷x2的结果是()A. x3B. x4C. x5D. x64.如图,所提供的信息正确的是()A. 七年级学生最多B. 九年级的男生是女生的两倍C. 九年级学生女生比男生多D. 八年级比九年级的学生多5.已知x1,x2是一元二次方程2x2−3x+1=0的两个根,下列结论正确的是()A. x1+x2=−32B. x1⋅x2=1C. x1,x2都是有理数D. x1,x2都是无理数6.如图,在矩形ABCD中,AB=8,AD=12,经过A,D两点的⊙O与边BC相切于点E,则⊙O的半径为()A. 4B. 214C. 5 D. 254二、填空题(本大题共10小题,共20.0分)7.在−3、+(−3)、−|−4|、−(+2)、−a中,负数的个数有______个.8.若式子2x+1在实数范围内有意义,则x的取值范围是______.9. 被誉为“中国天眼”的FAST 望远镜,新发现的脉冲星自转周期为0.00519秒,是至今发现的射电流量最弱的高能毫秒脉冲星之一.用科学记数法表示0.00519是______.10. 计算√6−3√3的结果是______.11. 如果关于x 、y 的方程组{x +2y =6+k2x −y =9−2k 的解满足3x +y =5,则k 的值=______.12. 方程3x+1=2x 的解是 .13. 若把一次函数y =kx +b 的图象先绕着原点旋转180°,再向左平移2个单位长度后,恰好经过点A(−4,0)和点B(0,2),则原一次函数的表达式是______. 14. 在正六边形ABCDEF 中,若边长为3,则正六边形ABCDEF 的边心距为______.15. 如图,锐角三角形ABC 中,直线L 为BC 的垂直平分线,直线M为∠ABC 的角平分线,L 与M 相交于P 点,若∠A =60°,∠ACP =24°,则∠ABP = ______ .16. 二次函数y =2x 2+mx +8的图象顶点在x 轴上,则m 的值是______. 三、计算题(本大题共2小题,共15.0分) 17. 解方程:x 2+8x −20=0.18. 如图,C 地在A 地的正东方向,因有大山阻隔,由A 地到C 地需要绕行附近的B 地,已知B 地位于A 地的北偏东67°方向,距离A 地520km ,C 地位于B 地南偏西30°方向,若要打通穿山隧道建高铁,求线段AC 的长(结果保留整数)(参考数据:√3≈1.73,sin67°≈1213,cos67°≈513,tan67°≈125)四、解答题(本大题共9小题,共73.0分) 19. 化简:(1+1a−1)÷aa 2−2a+1.20. 如图,点E 、F 在BC 上,BE =CF ,AB =DC ,AF =DE.求证:∠A =∠D .21. 解不等式组:{2(6−x)>3(x −1),x 3−x−22≤1.,并把解集在数轴上表示出来.22.今年我市体育中考的现场选测项目中有一项是“排球30秒对墙垫球”,为了了解某学校九年级学生此项目平时的训练情况,随机抽取了该校部分九年级学生进行测试,根据测试结果,制作了如下尚不完整的频数分布表:(1)填空:a=,b=;(2)这个样本数据的中位数在第组;(3)下表为《体育与健康》中考察“排球30秒对墙垫球”的中考评分标准,若该校九年级有500名学生,请你估计该校九年级学生在这一项目中得分在7分以上(包括7分)学生约有多少人?23.清明小长假,小明和小华准备到泰兴公园(记为A)、黄桥古镇(记为B)、古银杏森林公园(记为C)中的一个景点去游玩,他们各自在这三个景点中任选一个,每个景点被选中的可能性相同.(1)小明选择去古银杏森林公园游玩的概率为______;(2)用树状图或列表的方法求小明和小华选择去同一个地方游玩的概率.24.如图,已知BD是△ABC的角平分线,点E,F分别在边AB,BC上,ED//BC,EF//AC.求证:BE=CF.25.某学生购进一批单价为20元的T恤进行义卖,并将所得利润捐给贫困山区.经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.(1)求y与x满足的函数表达式(不要求写出x的取值范围).(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润p最大?26.如图,△ABC中,∠ACB=90°,D为AB上一点,CE⊥CD,且CDCB =35,CEAC=35.求证:△ACD∽△ECF.27.已知长方形ABCD中,AD=10cm,AB=6cm,点M在边CD上,由C往D运动,速度为1cm/s,运动时间为t秒,将△ADM沿着AM翻折至△AD′M,点D对应点为D′,AD′所在直线与边BC交于点P.(1)如图1,当t=0时,求证:PA=PC;(2)如图2,当t为何值时,点D′恰好落在边BC上;(3)如图3,当t=3时,求CP的长.-------- 答案与解析 --------1.答案:B解析:本题主要考查的是有理数的减法,熟练掌握有理数的减法法则是解题的关键.先将减法转化为加法,然后再进行计算即可.解:原式=−5+12=7.故选B.2.答案:B解析:解:∵(−5)2=25=(±5)2,∴(−5)2的平方根是±5.故选:B.根据平方根的定义进行计算即可得解.本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.答案:D解析:先运用幂的乘方化简,再进行同底数幂的除法运算,根据同底数幂的除法,底数不变指数相减,可得答案.本题考查了幂的乘方、同底数幂的除法,按照运算顺序进行计算是解题关键.解:原式=x8÷x2=x8−2=x6.故选:D.4.答案:B解析:本题考查从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,根据图中数据进行正确计算.根据条形图,可读出各年级的男生和女生人数,进而求出各年级的总人数,根据所得数值,可对四个选项进行判断.解:根据图中数据计算:七年级人数是8+13=21;八年级人数是14+16=30;九年级人数是10+ 20=30.所以A和D错误;根据统计图的高低,显然C 错误;B 中,九年级的男生20人是女生10人的两倍,正确. 故选:B .5.答案:C解析:解:x 1+x 2=32,x 1x 2=12,所以A 、B 选项错误, 因为△=(−3)2−4×2×1=1,所以x 1,x 2都是有理数,则A 选项正确,D 选项错误. 故选:C .利用根与系数的关系对A 、B 进行判断;根据根的判别式对C 、D 进行判断.本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=−ba,x 1x 2=ca .也考查了根的判别式的意义.6.答案:D解析:本题考查了切线的性质:圆的切线垂直于经过切点的半径;若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了垂径定理和矩形的性质.解决本题的关键是构建直角三角形,利用勾股定理建立关于半径的方程.连结EO 并延长交AD 于F ,连接AO ,由切线的性质得OE ⊥BC ,再利用平行线的性质得到OF ⊥AD ,则根据垂径定理得到AF =DF =12AD =6,由题意可证四边形ABEF 为矩形,则EF =AB =8,设⊙O 的半径为r ,则OA =r ,OF =8−r ,然后在Rt △AOF 中利用勾股定理得到(8−r)2+62=r 2,再解方程求出r 即可.解:如图,连结EO 并延长交AD 于F ,连接AO ,∵⊙O 与BC 边相切于点E , ∴OE ⊥BC ,∵四边形ABCD 为矩形, ∴BC//AD , ∴OF ⊥AD ,∴AF =DF =12AD =6,。
南京市2020初中毕业生学业模拟考试数学试题(含答案全解全析)(满分:120分时间:120分钟)第Ⅰ卷(选择题,共12分)一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.计算12-7×(-4)+8÷(-2)的结果是()A.-24B.-20C.6D.362.计算a3·的结果是()A.aB.a5C.a6D.a93.设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是()A.①④B.②③C.①②④D.①③④4.如图,☉O1、☉O2的圆心O1、O2在直线l上,☉O1的半径为2cm,☉O2的半径为3cm,O1O2=8cm,☉O1以1cm/s的速度沿直线l向右运动,7s后停止运动,在此过程中,☉O1与☉O2没有..出现的位置关系是()A.外切B.相交C.内切D.内含5.在同一直角坐标系中,若正比例函数y=k1x的图象与反比例函数y=的图象没有公共点,则()A.k1+k2<0B.k1+k2>0C.k1k2<0D.k1k2>06.如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,下列图形中,是该几何体的表面展开图的是()第Ⅱ卷(非选择题,共108分)二、填空题(本大题共10小题,每小题2分,共20分)7.-3的相反数是;-3的倒数是.8.计算-的结果是.有意义的x的取值范围是.9.使式子1+-10.第二届亚洲青年运动会将于2013年8月16日至24日在南京举办,在此期间约有13000名青少年志愿者提供服务.将13000用科学记数法表示为.11.如图,将矩形ABCD绕点A顺时针旋转到矩形AB'C'D'的位置,旋转角为α(0°<α<90°).若∠1=110°,则α=°.12.如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF.若菱形ABCD的边长为2cm,∠A=120°,则EF=cm.13.△OAB是以正多边形相邻的两个顶点A、B与它的中心O为顶点的三角形.若△OAB的一个内角为70°,则该正多边形的边数为.14.已知如图所示的图形的面积为24,根据图中的条件,可列出方程:.15.如图,在梯形ABCD中,AD∥BC,AB=DC,AC与BD相交于点P.已知A(2,3),B(1,1),D(4,3),则点P的坐标为(,).16.计算-----1-----的结果是.三、解答题(本大题共11小题,共88分.解答时应写出文字说明、证明过程或演算步骤)17.(6分)化简---÷.18.(6分)解方程-=1--.19.(8分)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M、N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.20.(8分)(1)一只不透明的袋子中装有颜色分别为红、黄、蓝、白的球各1个,这些球除颜色外都相同.求下列事件的概率:①搅匀后从中任意摸出1个球,恰好是红球;②搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,两次都是红球;(2)某次考试共有6道选择题,每道题所给出的4个选项中,恰有一项是正确的.如果小明从每道题的4个选项中随机地选择1个,那么他6道选择题全部选择正确的概率是()A. B. C.1- D.1-21.(9分)某校有2000名学生.为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了150名学生进行抽样调查.整理样本数据,得到下列图表:某校150名学生上学方式频数分布表正正正正正正正正正正正正正正正正正正正正正正正正正正正正正合计150某校150名学生上学方式扇形统计图(1)理解划线语句的含义,回答问题:如果150名学生全部在同一个年级抽取,这样的抽样是否合理?请说明理由;(2)根据抽样调查的结果,将估计出的全校2000名学生上学方式的情况绘制成条形统计图;(3)该校数学兴趣小组结合调查获取的信息,向学校提出了一些建议.如:骑车上学的学生数约占全校的34%,建议学校合理安排自行车停车场地.请你结合上述统计的全过程,再提出一条合理化建议:.22.(8分)已知不等臂跷跷板AB长4m.如图①,当AB的一端A碰到地面时,AB与地面的夹角为α;如图②,当AB的另一端B碰到地面时,AB与地面的夹角为β.求跷跷板AB的支撑点O 到地面的高度OH.(用含α、β的式子表示)23.(8分)某商场促销方案规定:商场内所有商品按标价的80%出售,同时,当顾客在商场内消费满一定金额后,按下表获得相应的返还金额.注:300~400表示消费金额大于300元且小于或等于400元,其他类同.根据上述促销方案,顾客在该商场购物可以获得双重优惠.例如,若购买标价为400元的商品,则消费金额为320元,获得的优惠额为400×(1-80%)+30=110(元).(1)购买一件标价为1000元的商品,顾客获得的优惠额是多少?(2)如果顾客购买标价不超过800元的商品,要使获得的优惠额不少于226元,那么该商品的标.价.至少为多少元?24.(8分)小丽驾车从甲地到乙地.设她出发第x min时的速度为y km/h,图中的折线表示她在整个驾车过程中y与x之间的函数关系.(1)小丽驾车的最高速度是km/h;(2)当20≤x≤30时,求y与x之间的函数关系式,并求出小丽出发第22min时的速度;(3)如果汽车每行驶100km耗油10L,那么小丽驾车从甲地到乙地共耗油多少升?25.(8分)如图,AD是☉O的切线,切点为A,AB是☉O的弦,过点B作BC∥AD,交☉O于点C,连结AC,过点C作CD∥AB,交AD于点D.连结AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC与☉O的位置关系,并说明理由;(2)若AB=9,BC=6,求PC的长.26.(9分)已知二次函数y=a(x-m)2-a(x-m)(a、m为常数,且a≠0).(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点;(2)设该函数的图象的顶点为C,与x轴交于A、B两点,与y轴交于点D.①当△ABC的面积等于1时,求a的值;②当△ABC的面积与△ABD的面积相等时,求m的值.27.(10分)对于两个相似三角形,如果沿周界按对应点顺序环绕的方向相同,那么称这两个三角形互为顺相似;如果沿周界按对应点顺序环绕的方向相反,那么称这两个三角形互为逆相似.例如,如图①,△ABC∽△A'B'C',且沿周界ABCA与A'B'C'A'环绕的方向相同,因此△ABC与△A'B'C'互为顺相似;如图②,△ABC∽△A'B'C',且沿周界ABCA与A'B'C'A'环绕的方向相反,因此△ABC与△A'B'C'互为逆相似.(1)根据图Ⅰ、图Ⅱ和图Ⅲ满足的条件,可得下列三对相似三角形:①△ADE与△ABC;②△GHO与△KFO;③△NQP与△NMQ.其中,互为顺相似的是;互为逆相似的是;(填写所有符合要求的序号)条件:DE∥BC条件:GH∥KF条件:∠NQP=∠M(2)如图③,在锐角△ABC中,∠A<∠B<∠C,点P在△ABC的边上(不与点A、B、C重合).过点P画直线截△ABC,使截得的一个三角形与△ABC互为逆相似.请根据点P的不同位置,探索过点P的截线的情形,画出图形并说明截线满足的条件,不必说明理由.图③答案全解全析:1.D 原式=12-(-28)+(-4)=12+28-4=36,故选D.2.A a3·=a3·=a,故选A.3.C 因为a是边长为3的正方形的对角线长,所以a=3,因此a是无理数,它可以用数轴上的一个点来表示,且是18的算术平方根,其范围是4<a<5.综上所述,正确说法是①②④,故选C.4.D 依题意,可知☉O1在运动的过程当中,与☉O2的位置关系依次是外离、外切、相交和内切,没有出现内含的位置关系,故选D.5.C 在同一直角坐标系中,若正比例函数y=k1x的图象与反比例函数y=的图象没有公共点,则k1、k2异号,即k1k2<0,故选C.6.B 将图形B折叠后所得几何体恰为如题图所示的几何体,故选B.7.答案3;-解析-3的相反数是3;-3的倒数是-.8.答案解析-=-=.9.答案x≠1解析要使式子1+有意义,则x-1≠0,∴x≠1.-10.答案 1.3×104解析13 000=1.3×104.11.答案20解析∵∠1=110°,∴∠BAD'=360°-110°-90°-90°=70°,∴α=∠DAD'=90°-70°=20°.12.答案解析连结AO,交EF于点H,连结BD,依题意知EF所在直线垂直平分AO,AO所在直线垂直平分BD,∴EF∥BD,∴点E、F分别是AB、AD的中点,在△AEF中,AE=AF=1,又∠EAF=120°,∴∠AEH=30°,∴EH=EA·cos 30°=.∴EF=2EH=(cm).13.答案9解析依题意,可知△OAB是等腰三角形,且OA=OB,设该正多边形的边数为n,则当∠AOB=70°时,n=,没有整数解;当∠OAB=∠OBA=70°时,∠AOB=40°,∴n==9.故应填9.评析本题主要考查了正多边形的有关知识,利用分类讨论的思想是解决本题的关键,属中等偏易题.14.答案本题答案不唯一,如(x+1)2=25解析本题答案不唯一,如(x+1)2=25,x(x+1)+x=24等.15.答案3;解析过点P作PM⊥BC于点M,并反向延长交AD于点N.依题意知,四边形ABCD是等腰梯形. ∵A(2,3),B(1,1),D(4,3),∴AD∥BC∥x轴,点C的坐标是(5,1),∴BM=BC=2,则点P的横坐标是 3.∵AD∥BC,PM⊥BC,∴△PAD∽△PCB,PN⊥AD,∴==,∴PM=MN=,∴点P的纵坐标是1+=,∴点P的坐标是,.评析本题主要考查了等腰梯形的性质,三角形相似的判定以及坐标的意义等知识,本题解题的关键是利用梯形的两底平行得到相似三角形,再利用相似三角形的性质和等腰梯形的性质解题,属中档题.16.答案解析 设1- - - -=a, + + + =b,则a+b=1, ∴原式=a· - - ·b=ab+ a-ab+ b= (a+b)= .17.解析- - - ÷ =( )- ( )( - )· = ( )( - )· =- .18.解析 方程两边同乘x-2,得2x=x-2+1.解这个方程,得x=-1.检验:x=-1时,x-2≠0,所以x=-1是原方程的解.19.证明 (1)∵BD 平分∠ABC,∴∠ABD=∠CBD.又∵BA=BC,BD=BD,∴△ABD≌△CBD.∴∠ADB=∠CDB.(4分)(2)∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°.又∵∠ADC=90°,∴四边形MPND 是矩形.∵∠ADB=∠CDB,PM⊥AD,PN⊥CD.∴PM=PN.∴四边形MPND 是正方形.(8分)评析 本题主要考查了三角形全等的判定,全等三角形的性质和正方形的判定等知识,全等三角形的对应角相等,有一组邻边相等的矩形是正方形.属中等偏易题.20.解析 (1)①搅匀后从中任意摸出1个球,所有可能出现的结果有:红、黄、蓝、白,共有4种,它们出现的可能性相同.所有的结果中,满足“恰好是红球”(记为事件A)的结果只有1种,所以P(A)= .②搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,所有可能出现的结果有:(红,红)、(红,黄)、(红,蓝)、(红,白)、(黄,红)、(黄,黄)、(黄,蓝)、(黄,白)、(蓝,红)、(蓝,黄)、(蓝,蓝)、(蓝,白)、(白,红)、(白,黄)、(白,蓝)、(白,白),共有16种,它们出现的可能性相同.所有的结果中,满足“两次都是红球”(记为事件B)的结果只有1种,所以P(B)=.(2)B.21.解析(1)不合理,因为如果150名学生全部在同一个年级抽取,那么全校每个学生被抽到的机会不相等,样本不具有代表性.(2分)(2)(7分)(3)本题答案不唯一,下列解法供参考.乘私家车上学的学生约400人,建议学校与交通部门协商安排停车区域.(9分)22.解析在Rt△AHO中,sin α=,∴OA=.在Rt△BHO中,sin β=,∴OB=.∵AB=4,∴OA+OB=4,即+=4,∴OH=(m).23.解析(1)购买一件标价为1 000元的商品,消费金额为800元.顾客获得的优惠额为1 000×(1-80%)+150=350(元).(2分)(2)设该商品的标价为x元.当80%x≤500,即x≤625时,顾客获得的优惠额不超过625×(1-80%)+60=185<226;当500<80%x≤600,即625<x≤750时,由(1-80%)x+100≥226,解得x≥630.所以630≤x≤750.当600<80%x≤800×80%,即750<x≤800时,顾客获得的优惠额大于750×(1-80%)+130=280>226.综上,顾客购买标价不超过800元的商品,要使获得的优惠额不少于226元,那么该商品的标价至少为630元.(8分)24.解析(1)60.(1分)(2)当20≤x≤30时,设y与x之间的函数关系式为y=kx+b.根据题意,当x=20时,y=60;当x=30时,y=24.所以,,解得-.,.所以,y与x之间的函数关系式为y=-3.6x+132.当x=22时,y=-3.6×22+132=52.8,所以,小丽出发第22 min时的速度为52.8 km/h.(5分)(3)小丽驾车从甲地到乙地行驶的路程为×+×+60×+×+×+48×+×=33.5(km),所以,小丽驾车从甲地到乙地共耗油33.5×=3.35(L).(8分)25.解析解法一:(1)直线PC与☉O相切.如图①,连结CO并延长,交☉O于点N,连结BN. ∵AB∥CD,∴∠BAC=∠ACD.∵∠BAC=∠BNC,∴∠BNC=∠ACD.∵∠BCP=∠ACD,∴∠BNC=∠BCP.图①∵CN是☉O的直径,∴∠CBN=90°,∴∠BNC+∠BCN=90°,∴∠BCP+∠BCN=90°.∴∠PCO=90°,即PC⊥OC.又∵点C在☉O上,∴直线PC与☉O相切.(4分)(2)∵AD是☉O的切线,∴AD⊥OA,即∠OAD=90°.∵BC∥AD,∴∠OMC=180°-∠OAD=90°,即OM⊥BC.∴MC=MB,∴AB=AC.在Rt△AMC中,∠AMC=90°,AC=AB=9,MC=BC=3,由勾股定理,得AM=-=-=6.设☉O的半径为r,在Rt△OMC中,∠OMC=90°,OM=AM-AO=6-r,MC=3,OC=r,由勾股定理,得OM2+MC2=OC2,即(6-r)2+32=r2,解得r=.在△OMC和△OCP中,∵∠OMC=∠OCP,∠MOC=∠COP,∴△OMC∽△OCP,∴=,即-=,∴PC=.(8分)解法二:(1)直线PC与☉O相切,如图②,连结OC.∵AD是☉O的切线,∴AD⊥OA,即∠OAD=90°.∵BC∥AD,∴∠OMC=180°-∠OAD=90°,即OM⊥BC.∴MC=MB,∴AB=AC,∴∠MAB=∠MAC,∴∠BAC=2∠MAC,图②又∵∠MOC=2∠MAC,∴∠MOC=∠BAC.∵AB∥CD,∴∠BAC=∠ACD.∴∠MOC=∠ACD.又∵∠BCP=∠ACD,∴∠MOC=∠BCP.∵∠MOC+∠OCM=90°,∴∠BCP+∠OCM=90°,∴∠PCO=90°,即PC⊥OC.又∵点C在☉O上,∴直线PC与☉O相切.(4分)(2)在Rt△AMC中,∠AMC=90°,AC=AB=9,MC=BC=3,由勾股定理,得AM=-=-=6.设☉O的半径为r,在Rt△OMC中,∠OMC=90°,OM=AM-AO=6-r,MC=3,OC=r,由勾股定理,得OM2+MC2=OC2,即(6-r)2+32=r2,解得r=.在△OMC和△OCP中,∵∠OMC=∠OCP,∠MOC=∠COP,∴△OMC∽△OCP,∴=,即-=,∴PC=.(8分)评析本题主要考查了切线的性质,三角形相似的判定和相似三角形的性质及圆的有关知识.难度中等.26.解析(1)证明:y=a(x-m)2-a(x-m)=ax2-(2am+a)x+am2+am.因为当a≠0时,[-(2am+a)]2-4a(am2+am)=a2>0,所以,方程ax2-(2am+a)x+am2+am=0有两个不相等的实数根.所以,不论a与m为何值,该函数的图象与x轴总有两个公共点.(3分)(2)①y=a(x-m)2-a(x-m)=a--,所以,点C的坐标为,-.当y=0时,a(x-m)2-a(x-m)=0,解得x1=m,x2=m+1,所以AB=1,当△ABC的面积等于1时,×1×-=1,所以×1×-=1,或×1×=1,所以a=-8或a=8.②当x=0时,y=am2+am,所以点D的坐标为(0,am2+am),当△ABC的面积与△ABD的面积相等时,×1×-=×1×|am2+am|,所以×1×-=×1×(am2+am),或×1×=×1×(am2+am),所以m=-,或m=--,或m=-.(9分)评析本题是一道二次函数综合题,主要考查了二次函数的图象和性质、抛物线内接三角形面积的计算等知识.根据题意,列出相应等式是解决本题的关键,属中等偏难题.27.解析(1)①②;③.(4分)(2)根据点P在△ABC边上的位置分为以下三种情况.第一种情况:如图①,点P在BC(不含点B、C)上,过点P只能画出2条截线PQ1、PQ2,分别使∠CPQ1=∠A,∠BPQ2=∠A,此时△PQ1C、△PBQ2都与△ABC互为逆相似.第二种情况:如图②,点P在AC(不含点A、C)上,过点B作∠CBM=∠A,BM交AC于点M.当点P在AM(不含点M)上时,过点P1只能画出1条截线P1Q,使∠AP1Q=∠ABC,此时△AP1Q与△ABC互为逆相似;当点P在CM上时,过点P2只能画出2条截线P2Q1、P2Q2,分别使∠AP2Q1=∠ABC,∠CP2Q2=∠ABC,此时△AP2Q1,△CP2Q2都与△ABC互为逆相似.第三种情况:如图③,点P在AB(不含点A、B)上,过点C作∠BCD=∠A,∠ACE=∠B,CD、CE分别交AB于点D、E.当点P在AD(不含点D)上时,过点P只能画出1条截线P1Q,使∠AP1Q=∠ACB,此时△AQP1与△ABC互为逆相似;当点P在DE上时,过点P2只能画出2条截线P2Q1、P2Q2,分别使∠AP2Q1=∠ACB,∠BP2Q2=∠BCA,此时△AQ1P2,△Q2BP2都与△ABC互为逆相似;当点P在BE(不含点E)上时,过点P3只能画出1条截线P3Q',使∠BP3Q'=∠BCA,此时△Q'BP3与△ABC互为逆相似.(10分)评析本题是阅读理解题,即根据题中所给的定义解决相应问题.理解互为逆相似的含义,利用分类讨论的思想和三角形相似的判定等知识即可解决问题,这是一道能使思维开放的综合题.属难题.。
2020年江苏省南京市中考数学模拟试卷含解析(2)一.选择题(共6小题,满分12分,每小题2分)1.(2分)如图,实数3−√10在数轴上的大致位置是()A.点A B.点B C.点C D.点D2.(2分)据统计,今年“五一”小长假期间,我市约有26.8万人次游览了植物园和动物园,则数据26.8万用科学记数法表示正确的是()A.268×103B.26.8×104C.2.68×105D.0.268×106 3.(2分)如图是由5个小正方体组成的一个几何体,则该几何体的左视图是()A.B.C.D.4.(2分)如图,把三角尺的直角顶点放在直尺的一边上,若∠1=32°,则∠2的度数为()A.68°B.58°C.48°D.32°5.(2分)某校九年级模拟考试中,2班的五名学生的数学成绩如下:85,95,110,100,110.下列说法不正确的是()A.众数是110B.中位数是110C.平均数是100D.中位数是1006.(2分)抛物线y=(x﹣1)2+3关于x轴对称的抛物线的解析式是()A.y=﹣(x﹣1)2+3B.y=(x+1)2+3C.y=(x﹣1)2﹣3D.y=﹣(x﹣1)2﹣3二.填空题(共10小题,满分20分,每小题2分)7.(2分)4a 2﹣12a +9分解因式得 .8.(2分)√−273−(13)﹣2= . 9.(2分)实数227,√3,﹣7,√36中,无理数有 .10.(2分)若关于x 的一元二次方程x 2+mx +2m ﹣4=0有一个根为x =﹣1,则m = .11.(2分)如图,在△ABC 中,AC =10,BC =6,AB 的垂直平分线交AB 于点D ,交AC于点E ,则△BCE 的周长是 .12.(2分)甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km /h 的速度行驶1h 后乙车才沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km )与乙车行驶时间x (h )之间的函数关系如图所示,则m = .点H 的坐标 .13.(2分)如图,在△ABC 中,∠ACB =90°,分别以点A 和点B 为圆心,以相同的长(大于12AB )为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交BC 于点E .若AC =3,AB =5,则DE 等于 .14.(2分)关于x 的一元二次方程kx 2+3x ﹣1=0有实数根,则k 的取值范围是 .15.(2分)如图,在矩形ABCD 中,AB =6,BC =8,过AC 的中点O 作EF ⊥AC ,则线段EF 的长为 .16.(2分)已知等式:9﹣1=8,16﹣4=12,25﹣9=16,36﹣16=20…根据以上规律,则第n个等式是.三.解答题(共11小题)17.计算:4√12−√8+√27×√13−(√3)018.先化简,再求值:(1x+1+x2−2x+1x−1)÷x−1x+1,其中x=12.19.如图,在矩形ABCD中,F是CD的中点,连接AF交BC延长线于点E.求证:BC=EC.20.2019年全国青少年禁毒知识竞赛开始以来,某市青少年学生踊跃参加,掀起了学习禁毒知识的热潮,禁毒知识竞赛的成绩分为四个等级:优秀,良好,及格,不及格.为了了解该市广大学生参加禁毒知识竞赛的成绩,抽取了部分学生的成绩,根据抽查结果,绘制了如下两幅不完整的统计图:(1)本次抽查的人数是;扇形统计图中不及格学生所占的圆心角的度数为;(2)补全条形统计图;(3)若某校有2000名学生,请你根据调查结果估计该校学生知识竞赛成绩为“优秀”和“良好”两个等级共有多少人?21.如图①,正方形ABCD的边AB,AD分别在等腰直角△AEF的腰AE,AF上,点C在△AEF内,则有DF=BE(不必证明).将正方形ABCD绕点A逆时针旋转一定角度α(0°<α<90°)后,连结BE,DF.请在图②中用实线补全图形,这时DF=BE还成立吗?请说明理由.22.图1是一台实物投影仪,图2是它的示意图,折线O﹣A﹣B﹣C表示支架,支架的一部分O﹣A﹣B是固定的,另一部分BC是可旋转的,线段CD表示投影探头,OM表示水平桌面,AO⊥OM,垂足为点O,且AO=7cm,∠BAO=160°,BC∥OM,CD=8cm.将图2中的BC绕点B向下旋转45°,使得BCD落在BC′D′的位置(如图3所示),此时C′D′⊥OM,AD′∥OM,AD′=16cm,求点B到水平桌面OM的距离,(参考数据:sin70°≈0.94,cos70°≈0.34,cot70°≈0.36,结果精确到1cm)23.在甲口袋中有三个球分别标有数码1,﹣2,3;在乙口袋中也有三个球分别标有数码4,﹣5,6;已知口袋均不透明,六个球除标码不同外其他均相同,小明从甲口袋中任取一个球,并记下数码,小林从乙口袋中任取一个球,并记下数码.(1)用树状图或列表法表示所有可能的结果;(2)求所抽取的两个球数码的乘积为负数的概率.24.某商场计划购进购进A、B两种商品进行销售,A每件进价30元,原定售价48元,B 每件进价40元,原定售价60元,设购进A商品x件,商场总利润为y元(1)一月份计划购进A、B两种商品共20件,A商品的数量不低于B商品的数量,且按预售价全部卖完后总利润不低于376元,有几种进货方案?(2)若按(1)中方案进货,实际销售中由于某原因,决定降价销售,A每件降价a元,B每件降价2a元(a>0),全部售完,可获得最大利润350元,求a的值;(3)二月份商场购进A、B两种商品共100件,均按原定售价卖完,商场拿出部分资金奖励销售人员,每卖一件A奖励m元,每卖一件B奖励n元,结果发现无论购进A商品多少件,商场利润恒为1500元,直接写出m、n的值.25.如图1,已知AB是⊙O的直径,点D是弧AB上一点,AD的延长线交⊙O的切线BM 于点C,点E为BC的中点,(1)求证:DE是⊙O的切线;(2)如图2,若DC=4,tan∠A=12,延长OD交切线BM于点H,求DH的值;(3)如图3,若AB=8,点F是弧AB的中点,当点D在弧AB上运动时,过F作FG ⊥AD于G,连接BG,求BG的最小值.26.如图,已知:抛物线y=a(x+1)(x﹣3)与x轴相交于A、B两点,与y轴的交于点C (0,﹣3).(1)求抛物线的解析式的一般式.(2)若抛物线上有一点P,满足∠ACO=∠PCB,求P点坐标.(3)直线l:y=kx﹣k+2与抛物线交于E、F两点,当点B到直线l的距离最大时,求△BEF的面积.。
2020年江苏省南京市中考数学摸底考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.四张完全相同的卡片上,分别画有圆、矩形、等边三角形、等腰梯形,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为( ) A .41 B .21 C .43 D .12.如图,在⊙O 中,∠B=37°,则劣弧AB 的度数为( ) A .106°B .126°C .74°D .53°3.某校测量了初三(1)班学生的身高(精确到1cm ),按10cm 为一段进行分组,得到如下频数分布直方图,则下列说法正确的是( ) A .该班人数最多的身高段的学生数为7人 B .该班身高低于160.5cm 的学生数为15人 C .该班身高最高段的学生数为20人 D .该班身高最高段的学生数为7人4.判断两个直角三角形全等,下列方法中,不能应用的是( ) A . AASB .HLC .SASD . AAA5.如图,在△ABC 与△DEF 中,已有条件AB=DE ,还需添加两个条件才能使△ABC ≌△DEF ,不能添加的一组条件是( ) A .∠B=∠E,BC=EFB .BC=EF ,AC=DFC .∠A=∠D ,∠B=∠E D .∠A=∠D ,BC=EF6.将如图所示的两个三角形适当平移,可组成平行四边形的个数为 ( ) A .1个B .2个C .3个D .4个7.下面对么AOB 的理解正确的是( ) A .∠AOB 的边是线段OA 、OB B .∠AOB 中的字母A 、O 、B 可调换次序C .∠AOB 的顶点是0,边是射线OA 、OBD .∠AOB 是由两条边组成的8.某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过l00元但不超过300元一律九折;③一次性购物超过300元一律八折,王波两次购物分别付款80元、252元.若王波一次性购买与上两次相同的商品,则应付款 ( ) A .288元 B .288元或316元C .332元D .332元或363元二、填空题9.已知2(34)|1|0x y a x --+-=中,2y <,则a 的取值范围是 .10.某班50名学生在课外活动中参加作文、美术、文娱、体育兴趣小组的分别有8人、l2人、20人、l0人,那么参加体育兴趣小组的人数所占的百分比为 .11.如图所示,△ABC 中,DE 是AC 的中垂线,AE=5,△ABC 的周长为30,则△ABD 的周长是 .12.从 1,2,3,4,5 中任选两个数,这两个数的和恰好等于7 有 种可能. 13.如果4x 2+mx +25是一个完全平方式,则实数m 的值是__________.14.如图△ABC 中,D 、E 分别在BC 上,∠BAE=∠AEB ,∠CAD=∠CDA .若∠BAC=x 度,则∠DAE 的度数是 . 15.指出下列各式中 a 的取值. (1)若||a a =-,则a 为 ; (2)若||a a -=,则a 为 ; (3)若|1|0a -=,则a 为 ; (4)若|1|2a +=,则a 为 ;16.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7 cm ,则正方形A 、B 、C 、D 的面积的和为 cm 2.17.如图,已知AB 是⊙O 的直径,弦CD AB ⊥,22AC =1BC =,那么sin ABD ∠的值是 .18.如果三角形底是(23x-)cm,高是4 cm,而面积不大于20 cm 2,那么x的取值范围是.19.一次函数图象经过点(2,0)和(-2,4),这个一次函数的解析式是.20.若方程mx2+3x-4=3x2是关于x的一元二次方程,则m的取值范围是 .21.“平行四边形的对角相等”的逆命题是.22.如图,△ABC 中,AD是 BC上中线,M 是AD 的中点,BM 延长线交AC 于 N,则ANNC= .23.用 3 倍的放大镜照一个面积为 1 的三角形,放大后的三角形面积是.24.两位同学在解方程组时,甲同学由278ax bycx y+=⎧⎨-=⎩正确地解出32xy=⎧⎨=-⎩,乙同学因把c写错而得解22xy=-⎧⎨=⎩,那么a= ,b= ,c= .三、解答题25.在电视台举行的某选秀比赛中,甲、乙、丙三位评委对选手的综合表现,分别给出“待定”或“通过”的结论.(1)写出三位评委给出 A 选手的所有可能的结论;(2)对于选手 A,只有甲、乙两位评委给出相同结论的概率是多少?26.判断下列各组线段的长度是否成比例,说明理由.(1)1,2,3,4;(2) 2, 4,3, 6;(3)1. 2 ,1. 8 ,30 ,45;(4)11,22 ,44,5527.试用两种方法将已知平行四边形ABCD分成面积相等的四个部分(要求用文字简述你所设计的两种方法,并画出示意图).28.将某雷达测速区监测到的一组汽车的时速数据整理,得到其频数及频率如下表(未完成):注:30~40为时速大于等于30千米而小于40千米,其它类同. (1)请你把表中的数据填写完整; (2)补全频数分布直方图;(3)如果此地汽车时速不低于60千米即为违章,则违章车辆共有多少辆?29.求下列各数的算术平方根: (1)144;(2)124;(3) 2( 2.5)-;(4) 9||25-30.木匠张师傅在做家具时遇到一块不规则的木板(如图①),现需要将这块木板锯开后胶合成一正方形,张师傅已锯开了一条线(如图②),请你帮他再锯一线,然后拼成正方形,想想看,在锯拼过程中用到了什么变换?数据段 频 数 频 率 30~40 10 0.0540~50 3650~60 0.39 60~7070~80 200.10 总 计1【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.D4.D5.D6.C7.C8.B二、填空题9.a>-10.520%11.2012.213.20± 14.90°-x 215.16. 4917.22318. 31322x <≤19. 2y x =-+20.3≠m 21.对角相等的四边形是平行四边形22.1223. 924.4,5,-2三、解答题 25.(1)评委给出 A 选手的所有可能结果如下:由上可知评委给出 A 选手所有可能的结果有8种.(2)对于 A 选手,“只有甲、乙两住评委给出相同的结论”有 2 种,即“通过一通过一待定”、“待定一待定一通过”,所以对于 A 选手“只有甲、乙两位评委给出相同结论”的 概率是1426.(1)∵ 1×4≠2×3,∴1,2,3,4 不成比例. (2)由小到大排列为:2,3,4,6,∵2 ×6 = 3 ×4= 12 ∴2,4,3,6成比例,即2346(3)从小到大排列为:1.2,1.8,30,45,∵1.2 ×45 = 1.8×30 , ∴1. 2 ,1. 8 ,30 ,45 成比例. ( 4 ) ∵1 1 ×55≠22×44 ∴.11,22,44,55 不成比例.27.两条对角线;两条对边中点的连线,一组对边四等分连线等等,图略.28.解:(1)如表:(2)如图:(376辆. 29.(1) 12 (2)32 (3) 2.5 (4)3530.略。
2020年江苏省南京市中考数学模拟冲刺试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,△ABC 中,CD ⊥AB 于 D ,DE ⊥AC 于 E ,则图中与△ADE 相似的三角形有( )A .1 个B . 2 个C .3 个D .4 个2.沿着虚线将矩形剪成两部分,既能拼成三角形又能拼成梯形的是( )A .B .C .D . 3.为了了解全世界每天婴儿出生的情况,应选择的调查方式是( ) A .普查 B .抽样调查C .普查,抽样调查都可以D .普查,抽样调查都不可以 4.将一个三形平移后得到另一个三角形,则下列说法中,错误的是( ) A .两个三角形的大小不同B .两个三角形的对应边相等C .两个三角形的周长相等D .两个三角形的面积相等5.,已知a ,b ,c 是三角形的三边,那么代数式2222a ab b c -+-的值( )A . 大于零B . 等于零C . 小于零D . 不能确定 6.用长为4 cm 、5 cm 、6 cm 的三条线段围成三角形的事件是( ) A .随机事件 B .必然事件 C .不可能事件 D .以上都不是7.一个均匀的立方体六个面上分别标有数1,2,3,4,5,6.如图是这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的21的概率是( ) A .61 B .31 C .21 D .32 8.如图,将两根钢条AA ′、BB ′的中点O 连在一起,使AA ′、BB ′可以绕着点O 自由转动,就做成了一个测量工件,则A ′B ′的长等于内槽宽AB ,那么判定△OAB ≌△OA ′B ′的理由是( )A .边角边B .角边角C .边边边D .角角边9.c b a 、、是△ABC 的三边,且bc ac ab c b a ++=++222,那么△ABC 的形状是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形 10.下列语句中正确的是( )A .自然数是正数B .0 是自然数C .带“-”号的数是负数D .一个数不是正数就是负数 二、填空题11.冲印店将一张 1 寸照冲印成一张5寸照,它们 相似形(填“是”或“不是”).12.如果抛物线21y x ax =-+的对称轴是y 轴,那么a 的值为 . 13.已知直线32x y =+与两个坐标轴交于A 、B 两点,把二次函数24x y =-的图象先左右、后上下作两次平移后,使它通过A 、B ,那么平移后的图象的顶点坐标是 .解答题14.如图,在Rt △ABC 中,∠C=Rt ∠,AC=6,AB=BC+2,则斜边AB 长为 .15.如图,平面镜A 与B 之间的夹角为 120°,光线经平面镜A 反射到平面镜B 上,再反射出去.若∠1=∠2,则∠1 的度数为 .16.22()49x y -+÷( )=23x y +. 17.小王想把 20 元人民币全部兑换成 2元和 5元两种面值的人民币,她有 种不同的兑换方法(只兑换一种币值也可以).18.浙江省教育网开通了网上教学,某校九年级(8)班班主任为了了解学生上网学习时间,对本班40名学生某天上网学习时间进行了调查,将数据(取整数)整理后,绘制出如图所示频率分布直方图,已知从左到右各个小组的频率分别是0.15,0.25,0.35,0.20, 0.05,则根据直方图所提供的信息,这一天上网学习时间在100~119 min 之间的学生人数是人.三、解答题19.小颖有20张大小相同的卡片,上面写有1~20这20个数字,她把卡片放在一个盒子中搅匀,每次从盒中抽出一张卡片,记录结果如下:实验次数204060801001201401601802003的倍数的频数51317263236394955613的倍数的频率(1)完成上表;(2)频率随着实验次数的增加,稳定于什么值左右?(3)从试验数据看,从盒中摸出一张卡片是3的倍数的概率估计是多少?(4)根据推理计算可知,从盒中摸出一张卡片是3的倍数的概率应该是多少?20.已知AD是△ABC的高,CD=6,AD=BD=2,求∠BAC的度数.21.有砖和水泥,可砌长 48m 的墙. 要盖三间面积一样的平房,如图所示,问应怎样砌,才能使房屋的面积最大?22.如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点E是BC边的中点,EM⊥AB,EN ⊥CD,垂足分别为M、N.求证:EM=EN.C B A23.一个多边形的内角和与外角和的比是7:2,求这个多边形的边数.24.如图,已知∠ 1 是它的补角的3 倍,∠2 等于它的补角的13,那么 AB ∥CD 吗?请说明理由.25.分析如图(1)、(2)、(4)中阴影部分的分布规律,按此规律在如图(3)中画出其中的阴影部分.26. 观察下列各式:11011914531231222-=⨯-=⨯-=⨯ ,,,你能发现什么规律,请用代数式表示这一规律,并加以证明.27.如图,∠A :∠B :∠C=2:3:4,求△ABC 的内角的度数.28.如图,将△ABC先向上平移5格得到△A′B′C′,再以直线MN为对称轴,将△A′B′C′作轴对称变换,得到△A″B″C″,作出△A′B′C′和△A″B″C″.29.在数轴上-7 与 37 之间插入三个数,使这五个数的每相邻两个点之间的距离相等. 求插入的三个数.30.图,旋转方格纸中的图形,使点0是它的旋转中心,顺时针旋转90°,画出旋转后的图形.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.B4.A5.C6.B7.A8.A9.D10.B二、填空题11.是12.13.(—2,4)14.1015.30°16.32y x -17. 318.14三、解答题19.(1)0.25,0.33,0.28,0.33,0.32,0.30,0.33,0.31,0.31,0.31;(2)0.31;(3)0.31;(4)0.320.当AD 在BC 边上时,∠BAC=105°,当AD 在CB 延长线上时,∠BAC=15°. 21.设长为 x(m),则宽为(283x -)m ,∴222(8)+833s x x x x =-=- 当62b x a=-=时,S 最大,即当长为 6m 、宽 4m 时,才能使房屋面积最大. 22.∵AD ∥BC ,AB=DC ,∴B C ∠=∠,∵,,EM AB EN CD ⊥⊥∴90BME CNE ∠=∠=︒,在Rt △BME 和Rt △CNE 中,BME CNE B CBE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴Rt △BME ≌ Rt △CNE ,∴EM =EN . 23.924.AB ∥CD ,说明∠1与它的同位角相等25.如图:26.连续两个奇数的平方差等于夹在这两个奇数之间的偶数的平方与1的差, 1)2()12)(12(2-=-+n n n .27.∠A=40°,∠B=60°,∠C=80°.28.略29.4,15,2630.略。
2020年江苏省南京市中考数学第三次模拟考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列不等式组的解,在数轴上表示为如图所示的是( )A .1020x x ->⎧⎨+≤⎩B .1020x x -≤⎧⎨+<⎩C .1020x x +≥⎧⎨-<⎩D .1020x x +>⎧⎨-≤⎩2.在下列实数中,无理数是( )A .13B .πC .16D .2273.将如图所示的图案绕其中心旋转n °时与原图案完全重合,那么n 的最小值是( )A .60B .90C .120D .1804.把多项式m 2(a-2)+m (2-a )分解因式等于( )A .(a-2)(m 2+m )B .(a-2)(m 2-m )C .m (a-2)(m-1)D .m (a-2)(m+1)5.下列各式由左边到右边的变形中,是分解因式的为( ) A .ay ax y x a +=+)( B .4)4(442+-=+-x x x xC .)12(55102-=-x x x xD .x x x x x 3)4)(4(3162+-+=+-6.如图,∠1和∠2是同位角的是( )7.如图,长度为12cm 的线段AB 的中点为M C ,点将线段MB 分成:1:2MC CB =,则线段AC 的长度为( )A .2cmB .8cmC .6cmD .4cm8.如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后3个顶点的坐标是()A.(2,3),(3,4),(1,7)B.(-2,3),(4,3),(1,7)C.(-2,3),(3,4),(1,7)D.(2,-3),(3,3),(1,7)9.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是()A.12 B.9 C.4 D.310.下列推理正确的是()A.∵a>0,b>0,∴a>bB.∵a>0,b>a,∴b>0C.∵a>0,a>6,∴b>0D.∵a>0,a>b,∴ab>O11.某班共有45位同学,其中近视眼占60%,下列说法不正确...的是()A.该班近视眼的频率是0.6 B.该班近视眼的频数是27C.该班近视眼的频数是0.6 D.该班有18位视力正常的同学12.如图,已知圆锥形烛台的侧面积是底面积的 2 倍,则两条母线所夹的∠AOB 为()A.30°B.45°C.60°D.120°13.如图,在高楼前D点测得楼顶的仰角为30o,向高楼前进60米到C点,又测得仰角为45o,则该高楼的高度大约为()A.82米B.163米C.52米D.30米14.如图所示,一只蚂蚁在正方形纸片上爬行,正好停在质数上的概率是()A.14B.13C.49D.5915.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为( )A .11.5米B .11.75米C .11.8米D .12.25米16.如图,跷跷板的支柱OC 与地面垂直,点O 是AB 的中点,AB 可以绕着点O 上下转动.当A 端落地时,∠OAC =20°,那么横板上下可转动的最大角度(即∠A′OA )是( )A .40°B .30°C .20°D .10°二、填空题17.如图,点 M 是⊙O 外一点,MC 、MD 分别交⊙O 于点B 、C 、A 、D ,弦AC 、BD 交于点 P ,且∠DAC=40°, ∠ADB=10°,那么∠DBC= 度,∠ACB= 度,∠CMD= 度.18.已知2()4|5|x y z x z z +-++-=--,那么32z x y -+的值是 .19.已知方程组3523x y y x =-⎧⎨=+⎩,用代入法消去x ,可得方程 .(不必化简). 20. 计算:32()5-= ;332⨯= ;3(32)⨯= ;32(3)(4)-⨯-= ; 22233()44--= . 三、解答题21.如图所示,F 表示路口交通信号灯的位置,一辆小汽车停在一辆货车后面,点C 表示 小汽车司机的头部,间小汽车司机抬头向正前方望去,他能否看到信号灯F ?为什么?22.如图,在直角坐标系中,P是第一象限的点,其坐标是(3,y),且OP与x轴的正半轴的夹角α的正切值是43,求(1)y的值;(2)角α的正弦值.23.将图中的△ABC 依次做下列变换,画出相应的图形.(1)沿y轴正向平移1个单位;(2)以B点为位似中心,放大到2倍.24.已知⊙O的半径为10cm,弦MN∥EF,且MN= 12cm,EF=16cm,求弦 MN和EF之间的距离.25.要做一个高是8cm,底面的长比宽多5cm,体积是528cm3的长方体木箱,问底面的长和宽各是多少?26.已知一个几何体的三视图和有关的尺寸如图所示.求这个几何体的表面积.27.已知一个几何体的三视图和有关的尺寸如图,写出这个几何体的名称,并求出这个几何体的表面积.28.尺规作图:把图(实线部分)补成以虚线l为对称轴的轴对称图形,你会得到一只美丽蝴蝶的图案(不用写作法,保留作图痕迹).29.在依次标有数字3、6、9、12……的卡片中,小明拿到3张卡片,它们的数字相邻,且数字之和为117.(1)小明拿到的卡片是标有哪些数字的?(2)你能否拿到数字相邻的4张卡片,使其数字之和为177?若能,请指出这4张卡片中数字最大的卡片,若不能,请说明理由.30.七(1)班一次数学测验平均成绩是 85 分,老师以平均成绩为基准,记为 0,超过 85 分的记为正,那么92 分、78 分各记作什么?若老师把某 3 名同学的成绩简记为:-5,0,+8,则这3 名同学的实际成绩分别为多少分?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.B3.C4.C5.C6.D7.B8.C9.A10.B11.C12.C13.A14.C15.C16.A二、填空题17.40,10,3018.-919.2(35)3y y =-+20. 8125-,24,216,432,4516三、解答题21.由图可知小汽车司机看不到信号灯F ,因为信号灯被前面的汽车挡住了,处于小汽车司机的盲区中.22.(1)4;(2)54. 23.如图所示.24.如解图所示,过点O作OA⊥MN于点 A,作OB⊥EF于点B.∵MN∥EF,∴.A、O、B 三点在一直线上.连结OM、OE,∵MN=12 cm,EF= 16 cm,∴AM= 6 cm,BE= 8 cm,∴.Rt△AOM 和 Rt△BOE 中,221068OA=-=,22086OB l=-=∴ AB=8+6= 14 cm 或 AB=8—6=2 cm25.11 cm,6cm26.1432422352362⨯⨯⨯+⨯+⨯+⨯=(cm2)27.该几何体为直三棱柱;表面积为36cm228.如图:29.(1)小明拿到的卡片标有的数字是36、39、42(2)设相邻的4张卡片为x,x+3,x+6,x+9,则x+(x+3)+(x+6)+(x+9)=117,994x=不是整数,∴不能拿到数字相邻的4张卡片,使其数字之和为177.30.各记作+7,-7;实际成绩分别为 80 分,85分,93 分。
2020年江苏省南京市九年级中考数学仿真模拟训练卷参考答案一.选择题(共6小题,满分12分,每小题2分)1.解:∵22=4,∴4的算术平方根是2.故选:B.2.解:(x3y)2=x6y2.故选:D.3.解:A、棱柱的侧面是矩形,故选项A原说法错误;B、球的表面是曲面,故选项B原说法错误;C、棱柱的侧棱都相等,侧棱与底棱不一定相等,故选项C原说法错误;D、圆锥的侧面是曲面,底面是平面,故选项D原说法正确;故选:D.4.解:∵甲、乙、丙、丁4支仪仗队队员身高的方差中丁的方差最小,∴丁仪仗队的身高更为整齐,故选:D.5.解:∵FC∥AB,∴∠ADF=∠F.∵∠AED=∠CEF,DE=EF,∴△ADE≌△CEF(ASA).∴AD=CF=5.又∵BD=2,∴AB=AD+BD=5+2=7,故选:D.6.解:过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F,延长CA交x轴于点H,∵四边形AOBC是矩形,∴AC∥OB,AC=OB,∴∠CAF=∠BOE=∠CHO,在△ACF和△OBE中,,∴△CAF≌△BOE(AAS),∴BE=CF=4﹣1=3,∵∠AOD+∠BOE=∠BOE+∠OBE=90°,∴∠AOD=∠OBE,∵∠ADO=∠OEB=90°,∴△AOD∽△OBE,∴,即,∴OE=,即点B(,3),∴AF=OE=,∴点C的横坐标为:﹣(2﹣)=﹣,∴点C(﹣,4).故选:B.二.填空题(共10小题,满分20分,每小题2分)7.解:﹣5的倒数是﹣;﹣的相反数是.故答案为:﹣;.8.解:将118000用科学记数法表示为:1.18×105.故答案为:1.18×105.9.解:根据题意得,2﹣x≠0,解得x≠2.故答案为:x≠2.10.解:∵a是方程3x2﹣x﹣2=0的一个根,∴3a2﹣a﹣2=0,故3a2﹣a=2,则5+2a﹣6a2=5﹣2(3a2﹣a)=5﹣2×2=1.故答案为:1.11.解:∵反比例函数y=﹣,﹣4<0,∴在每个象限内,y随x的增大而增大,∵A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣图象上的两个点,﹣4<﹣1,∴y1<y2,故答案为:y1<y2.12.解:由题意可得:杯子内的筷子长度为:=15,则筷子露在杯子外面的筷子长度为:18﹣15=3(cm).故答案为:3.13.解:由条形统计图可得:该市私人汽车拥有量年净增量最多的是2016年,净增183﹣150=33(万辆),由折线统计图可得,私人汽车拥有量年增长率最大的是:2015年.故答案为:2016,2015.14.解:由作图步骤可得:MN垂直平分AB,则AD=BD,∵BC=5,CD=2,∴BD=AD=BC﹣DC=5﹣2=3.故答案为:3.15.解:∵四边形ABCD是菱形,∠D=78°,∴∠ACB=∠DCB=(180°﹣∠D)=51°,∵四边形AECD是圆内接四边形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB﹣∠ACE=27°,故答案为:27.16.解:因为正方形AECF的面积为50cm2,所以AC=cm,因为菱形ABCD的面积为120cm2,所以BD=cm,所以菱形的边长=cm.故答案为:13.三.解答题(共11小题)17.解:原式=•﹣x=x﹣1﹣x=﹣1.18.解:(Ⅰ)解不等式①,得:x<3;(Ⅱ)解不等式②,得:x≥﹣2;(Ⅲ)把不等式①和②的解集在数轴上表示出来如下:(Ⅳ)原不等式组的解集为:﹣2≤x<3,故答案为:x<3、x≥﹣2、﹣2≤x<3.19.证明∵四边形ABCD为平行四边形∴AB∥CD,AB=CD∴∠ABD=∠CDB在△ABE与△CDF中∴△ABE≌△CDF(ASA)∴AE=CF20.解:设1号车的平均速度为x千米/时,则2号车的平均速度是1.2x千米/时,根据题意可得:﹣=,解得:x=40,经检验得:x=40是原方程的根,并且符合题意,则1.2x=48,答:2号车的平均速度是48千米/时.21.解:(1)所抽取样本的平均质量为(1.5+1.4+1.6+2+1.8)÷5=1.66(千克/条),所以可估计所有200只甲鱼的总质量约为1.66×200=332(千克).(2)该养殖专业户卖出全部甲鱼的收入约为332×150=49800元.22.解:可能出现的所有结果列表如下:甲乙丙(甲,丙)(乙,丙)丁(甲,丁)(乙,丁)共有4种可能的结果,且每种的可能性相同,其中恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的结果有1种,所以恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率为.23.解:在Rt△ACD中,∵tan∠ACD=,∴tan30°=,∴,∴AD=3m,在Rt△BCD中,∵∠BCD=45°,∴BD=CD=9m,∴AB=AD+BD=3+9(m).24.解:(1)抛物线y=ax2﹣4与x轴的负半轴交于点A、与y轴交于点B,则点B(0,﹣4),AB=2,则OA=2,故点A(﹣2,0),将点A的坐标代入抛物线表达式得:0=4a﹣4,解得:a=1,故抛物线的表达式为:y=x2﹣4;(2)设点C(0,b),,则OA:y P=1:3,则y P=3b,则直线AC的表达式为:y=kx+b,将点A的坐标代入上式得:0=﹣2k+b,解得:k=b,直线AC的表达式为:y=bx+b,联立直线AC与抛物线的表达式并整理得:x2﹣bx﹣(4+b)=0,则﹣2+x P=b,解得:x P=2+b,将点P的坐标代入抛物线表达式并解得:b=0或4(舍去0),故点P(4,12).25.解:(1)30÷60=0.5(h),120+30=150(km),故点M的坐标为(0.5,150);(2)120÷60=2(h),则F(2,0),设线段EF所表示的y与x之间的函数关系式为y=k1x+b1,则,解得.故线段EF所表示的y与x之间的函数关系式为y=﹣60x+120;150÷150=1(h),0.5+1=1.5(h),则N(1.5,0),设线段MN所表示的y与x之间的函数关系式为y=k2x+b2,则,解得.故线段MN所表示的y与x之间的函数关系式为y=﹣150x+225;(3)在乙车到达C地前,相遇前两车之间的距离为30km,30÷(60+60)=0.25(h),(30+60×0.5﹣30)÷(150﹣60)+0.5=30÷90+0.5=+0.5=(h),在乙车到达C地前,相遇后两车之间的距离为30km,(30+60×0.5+30)÷(150﹣60)+0.5=90÷90+0.5=1+0.5=1.5(h)(舍去)故在乙车到达C地前,在0.25h或h时两车之间的距离为30km.故答案为:(0.5,150).26.解:(1)∵∠BCD=68°,∠CF A=108°,∴∠B=∠CF A﹣∠BCD=108°﹣68°=40°,∴∠ADC=∠B=40°.(2)解:∵四边形ABCD是正方形,∴CD=AD=BC=AB=9,∠D=∠C=90°,∴CF=BC﹣BF=2,在Rt△ADE中,∠DAE+∠AED=90°,∵AE⊥EF于E,∴∠AED+∠FEC=90°,∴∠DAE=∠FEC,∴△ADE∽△ECF,∴,设DE=x,则EC=9﹣x,∴,解得x1=3,x2=6,∵DE>CE,∴DE=6.27.解:(1)①由题意知:OA=3,OB==,则d的最小值是3,最大值是;②根据平衡点的定义,点P1与点O是线段AB的一对平衡点,故答案为3,,P1.(2)如图2中,由题意点D到⊙O的最近距离是4,最远距离是6,∵点D与点E是⊙O的一对平衡点,此时需要满足E1到⊙O的最大距离是4,即OE1=3,可得x==,同理:当E2到⊙的最小距离为是6时,OE2=7,此时x==3,综上所述,满足条件的x的值为≤x≤3.(3)∵点C在以O为圆心5为半径的上半圆上运动,∴以C为圆心2为半径的圆刚好与弧相切,此时要想上任意两点都是圆C的平衡点,需要满足CK≤6,CH≤6,如图3﹣1中,当CK=6时,作CM⊥HK于M.由题意:,解得:或(舍弃),如图3﹣3中,当CH=6时,同法可得a=,b=,在两者中间时,a=0,b=5,观察图象可知:满足条件的b的值为≤b≤5.。
南京市2020初中毕业生学业模拟考试(满分:120分 时间:120分钟)第Ⅰ卷(选择题,共12分)一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.下列四个数中,是负数的是( )A.|-2|B.(-2)2C.-√2D.√(-2)22.PM2.5是指大气中直径小于或等于0.000 002 5 m 的颗粒物,将0.000 002 5用科学记数法表示为( ) A.0.25×10-5 B.0.25×10-6 C.2.5×10-5 D.2.5×10-63.计算(a 2)3÷(a 2)2的结果是( ) A.a B.a 2 C.a 3 D.a 44.12的负的平方根介于( ) A.-5与-4之间 B.-4与-3之间 C.-3与-2之间 D.-2与-1之间5.若反比例函数y=kx 与一次函数y=x+2的图象没有..交点,则k 的值可以是( ) A.-2 B.-1 C.1 D.26.如图,在菱形纸片ABCD 中,∠A=60°.将纸片折叠,点A 、D 分别落在点A'、D'处,且A'D'经过点B,EF 为折痕.当D'F ⊥CD 时,CFFD 的值为( )A.√3-12B.√36 C.2√3-16D.√3+18第Ⅱ卷(非选择题,共108分)二、填空题(本大题共10小题,每小题2分,共20分)7.使√1-x 有意义的x 的取值范围是 . 8.计算√2√2的结果是 .9.方程3x -2x -2=0的解是 .10.如图,∠1、∠2、∠3、∠4是五边形ABCDE 的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4= °.11.已知一次函数y=kx+k-3的图象经过点(2,3),则k 的值为 .12.已知下列函数:①y=x 2;②y=-x 2;③y=(x-1)2+2.其中,图象通过平移可以得到函数y=x 2+2x-3的图象的有 (填写所有正确选项的序号). 13.某公司全体员工年薪的具体情况如下表:年薪/万元 30 14 9 6 4 3.5 3 员工数/人 1 1 1 2 7 6 2则该公司全体员工年薪的平均数比中位数多 万元. 14.如图,将45°的∠AOB 按下面的方式放置在一把刻度尺上:顶点O 与尺下沿的端点重合,OA 与尺下沿重合,OB 与尺上沿的交点B 在尺上的读数恰为2 cm.若按相同的方式将37°的∠AOC 放置在该刻度尺上,则OC 与尺上沿的交点C 在尺上的读数约为 cm.(结果精确到0.1 cm,参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)15.如图,在▱ABCD 中,AD=10 cm,CD=6 cm.E 为AD 上一点,且BE=BC,CE=CD,则DE= cm.16.在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换.如图,已知等边三角形ABC 的顶点B 、C 的坐标分别是(-1,-1)、(-3,-1),把△ABC 经过连续9次这样的变换得到△A'B'C',则点A 的对应点A'的坐标是 .三、解答题(本大题共11小题,共88分.解答时应写出文字说明、证明过程或演算步骤)17.(6分)解方程组{x +3y =-1,3x -2y =8.18.(9分)化简代数式x 2-1x 2+2x ÷x -1x ,并判断当x 满足不等式组{x +2<1,2(x -1)>-6时该代数式的符号.19.(8分)如图,在Rt △ABC 中,∠ABC=90°,点D 在BC 的延长线上,且BD=AB.过点B 作BE ⊥AC,与BD 的垂线DE 交于点E. (1)求证:△ABC ≌△BDE;(2)△BDE 可由△ABC 旋转得到,利用尺规作出旋转中心O(保留作图痕迹,不写作法).20.(8分)某中学七年级学生共450人,其中男生250人,女生200人.该校对七年级所有学生进行了一次体育测试,并随机抽取了50名男生和40名女生的测试成绩作为样本进行分析,绘制成如下的统计表:成绩划记频数百分比不及格正910%及格正正正1820%良好正正正正正正正一3640%优秀正正正正正2730%合计9090100%(1)请解释“随机抽取了50名男生和40名女生”的合理性;(2)从上表的“频数”、“百分比”两列数据中选择一列..,用适当的统计图表示;(3)估计该校七年级学生体育测试成绩不及格的人数.17B21.(7分)甲、乙、丙、丁4名同学进行一次羽毛球单打比赛,要从中选出2名同学打第一场比赛.求下列事件的概率:(1)已确定甲打第一场,再从其余3名同学中随机选取1名,恰好选中乙同学;(2)随机选取2名同学,其中有乙同学.22.(8分)如图,在梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD交于点O,AC⊥BD,E、F、G、H分别是AB、BC、CD、DA的中点.(1)求证:四边形EFGH是正方形;(2)若AD=2,BC=4,求四边形EFGH的面积.23.(7分)看图说故事.请你编写一个故事,使故事情境中出现的一对变量x、y满足图示的函数关系.要求:①指出变量x和y的含义;②利用图中的数据说明这对变量变化过程的实际意义,其中须涉及“速度”这个量.24.(8分)某玩具由一个圆形区域和一个扇形区域组成.如图,在☉O1和扇形O2CD中,☉O1与O2C、O2D分别相切于点A、B.已知∠CO2D=60°,E、F是直线O1O2与☉O1、扇形O2CD的两个交点,且EF=24cm.设☉O1的半径为x cm.(1)用含x的代数式表示扇形O2CD的半径;(2)若☉O1和扇形O2CD两个区域的制作成本分别为0.45元/cm2和0.06元/cm2,当☉O1的半径为多少时,该玩具的制作成本最小?25.(8分)某汽车销售公司6月份销售某厂家的汽车.在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元;每多售出1部,所有..售出的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为万元;(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)26.(9分)“?”的思考.下框中是小明对一道题目的解答以及老师的批改.种植区域的面积是288m解:设矩形蔬菜种植区域的宽为x m,则长为2x m.我的结果也正确!小明发现他解答的结果是正确的,但是老师却在他的解答中划了一条横线,并打了一个“?”.结果为何正确呢?(1)请指出小明解答中存在的问题,并补充缺少的过程;变化一下会怎样……(2)如图,矩形A'B'C'D'在矩形ABCD的内部,AB∥A'B',AD∥A'D',且AD∶AB=2∶1.设AB与A'B'、BC与B'C'、CD与C'D'、DA与D'A'之间的距离分别为a、b、c、d,要使矩形A'B'C'D'∽矩形ABCD,a、b、c、d应满足什么条件?请说明理由.27.(10分)如图,A、B是☉O上的两个定点,P是☉O上的动点(P不与A、B重合),我们称∠APB 是☉O上关于点A、B的滑动角.(1)已知∠APB是☉O上关于点A、B的滑动角.①若AB是☉O的直径,则∠APB=°;②若☉O的半径是1,AB=√2,求∠APB的度数;(2)已知O2是☉O1外一点,以O2为圆心作一个圆与☉O1相交于A、B两点.∠APB是☉O1上关于点A、B的滑动角,直线PA、PB分别交☉O2于点M、N(点M与点A、点N与点B均不重合),连结AN,试探索∠APB与∠MAN、∠ANB之间的数量关系.一、选择题1.C|-2|=2,(-2)2=4,√(-2)2=2,故选C.2.D把小于1的正数用科学记数法写成a×10-n的形式,其中a是2.5,n为6.故0.000002 5=2.5×10-6.3.B∵(a2)3÷(a2)2=a6÷a4=a2,故选B.4.B∵12的负的平方根是-√12,又∵-√16<-√12<-√9,即-4<-√12<-3,故选B.与一次函数y=x+2的图象没有交点,5.A∵反比例函数y=kx∴关于x的方程k=x+2没有实数解,可得k<-1,故选A.x6.A延长DC与A'D',交于点M.∵在菱形纸片ABCD中,∠A=60°,∴∠DCB=∠A=60°,AB∥CD,∴∠D=180°-∠A=120°,根据折叠的性质,可得∠A'D'F=∠ADC=120°, ∴∠FD'M=180°-∠A'D'F=60°, ∵D'F ⊥CD, ∴∠D'FM=90°,∴∠M=90°-∠FD'M=30°, ∵∠BCM=180°-∠BCD=120°, ∴∠CBM=180°-∠BCM-∠M=30°, ∴∠CBM=∠M, ∴BC=CM,设CF=x,D'F=DF=y,则BC=CM=CD=CF+DF=x+y, ∴FM=CM+CF=2x+y,在Rt △D'FM 中,tan ∠M=tan 30°=D'FFM =y2x+y=√33,∴2√3x=(3-√3)y, ∴CF FD =x y =√3-12.故选A.二、填空题7.答案 x ≤1解析 ∵二次根式中被开方数为非负数,∴1-x ≥0,∴x ≤1. 8.答案 1+√2 解析2+√2√2=√2·(√2+1)√2=√2+1.9.答案 x=6解析 原分式方程可化为3(x-2)-2x=0,解得x=6,检验,当x=6时,x(x-2)≠0,所以分式方程的解为x=6. 10.答案 300解析 ∵五边形ABCDE 中∠A=120°,∴与∠A 相邻的一个外角为60°, 根据多边形外角和为360°,可得∠1+∠2+∠3+∠4=360°-60°=300°. 11.答案 2解析 把(2,3)代入y=kx+k-3,得3=2k+k-3,解得k=2. 12.答案 ①③解析 由于抛物线y=ax 2+bx+c(a ≠0)的形状和开口方向是由解析式中a 的大小所决定的,又根据平移的性质:平移前后不改变图形的形状和大小,因此只要a 的大小相同即符合题意,故选①③. 13.答案 2解析 由表中数据可求出平均数x =120(30+14+9+6×2+4×7+3.5×6+3×2)=6,中位数为4,因此平均数比中位数多2万元. 14.答案 2.7解析记刻度尺上“0”刻度相应的点为点D,∵BC ∥OA,∴∠DBO=∠AOB=45°,∠DCO=∠AOC=37°. 又∵∠BDO=90°,∴△OBD 为等腰直角三角形,∴OD=BD=2. 在Rt △OCD 中,tan ∠DCO=ODCD ,∴tan 37°=ODCD ≈0.75, ∴CD ≈2÷0.75≈2.7.评析 本题主要考查平行的性质、等腰直角三角形的判定与应用和三角函数的应用. 15.答案 3.6解析 如图,分别过点C 、E 作CF ⊥DE,EG ⊥BC,垂足分别为点F,点G,又∵四边形ABCD 为平行四边形, ∴AD ∥BC,AD=BC=10 cm, ∴BE=BC=10 cm,又∵CE=CD=6 cm,∴EF=DF=CG, 设CG=x cm,在Rt △BEG 和Rt △CEG 中,根据勾股定理有EG 2=102-(10-x)2;EG 2=62-x 2, ∴102-(10-x)2=62-x 2,解得x=1.8, ∴DE=DF+EF=2CG=3.6 cm.评析 本题主要考查平行四边形的性质、等腰三角形的性质、勾股定理的应用等知识,利用方程的思想来解决问题. 16.答案 (16,1+√3)解析 ∵B 、C 的坐标分别是(-1,-1),(-3,-1),∴等边三角形ABC 的边长为2,因此高为√3, ∴点A 的坐标是(-2,-1-√3).由题意可知:点A 的横坐标每次变换后都增加2,纵坐标经过奇数次变换后,由原来的-1-√3变为与它关于x 轴对称的点的纵坐标1+√3, ∴经过连续9次这样的变换得到的点A'的坐标是(16, 1+√3).评析 本题主要考查等边三角形底边与高的比例关系、轴对称的性质、平移的规律,结合正确的计算,从而发现坐标的变换规律,得出结论. 三、解答题17.解析 {x +3y =-1, ①3x -2y =8.②解法一:由①,得x=-3y-1.③ 将③代入②,得3(-3y-1)-2y=8. 解这个方程,得y=-1. 将y=-1代入③,得x=2.所以原方程组的解是{x =2,y =-1.(6分)解法二:①×3,得3x+9y=-3.③③-②,得11y=-11.解这个方程,得y=-1. 将y=-1代入①,得x=2.所以原方程组的解是{x =2,y =-1.(6分)18.解析 x 2-1x 2+2x÷x -1x=x 2-1x 2+2x·xx -1=(x+1)(x -1)x(x+2)·x x -1=x+1x+2.解不等式x+2<1,得x<-1.解不等式2(x-1)>-6,得x>-2.所以,不等式组{x +2<1,2(x -1)>-6的解集是-2<x<-1.当-2<x<-1时,x+1<0,x+2>0, 所以x+1x+2<0,即该代数式的符号为负号.(9分)评析 本题先利用提取公因式法、公式法因式分解进行化简;再解一元一次不等式组,先分别解每一个不等式,再求解集的公共部分,即得不等式组的解集;最后判断化简后的分式的符号.综合考查了学生对代数基础知识的掌握程度. 19.解析 (1)证明:在Rt △ABC 中,∵∠ABC=90°,∴∠ABE+∠DBE=90°. ∵BE ⊥AC,∴∠ABE+∠A=90°. ∴∠A=∠DBE.∵DE 是BD 的垂线,∴∠D=90°. 在△ABC 和△BDE 中,∵∠A=∠DBE,AB=BD,∠ABC=∠D, ∴△ABC ≌△BDE.(5分)(2)作法一:如图①,点O 就是所求的旋转中心.(8分)作法二:如图②,点O就是所求的旋转中心.(8分)评析本题首先考查了证明三角形全等的判定方法,第二问利用旋转的性质得出寻找旋转中心的方法:只要先找到这个图形旋转前后的两组对应点,分别连结对应点,然后就会出现两条线段,分别作这两条线段的中垂线,两条中垂线的交点就是旋转中心.20.解析(1)因为250×90450=50(人),200×90450=40(人),所以,该校从七年级学生中随机抽取90名学生,应当抽取50名男生和40名女生.(2分) (2)本题答案不唯一,下列解法供参考.选择“频数”这一列数据可用图①表示;选择“百分比”这一列数据可用图②表示.(5分)(3)450×10%=45(人).答:估计该校七年级学生体育测试成绩不及格45人.(8分)评析本题考查抽样调查时选取样本的基本原则;扇形统计图、条形统计图的合理运用;用样本估计总体的方法.21.解析(1)已确定甲打第一场,再从其余3名同学中随机选取1名,恰好选中乙同学的概率是13.(2分)(2)从甲、乙、丙、丁4名同学中随机选取2名同学,所有可能出现的结果有:(甲,乙)、(甲,丙)、(甲,丁)、(乙,丙)、(乙,丁)、(丙,丁),共有6种,它们出现的可能性相同.所有的结果中,满足“随机选取2名同学,其中有乙同学”(记为事件A)的结果有3种,所以P(A)=36=12.(7分)22.解析(1)证明:在△ABC中,∵E、F分别是AB、BC的中点,∴EF=12AC.同理FG=12BD,GH=12AC,HE=12BD.在梯形ABCD中,∵AB=DC,∴AC=BD.∴EF=FG=GH=HE.∴四边形EFGH是菱形.设AC与EH交于点M.在△ABD中,∵E、H分别是AB、AD的中点,∴EH∥BD.同理GH∥AC.又∵AC⊥BD,∴∠BOC=90°.∴∠EHG=∠EMC=∠BOC=90°.∴四边形EFGH是正方形.(4分)(2)连结EG.在梯形ABCD中,∵E、G分别是AB、DC的中点,∴EG=12(AD+BC)=3,在Rt△EHG中,∵EH2+GH2=EG2,EH=GH,∴EH2=92,即四边形EFGH的面积为92.(8分)23.解析本题答案不唯一,下列解法供参考.该函数图象表示小明骑车离出发地的路程y(单位:km)与他所用的时间x(单位:min)的关系,小明以400m/min的速度匀速骑了5min,在原地休息了6min,然后以500m/min的速度匀速骑回出发地.(7分)评析本题考查一次函数的应用,但是打破常规、利用图象来设计题意,属于一道开放题,答案不唯一,但是要注意符合题目要求.24.解析(1)连结O1A.∵☉O1与O2C、O2D分别相切于点A、B,∴O1A⊥O2C,O2E平分∠CO2D.∴∠AO2O1=12∠CO2D=30°.在Rt△O1AO2中,sin∠AO2O1=AO1O1O2,∴O1O2=AO1sin∠AO2O1=xsin30°=2x.∴FO2=EF-EO1-O1O2=24-3x,即扇形O2CD的半径为(24-3x)cm.(3分)(2)设该玩具的制作成本为y元,则y=0.45πx2+0.06×(360-60)×π×(24-3x)2360=0.9πx2-7.2πx+28.8π=0.9π(x-4)2+14.4π.所以当x-4=0,即x=4时,y的值最小.答:当☉O1的半径为4cm时,该玩具的制作成本最小.(8分)评析本题首先利用切线性质、切线长定理得出含30度角的直角三角形,从而用含x的代数式表示线段O1O2,第二问考查了圆、扇形的面积公式以及二次函数的应用.25.解析(1)26.8.(2分)(2)设需要售出x部汽车.由题意可知,每部汽车的销售利润为28-[27-0.1(x-1)]=(0.1x+0.9)(万元).当0≤x≤10时,根据题意,得x·(0.1x+0.9)+0.5x=12.整理,得x2+14x-120=0.解这个方程,得x1=-20(不合题意,舍去),x2=6.当x>10时,根据题意,得x·(0.1x+0.9)+x=12.整理,得x2+19x-120=0.解这个方程,得x1=-24(不合题意,舍去),x2=5,因为5<10,所以x2=5舍去.答:需要售出6部汽车.(8分)26.解析(1)小明没有说明矩形蔬菜种植区域的长与宽之比为2∶1的理由.在“设矩形蔬菜种植区域的宽为x m,则长为2x m.”前补充以下过程:设温室的宽为y m,则长为2y m.所以矩形蔬菜种植区域的宽为(y-1-1)m,长为(2y-3-1)m.因为2y-3-1y-1-1=2y-4y-2=2,所以矩形蔬菜种植区域的长与宽之比为2∶1.(5分) (2)要使矩形A'B'C'D'∽矩形ABCD,就要A'D'A'B'=ADAB,即AD-(a+c)AB-(b+d)=21,即2AB-(a+c)AB-(b+d)=2 1 ,即a+cb+d=2.(9分)27.解析(1)①90.(2分)②如图,连结AB、OA、OB.在△AOB 中,∵OA=OB=1,AB=√2,∴OA 2+OB 2=AB 2.∴∠AOB=90°.当点P 在优弧AB ⏜上时,∠AP 1B=12∠AOB=45°; 当点P 在劣弧AB ⏜上时,∠AP 2B=12(360°-∠AOB)=135°.(6分) (2)根据点P 在☉O 1上的位置分为以下四种情况:第一种情况:点P 在☉O 2外,且点A 在点P 与点M 之间,点B 在点P 与点N 之间,如图①. ∵∠MAN=∠APB+∠ANB,∴∠APB=∠MAN-∠ANB;第二种情况:点P 在☉O 2外,且点A 在点P 与点M 之间,点N 在点P 与点B 之间,如图②. ∵∠MAN=∠APB+∠ANP=∠APB+(180°-∠ANB),∴∠APB=∠MAN+∠ANB-180°;第三种情况:点P 在☉O 2外,且点M 在点P 与点A 之间,点B 在点P 与点N 之间,如图③. ∵∠APB+∠ANB+∠MAN=180°,∴∠APB=180°-∠ANB-∠MAN;第四种情况:点P 在☉O 2内,如图④. ∠APB=∠MAN+∠ANB.(10分)评析 本题重点考查圆的知识,包括直径所对的圆周角是直角、圆周角与圆心角的关系,也利用到了运用勾股定理的逆定理判断直角三角形,本题关键在于一定要运用分类讨论的思想方法.。
2020年江苏省南京市中考数学模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知,在等腰梯形 ABCD 中,AD ∥BC ,AD= 4 cm ,BC= 10 cm ,AB = 5 cm ,以点A 为圆心,AD 为半径作⊙A ,则⊙A 与 BC 的位置关系是( )A .相离B . 相切C . 相交D .不能确定2.二次函数221(0)y kx x k =++<的图象可能是( )3. 地图上1cm 2 面积表示实际面积400m 2,该地图的比例尺是( )A .1 :400B .1:4000C .1:2000D .1:200 4.抛物线24y x x =-的对称轴是( )A .直线x=2B .直线x=-2C .直线x=4D .直线x=-4 5.如图,等腰梯形ABCD 下底与上底的差恰好等于腰长,DE AB ∥.则DEC ∠等于( )A .75°B .60°C .45°D .30°6.某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面,可供选择的地砖共有( )A .4种B .3种C .2种D .1种7.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( )A . 14cmB .4cmC .15cmD .3cm8.用长为4 cm 、5 cm 、6 cm 的三条线段围成三角形的事件是( )A .随机事件B .必然事件C .不可能事件D .以上都不是9.与23a b 是同类项的是( )A .2aB .2abC .23abD .24ba 10. 在数轴上表示-1.2 的点在( )A .-1 与0之间B .-2 与- 1 之间C .1 与2之间D .-1 与 1 之间 二、填空题11.如图,过点P 画⊙O 的切线PQ ,Q 为切点,过P ﹑O 两点的直线交⊙O 于A ﹑B 两点,且2sin ,12,5P AB ∠==则OP=__________. 12.已知512a -=,512b +=,则 a 、b 的比例中项为 . 13.如图,已知:⊙O 的半径为5,弦AB = 8,P 是弦AB 上任意一点,则OP 的取值范围是 .14.将一长方形的纸片按如图方式折叠,BC ,BD 为折痕,则∠CBD= 度.15.某中学今年“五一”长假期问要求学生参加一项社会调查活动.为此,小明在他所居住 小区的600个家庭中,随机调查了50个家庭在新工资制度实施后的收人情况,并绘制了如下的频数分布表和频数分布直方图(收入取整数,单位:元).分组频数 频率 1000~12003 0.060 1200~140012 0.240 1400~160018 0.360 1600~l8000.200 1800~20005 2000~22002 0.040 合计 50 1.000请你根据以上提供的信息,解答下列问题:(1)补全频数分布表和频数分布直方图;(2)这50个家庭收入的中位数落在第 小组内; (3)请你估算该小区600个家庭中收入较低(不足l400元)的家庭个数大约有 个.16.若点A 的坐标是(-7,-4),则它到x 轴的距离是 .17.点A(1-a ,3),B(-3,b)关于y 轴对称,则b a = .18.用有45°直角三角板画∠AOB=45°,并将三角板沿OB 方向平移到如图所示的虚线处后绕点M 逆时针方向旋转22°,则三角板的斜边与射线OA 的夹角α为 .19.直接写出因式分解的结果:(1)=-222y y x ;(2)=+-3632a a .20.看图填空.(A 、0、B 在一条直线上)(1)∠AOD= + =∠AOE- ;(2)∠BOE+∠EOC= ;(3)∠EOA-∠AOD= ;(4)∠AOC+ = 180°;(5)若0C 平分∠AOD ,0E 平分∠BOD ,则∠AOD=2 =2 .∠BOE= =12.三、解答题21.判断 222,1 2为比例中项的一个比例式.22.求出抛物线225y x x =-++的对称轴和顶点坐标.23.如图,在△ABC中,∠ACB=90°,CA=CB,CD⊥AB,垂足是D,E是AB上一点,EF ⊥AC,垂足是F,G是BC上一点,CG=EF.求证:△DFG是等腰直角三角形.24.某商场今年二月份的营业额为400万元,三月份的营业额比二月份增加10%,五月份的营业额达到633.6万元.求三月份到五月份营业额的平均月增长率.25.从甲、乙、丙三个厂家生产的同一种产品中,各抽出8件产品,对其使用寿命进行跟踪调查,结果如下(单位:年):甲:3,4,5,6,8,8,8,10;乙:4,6,6,6,8,9,12,13;丙:3,3,4,7,9,10,11,12.三家在广告中都称该种产品的使用寿命是8年,请根据调查结果判断厂家在广告中分别运用了平均数、众数、中位数的的哪一种集中趋势的特征数.26.上海到北京的航线全程为 s(km),飞行时间需 a(h). 而上海到北京的铁路全长为航线长的m倍,乘车时间需 b(h). 问飞机的速度是火车速度的多少倍?(用含 a,b,s,m 的分式表示)27.读句画图,并回答问题.(1)画三角形ABC,取AB的中点M;(2)过点M画直线MN∥BC,交AC于点N;(3)过点M画直线MP∥AC,交BC于点P;(4)测量AN与NC,BP与PC是否相等?(5)测量MN与BC,MP与AC之间的关系?(6)再重新任意画一个三角形,重复以上的画图步骤,观察(5)的关系是否仍然成立?28.当 x= -2 时,代数式 x(2-m)+4 的值等于18,求当 x=3 时这个代数式的值.29. 在一次环保知识测试中,三年级一班的两名学生根据班级成绩(分数为整数)分别绘制了组距不同的频数分布直方图,如图1、图2.已知,图1从左到右每个小组的频率分别为:0.04,0.08,0.24,0.32,0.20,0.12,其中68.5~76.5小组的频数为12;图2从左到右每个小组的频数之比为1∶2∶4∶7∶6∶3∶2,请结合条件和频数分布直方图回答下列问题:(1)三年级一班参加测试的人数为多少? (2)若这次测试成绩80分以上(含80分)为优秀,则优秀率是多少?(3)若这次测试成绩60分以上(含60分)为及格,则及格率是多少?30.如图,△OAB 中,OA=OB ,以O 为圆心的圆交BC 于点C 、D ,求证:AC=BD. D C B A O【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.C4.A5.B6.B7.A8.B9.D10.B二、填空题11.1512.1±13.≤OP14.53≤9015.(1)略;(2)三;(3)18016.417.-818.22°19.(1))1xa(3-y;(2)2)1)(+x1(2-20.(1)∠AOC,∠COD,∠DOE (2)∠BOC (3)∠DOE (4)∠COB (5)∠AOC,∠COD,∠DOE,∠BOD三、解答题21.∵2×=.22.顶点坐标(1,6),对称轴为直线x=1.23.证△AFD≌△CGD,FD=GD,∠ADF=∠CDG,得∠FDG=90°24.20%25.甲使用了众数,乙使用了平均数,丙使用了中位数26.b am倍27.(1)(2)(3)略 (4)AN=NC,BP=PC;(5)MN=12BC,MP=12AC;(6)仍然成立.28.-1729.⑴50;⑵44%;⑶96%.30.证:如图过O作OE⊥AB于E,∵OA=OB,OE⊥AB于E,∴AE=BE.又∵CD是⊙O的弦,OE⊥CD,∴CE=DE,∴AE-CE=BE-DE,即AC=BD.。
2020年江苏省南京市中考数学综合模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是( )A .3个或4个B .4个或5个C .5个或6个D .6个或7个2.如图所示,草地上一根长5米的绳子,一端拴在墙角的木桩上,加一端栓着一只小羊R .那么,小羊在草地上的最大活动区域的面积是( )A .m 2213πB .m 2427πC .m 2213πD .m 2427π3. 关于2y x=,下列判断正确的是( ) A .y 随x 的增大而增大B .y 随x 的增大而减小C .在每一个象限内,y 随x 的增大而增大D .在每一个象限内,y 随x 的增大而减小4.下列多边形中,不能铺满地面的是 ( )A .五边形B .三角形C .四边形D .正六边形 5.若方程20ax bx c ++=(0a ≠)中,a ,b ,c 满足0a b c ++=,0a b c -+=,则方程的根是( )A .1,0B . -1,0C .1, -1D . 无法确定 6.弹簧的长度与所挂物体的质量关系为一次函数,如图所示,由图可知不挂物体时弹簧的长度为( )A .7 cmB .8 cmC .9 cmD .10 cm7.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等),任取一个两位数,是“上升数”的概率是( )A .21B .52C .53D .187 8.有下列长度的三条线段:①3、3、1;②2、2、4;③4、5、6;④4、4、3. 其中能构成等腰三角形的有( )A . ①④B . ①②④C . ②④D . ①② 9.等腰三角形的周长为l3,各边长均为自然数,这样的三角形有( ) A .0个B .l 个C . 2个D .3个 10.如图△ABC 中,AB 的中垂线交AC 于D ,AB =10,AC =8,△DBC 的周长是a ,则BC等于 ( )A . a -6B .a -8C .a -10D .10-a 二、填空题11.四边形ABCD 中,∠A=70°,欲使此四边形为平行四边形,那么∠B= ,∠C= .12.某村共有银行储户110户,存款在2~3万元之间的银行储户的频率是0.2,则该村存款在2~3万元的银行储户有 户.13.为了解全国初中生的睡眠状况,比较适合的调查方式是 (填“普查”或“抽样调查”).14.A 是坐标平面上的一点,若点A 与x 轴的距离是2,与y 轴的距离是l ,则点A 的坐标为 .15.直棱柱的上底面的面积为80cm 2,则下底面面积是 cm 2.16.一个正方体的每个面分别标有数字l ,2,3,4,5,6.根据下图中该正方体A 、B 、C 三种状态所显示的数字,可推出“?”处的数字是 .解答题17.估算方程2233x -=的解是 .18.计算:1009998976543+21-+-++-+--= .三、解答题19.小明为了测量某一高楼 MN的高,在离 N点 200 m 的 A处水平放置了一个平面镜,小明沿 NA 方向后退到点C 正好从镑中看到楼的顶点M,若 AC=l5m,小明的眼睛离地面的高度为1.6m,请你帮助小明计算一下楼房的高度(精确到0.1 m).20.AB 是半圆0的直径,C、D是半圆的三等分点,半圆的半径为R.(1)CD 与 AB 平行吗?为什么?(2)求阴影部分的面积.21.如图,已知矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周长为32cm,求AE的长.22.某中学团委会为研究该校学生的课余活动情况,采取抽样的方法,从阅读、运动、娱乐、其他等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成了如下的两幅不完整的统计图(如图①,图②).(1)在这次研究中,一共调查了名学生.(2)“其他”在扇形图中所占的圆心角是度.(3)补全频数分布折线图.23.判断命题“两边及第三边上的高分别对应相等的两个三角形全等”的真假,并给出证明.24.求下列问题中两个变量的函数解析式,并写出自变量的取值范围,判断其是否为一次函数:现要利用64 m长的旧围栏建一个长方形的花圃.设花圃一边长x(m),分别写出下列变量和x的函数解析式:(1)花圃另一边长y(m);(2)花圃的面积S(m2).25.已知王明同学将父母给的钱按每月相等的数额存在储蓄盒内,准备捐给希望工程,盒内原有55元钱,两个月后盒内有85元钱.(1)求盒内钱数y(元)与存钱月数x(个)之间的函数解析式;(2)按上述方法,王明同学6个月后存到多少钱?几个月后能够存到235元钱?26.填空.已知:AB∥CD,(1)如图①,∠B+∠=∠BEC.理由如下:解:过点E 作EF ∥AB ,则∠l=∠B( ).∵EF ∥AB ,AB ∥CD( ),∴EF ∥CD( ),∴∠2=∠C( ).∵∠BEC=∠l+∠2,∴∠BEC=∠B+∠C( ).(2)图②中,∠B ,∠E ,∠G ,∠F ,∠C 的数量关系是 ; (3)图③中,∠B ,∠E ,∠F ,∠G ,∠H ,∠M ,∠C 的数量关系是 .27.如图所示,已知线段a ,c ,求作Rt △ABC ,使BC=a ,AB=c .28.(1)用如下图所示的两种正方形纸片甲、乙各 1 张,长方形纸片丙 2 张拼成一个大长方形(画出图示),并运用面积之间的关系,将一个多项式分解因式,并写出这个因式分解的过程.(2)请运用上面的方法将多项式2244a ab b ++分解因式,则需要正方形纸片甲 张,正方形纸片乙 张,长方形纸片丙 张拼成一个大的正方形. 画出图形并写出这个因式分解的过程.(3)假若要将多项式2254a ab b ++分解因式,你将利用什么样的图形的面积关系将它分解因式?29.观代营养学家用身体质量指数判断人体健康状况,这个指数等于人体质量(kg)与人体身高(m)平方的商,一个健康人的身体质量指数在20~25之间,身体质量指数高于30,属于不健康的胖.(1)设一个人的质量为W(kg),身高为h(m),求他的身体质量指数;(2)张老师的身高是1.75 m,他的质量是60kg,求他的身体质量指数,并判断张老师是否健康.30.(精确到0.001 ).【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.D4.A5.C6.D7.B8.A9.D10.B二、填空题110°,70°12.2213.抽样调查14.(1,2)或(-1,2)或(1,-2)或(-1,-2)15.8016.617.如1x =-18.50三、解答题19.∴BC ⊥CA ,MN ⊥AN ,∴∠C=∠N ,∵∠BAC=∠MAN..∴△BCA ∽△MNA. ∴BC AC MN AN =,即1.615200MN =, 1.620015213()MN m =⨯÷≈⋅. 20.(1)由题意知⌒AC =⌒CD =⌒DB ,∴∠CDA=∠DAS, ∴CD ∥AB.(2)由题意知⌒AC 的度数为 60°,∴∠AOC=∠COD=∠DOB=60°,22,64ADC OCD R S s R π∆==扇形,∴222(6464R S R R ππ=+=+阴影 21.解:在Rt △AEF 和Rt △DEC 中,∵EF ⊥CE ,∴∠FEC=90°,∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,∴∠AEF=∠ECD .又∠FAE=∠EDC=90°,EF=EC ,∴Rt △AEF ≌Rt △DCE .∴AE=CD . AD=AE+4.∵矩形ABCD 的周长为32 cm ,∴2(AE+AE+4)=32.解得,AE=6 (cm ).(1)100;(2)36;(3)略23.假命题,证明略24.(1)y=x+32(0<x<32)是一次函数;(2)232=-+(O<x<32)不是一次函数S x x25.(1)y=15x+55;(2)145元,l2个月26.(1)略 (2)∠B+∠G+∠C=∠E+∠F (3)∠B+∠F+∠H+∠C=∠E+∠G+∠M27.提示:两种情况28.(1)如图 1. 222++=+2()a ab b a b(2)1,4,4(如图 2);22244(2)++=+a ab b a b(3)需要 1张正方形纸片甲,4张正方形纸片乙,5张长方形纸片丙拼成一个大的长方形(如图 3)29.(1)身体质量指数为2h ω (2)张老师的身体质量指数为26019.6(1.75)≈,张老师偏瘦,但基本健康. 30.12,12)10.178-=≈。
2020年江苏省南京市中考数学必刷模拟试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.从 1~10 这十个数中任取两个数。
取到两个数字之和为 9 的概率是()A .445B.490C.845D.2452.Rt△ABC 中,∠C= 90°,如图所示,D 为BC上一点,∠DAC=30°,BD=2,AB=23,则AC 的长是()A.3B.22C.3 D.3223.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将腰CD以D为中心逆时针旋转90°至ED,连AE、CE,则△ADE的面积是()A.1 B.2 C.3 D.不能确定4.某班共有45位同学,其中近视眼占60%,下列说法不正确...的是()A.该班近视眼的频率是0.6 B.该班近视眼的频数是27C.该班近视眼的频数是0.6 D.该班有18位视力正常的同学5.样本3、6、4、4、7、6的方差是()A.12 B.23C.2 D.26.如图,a∥b,∠2是∠1的3倍,则∠ 2等于()A°45° B. 90° C. 135° D.150°7.下列各条件中,不能作出惟一三角形的是()A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角D.已知三边8.已知二元一次方程组1941175x yx y⎧+=⎪⎪⎨⎪+=⎪⎩的解为x ay b=⎧⎨=⎩,则||a b-的值为()A . -11B . 11C . 13D . 16 9.下列图形中,旋转60°后可以和原图形重合的是( )A .正六边形B .正五边形C .正方形D .正三角形 二、填空题10.统计八年级部分同学的跳高测试成绩,得到如下频数分布直方图(图1):则跳高成绩在1.29m 以上的同学估计占八年级总人数的百分之 .(精确到1%) 11.如图,在由16个边长为1的正方形拼成的方格内,A 、B 、C 、D 是四个格点,则线段AB 、CD 中,长度是无理数的线段是________.12.如果(221)(221)63a b a b +++-=,那么a b +的值是 .13.如图,已知在四边形ABCD 中,AB ∥CD ,AB=CD ,求证:AD ∥BC分析:连结AC ,要证AD ∥BC ,只要证∠3= ,只要证△ABC ≌ ,已有两个条件AB=CD ,AC=CA ,只需证∠1= ,易由 证得.14.当a 满足 时,2a -有意义. 15.当y 时,代数式324y -的值至少为1. 16.公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下(单位:岁):甲群:13,13,14,15,15,15,l5,l6,17,17;乙群:3,4,4,5,5,6,6,6,54,57.解答下列各题:(1)甲群游客的平均年龄是 岁,中位数是 岁,众数是 岁,其中能较好反映甲群游客年龄特征的是 ;(2)乙群游客的平均年龄是 岁,中位数是 岁,众数是 岁,其中能较好反映甲群游客年龄特征的是 .17.如图,从A 地到B 地走 条路线最近,它根据的是 .18.如图,AB+BC>AC ,其理由是 .19.若2(2)30a b ++-=,则b a = .20.已知||4x =,2149y =,且0x >,0y <,则= .21.如图,小南和小颖正在玩一个游戏:每人先抛掷骰子(骰子共有6个面,分别标有数字1,2,3,4,5,6),骰子朝上的数字是几,就将棋子前进几格,并获得格子中的相应物品.现在轮到小南掷,棋子在标有数字“1”的那一格,小南能一次就获得“汽车”吗?(填“能”或“不能”);小颖下一次抛掷可能得到“汽车”的概率是 .(注:小汽车在第八格内)三、解答题22.已知y 是x 的反比例函数,当x=3时,y=4,则当x=2时求函数y 的值.6.23.一个滑轮起重装置如图所示,滑轮的半径是10cm ,当重物上升10cm 时,滑轮的一条半径OA 绕轴心0 按逆时针方向旋转的角度约为多少呢(假设绳索与滑轮之间没有滑动,π 取3.14,结果精确到1°)?24.函数2y ax =与直线23y x =-的图象交于点(1,b).(1)求a 、b 的值.(2)求抛物线的开口方向、对称轴.25..某商场出售一批进价为 2 元的贺卡,在市场营销中发现此商品日销售单价x(元)与日销售量 y(张)之间有如下关系:x (元)3 4 5 6 y(张) 20 15 12 10(1)根据表中数据在直角坐标系中描出实数 对(x ,y)的对应点;(2)猜测并确定 y 与x 之间的函数关系式,并画出图象;(3)设经营此贺卡的销售利润为ω元,试求ω与x 之间的函数关系式,如果物价局规定此贺卡售价最高不能超过10元/张,请你求出当日销售单价x 定为多少元时,才能获得最大日销售利润?26.如图,菱形OABC的边长为4,∠AOC=60°,点A在x轴负半轴上,求菱形各顶点的坐标.27.在长度为3的线段上取一点,使此点到线段两端点的距离的乘积为2,求此点所分得的两线段长.28.如图所示,正方形ABCD中,E是AD的中点,点F在DC上且DF=14DC,试判断BE与EF的关系,并作出说明.29.如图,育英中学为了保护校内一棵百年古树,打算在古树周围用钢管焊制一排如图所示的护栏,如果图中的1l , 2l ,……,10l 都与上面的横杆垂直,上面的横杆与下面的横杆平行且都等于3 m ,1l = 1.5m ,那么要焊制这样的护栏至少需要多m 的钢管?30.为了方便管理,学校每年都为新的七年级学生制作学生卡片,卡片上有了位数字的编号,其中前六位数表示该生入学年份、所在班及该生在班级中的序号;末位数表示性别;1 表示男生,2表示女生. 如:2007年入学的3班32号男同学的编号为 0703321. 则2008年入学的 10班的 15号女同学的编号为多少?有一次老师捡到一张编号为0 807 021 的学生卡片,你能帮忙找到失主吗?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.A3.A4.C5.C6.C7.C8.B9.A二、填空题10.约61%11.AB12.4±13.∠4,△CDA ,∠2,AB ∥CD14.0a <15. ≤12-16.(1)15,l5,15,平均数、中位数、众数都可以;(2)15,5.5,6,众数17.②,两点之间线段最短18.两点之间线段最短19.-820.14721. 不能,61三、解答题22.23. 旋转的角度约为:018010573.1410⨯≈⨯ 24.(1)把点 (1,b)代入2y ax =,23y x =-,得 23a b b =⎧⎨=-⎩解得11a b =-⎧⎨=-⎩,∴a 、b 的值分别为 -1,-1. (2)由 (1)得抛物线2y x =-,它的开口向下、对称轴是y 轴. 25.(1)如图,(2)是反比例函数,60yx= (x 为正整数)图象如图.(3)60120(2)60w xx x=-⋅=-,当定价x定为10元/张时,利润最大,为48 元.26.O(0,0),A(-4.0),B(-6,23-,C(-2,23-27.1,228.BE⊥EF.说明BE2+EP2=BF229.21 m30.2008年入学的10班的15号女同学的编号是0810152. 编号为0807021的学生卡是2008年入学的7班的2号男同学的。
2020年江苏省南京市中考数学模拟试题含答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号...........涂.黑.) 1.-2的倒数是( )A .-12B .12 C .±2 D .22.函数y =x -2中自变量x 的取值范围是( )A .x >2B .x ≥2C .x ≤2D .x ≠2 3.s in45°的值是( )A .12B .22C .32D .1 4.下列地方银行的标志中,既不是轴对称图形,也不是中心对称图形的是 ( )5.已知某圆锥的底面半径为3 cm ,母线长5 cm ,则它的侧面展开图的面积为( )A .30 cm 2B .15 cm 2C .30π cm 2D .15π cm 2 6.六多边形的内角和为( )A .180°B .360°C .720°D .1080° 7.已知,AB 是⊙O 的弦,且OA =AB ,则∠AOB 的度数为( )A .30°B .45°C .60°D .90°8.某区新教师招聘中,七位评委独立给出分数,得到一列数.若去掉一个最高分和一个最低分,得到一列新数,那么这两列数的相关统计量中,一定相等的是 ( ) A .中位数 B .众数 C .方差 D .平均数 9.在△ABC 中,AC =4,AB =5,则△ABC 面积的最大值为( ) A .6 B .10 C .12 D .2010.直线l :y =mx -m +1(m 为常数,且m ≠0)与坐标轴交于A 、B 两点,若△AOB (O 是原点)的面积恰为2,则符合要求的直线l 有( )A .D .B .C .A .1条B .2条C .3条D .4条二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置.........) 11.分解因式:xy ―x = .12.去年无锡GDP(国民生产总值)总量实现约916 000 000 000元,该数据用科学记数法表示为 元. 13.分式方程4x = 2x +1的解是 .14.若点A (1,m )在反比例函数y =3x的图像上,则m 的值为 .15.写出命题“两直线平行,同位角相等”的结论部分: . 16.如图,菱形ABCD 中,对角线AC 交BD 于O ,AB =8,E 是CD 的中点,则OE 的长等于___________.17.如图,∠A =110°,在边AN 上取B ,C ,使AB =BC .点P 为边AM 上一点,将△APB 沿PB 折叠,使点A 落在角内点E 处,连接CE ,则∠BPE +∠BCE = °.18.已知,在平面直角坐标系中,点A (4,0),点B (m ,33m ),点C 为线段OA 上一点(点O 为原点),则AB +BC 的最小值为 .三、解答题(本大题共10小题,共84分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)计算:(1)9- (-2)2+(-0.1)0; (2)(x ―2)2―(x +3)(x ―1).20.(本题满分8分)计算:ABC EPM N(第17题)(第16题) ABECDO(1)解不等式:5+x ≥3(x -1); (2)解方程组:⎩⎪⎨⎪⎧x =3-y , ……①2x +y =5.……②21.(本题满分8分)已知,如图,等边△ABC 中,点D 为BC 延长线上一点,点E 为CA 延长线上一点,且AE =DC ,求证:AD =BE .22.(本题满分8分)某校为迎接体育中考,了解学生的体育情况,学校随机调查了本校九年级50名学生“30秒跳绳”的次数,并将调查所得的数据整理如下:成绩段 频数 频率 0≤x <20 5 0.120≤x <40 10a40≤x <60 b 0.1460≤x <80 mc 80≤x <10012n根据以上图表信息,解答下列问题:AC BDE30秒跳绳次数的频数、频率分布表30秒跳绳次数的频数分布直方图5 10 155 10161220 40 60 80 100 频数(人)跳绳次数(1)表中的a = ,m = ;(2)请把频数分布直方图补充完整;(画图后请标注相应的数据)(3)若该校九年级共有600名学生,请你估计“30秒跳绳”的次数60次以上(含60次)的学生有多少人?23.(本题满分8分)在2017年“KFC ”篮球赛进校园活动中,某校甲、乙两队进行决赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且乙队已经赢得了第1局比赛,那么甲队获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)24.(本题满分8分)已知,如图,线段AB ,利用无刻度的直尺和圆规,作一个满足条件的△ABC :① △ABC 为直角三角形;② tan ∠A =13.(注:不要求写作法,但保留作图痕迹)25.(本题满分8分)在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD ,AB如图1,再在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒,底面为矩形EFGH ,如图2.设小正方形的边长为x 厘米. (1)当矩形纸板ABCD 的一边长为90厘米时,求纸盒的侧面积的最大值; (2)当EH :EF =7:2,且侧面积与底面积之比为9:7时,求x 的值.26.(本题满分8分)已知二次函数y =ax 2-8ax (a <0)的图像与x 轴的正半轴交于点A ,它的顶点为P .点C 为y 轴正半轴上一点,直线AC 与该图像的另一交点为B ,与过点P 且垂直于x 轴的直线交于点D ,且CB :AB =1:7. (1)求点A 的坐标及点C 的坐标(用含a 的代数式表示);(2)连接BP ,若△BDP 与△AOC 相似(点O 为原点),求此二次函数的关系式.(图2)(图1) ABCDE FGH27.(本题满分10分)如图,一次函数y =-12x +m (m >0)的图像与x 轴、y 轴分别交于点A 、B ,点C 在线段OA 上,点C 的横坐标为n ,点D 在线段AB 上,且AD =2BD ,将△ACD 绕点D旋转180°后得到△A 1C 1D .(1)若点C 1恰好落在y 轴上,试求n m的值;(2)当n =4时,若△A 1C 1D 被y 轴分得两部分图形的面积比为3:5,求该一次函数的解析式.O AB CD C 1 A 1 xy28.(本题满分10分)阅读理解:小明热爱数学,在课外书上看到了一个有趣的定理——“中线长定理”:三角形两边的平方和等于第三边的一半与第三边上的中线的平方和的两倍.如图1,在△ABC 中,点D 为BC 的中点,根据“中线长定理”,可得:AB 2+AC 2=2AD 2+2BD 2.小明尝试对它进行证明,部分过程如下:解:过点A 作AE ⊥BC 于点E ,如图2,在Rt △ABE 中,AB 2=AE 2+BE 2,同理可得:AC 2=AE 2+CE 2,AD 2=AE 2+DE 2, 为证明的方便,不妨设BD =CD =x ,DE =y , ∴AB 2+AC 2=AE 2+BE 2+AE 2+CE 2=…… (1)请你完成小明剩余的证明过程;理解运用:(2) ① 在△ABC 中,点D 为BC 的中点,AB =6,AC =4,BC =8,则AD =_______;② 如图3,⊙O 的半径为6,点A 在圆内,且OA =22,点B 和点C 在⊙O 上,且∠BAC =90°,点E 、F 分别为AO 、BC 的中点,则EF 的长为________;拓展延伸:(3)小明解决上述问题后,联想到《能力训练》上的题目:如图4,已知⊙O 的半径为55,以A (−3,4)为直角顶点的△ABC 的另两个顶点B ,C 都在⊙O 上,D 为BC 的中点,求AD 长的最大值.请你利用上面的方法和结论,求出AD 长的最大值.ABCD (图1)ABCD E (图2)OA E CBFAB CDO xy(图4)参考答案与评分标准一、选择题:1.A 2.B 3.B 4.D 5.D 6.C 7.C 8.A 9.B 10.C 二、填空题: 11.x (y -1)12.9.16×1011 13.x =-2 14.3 15.同位角相等 16.417.70°18.2 3三、解答题:19.解:(1)原式=3-4+1 ……(3分)(2)原式=x 2-4x +4-(x 2+2x -3) …(2分)=0. ………(4分) =x 2-4x +4-x 2-2x +3…(3分)=-6x +7.……(4分)20.解:(1)5+x ≥3x -3 …(2分) (2)把①代入②,得y =1; …(2分)∴2x ≤8 …(3分) 把y =1代入①,得x =2. …(3分)∴x ≤4.…(4分) ∴原方程组的解为⎩⎪⎨⎪⎧x =2,y =1.…(4分)21.证明:在等边△ABC 中,AB =CA ,∠BAC =∠ACB =60°,∴∠EAB =∠DCA =120°.………(2分)在△EAB 和△DCA 中,⎩⎪⎨⎪⎧AE =DC ,∠EAB =∠DCA ,AB =CA .………(5分)∴△EAB ≌△DCA ,………(6分) ∴AD =BE .………(8分) 22.(1)a =0.2,m =16;……(4分) (2)图略,柱高为7;……(6分)(3)600×16+1250=336(人).……(8分)23.解:画树状图,得(画树状图或列表正确,得5分)∵共有4种等可能的结果,其中甲队获胜的情况有1种,………(6分) ∴甲队获胜的概率为:P (甲队获胜)=14;……………………(8分)24.解:(1)延长AB 至M ,使得AM =3AB ;………(3分) (2)过点M 作MN ⊥AB ,且截取MN =AB ;………(5分)(3)过点B 作AB 的垂线,交AN 于点C .………(7分) ∴Rt △ABC 即为所求.………(8分)作出垂线或垂直,得2分;构出3倍或13,得3分;构图正确,得2分;结论1分.25.解:(1)S 侧=2[x (90-2x )+x (40-2x )] =-8x 2+260x …………………(2分)=-8(x -654)2+42252.………………………………………(3分)∵-8<0,∴当x =654时,S 侧最大=42252.…………………(4分)(2)设EF =2m ,则EH =7m ,………………………………………(5分)则侧面积为2(7mx +2mx )=18mx ,底面积为7m ·2m =14m 2, 由题意,得18mx :14m 2=9:7,∴m =x . …………………(7分) 则AD =7x +2x =9x ,AB =2x +2x =4x由4x ·9x =3600,且x >0,∴x =10.…………………………(8分)26.解:(1)P (4,-16a ),A (8,0),…………………………(2分)∵CB :AB =1:7,∴点B 的横坐标为1,…………(3分) ∴B (1,-7a ),∴C (0,-8a ).………………………(4分) (2)∵△AOC 为直角三角形,∴只可能∠PBD =90°,且△AOC ∽△PBD .………(5分) 设对称轴与x 轴交于点H ,过点B 作BF ⊥PD 于点F ,易知,BF =3,AH =4,DH =-4a ,则FD =-3a ,∴PF =-9a , 由相似,可知:BF 2=DF ·PF ,∴9=-9a ·(-3a ),……(6分)ABMNC 第2局 第3局甲乙甲乙甲 乙∴a =33, a =-33(舍去).…………………(7分) ∴y =-33x 2-833x .…………………(8分) 27.解:(1)由题意,得B (0,m ),A (2m ,0).……………………………(1分)如图,过点D 作x 轴的垂线,交x 轴于点E ,交直线A 1C 1于点F , 易知:DE =23m ,D (23m ,23m ) ,C 1(43m -n ,43m ).………………(3分)∴43m -n =0,∴n m =43;……………………………………………(4分) (2)由(1)得,当m >3时,点C 1在y 轴右侧;当2<m <3时,点C 1在y 轴左侧.① 当m >3时,设A 1C 1与y 轴交于点P ,连接C 1B ,由△A 1C 1D 被y 轴分得两部分图形的面积比为3:5,∴S △BA 1P :S △BC 1P =3:1, ∴A 1P :C 1P =3,∴23m =3(43m -4),∴m =185.……………………(6分)∴y =-12x +185.………………………………………………………(7分)② 当2<m <3时,同理可得:y =-12x +187.……(10分)(参照①给分)综上所述,y =-12x +187或y =-12x +185.28.解:(1)∴AB 2+AC 2=2AE 2+(x +y )2+(x -y )2=2AE 2+2x 2+2y 2=2AE 2+2BD 2+2DE 2=2AD 2+2BD 2.………………(3分) (2)①10;②4;………………(7分)(3)连接OA ,取OA 的中点E ,连接DE .………………(8分)由(2)的②可知:DE =152,………………(9分)在△ADE 中,AE =52, DE =152,∴AD 长的最大值为52+152=10.……(10分)注:只写答案,只给1分.。
2020南京市初中毕业生学业模拟考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共12分)一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )2.计算(-a2)3的结果是( )A.a5B.-a5C.a6D.-a63.若△ABC∽△A'B'C',相似比为1∶2,则△ABC与△A'B'C'的面积的比为( )A.1∶2B.2∶1C.1∶4D.4∶14.下列无理数中,在-2与1之间的是( )A.-B.-C.D.5.8的平方根是( )A.4B.±4C.2D.±26.如图,在矩形AOBC中,点A的坐标是(-2,1),点C的纵坐标是4,则B、C两点的坐标分别是( )A.、-B.、-C.、-D.、-第Ⅱ卷(非选择题,共108分)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在相应位置....上)7.-2的相反数是;-2的绝对值是.8.截止2013年底,中国高速铁路营运里程达到11000km,居世界首位.将11000用科学记数法表示为.9.使式子1+有意义的x的取值范围是.10.2014年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm):168,166,168,167,169,168,则她们的身高的众数是cm,极差是cm.11.已知反比例函数y=的图象经过点A(-2,3),则当x=-3时,y= .12.如图,AD是正五边形ABCDE的一条对角线,则∠BAD= °.13.如图,在☉O中,CD是直径,弦AB⊥CD,垂足为E,连结BC.若AB=2cm,∠BCD=22°30',则☉O的半径为cm.14.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为cm.15.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm.某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3∶2,则该行李箱的长的最大值为cm.16.2则当y<5时,x的取值范围是.三、解答题(本大题共11小题,共88分.解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式组-18.(6分)先化简,再求值:---,其中a=1.19.(8分)如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?20.(8分)从甲、乙、丙3名同学中随机抽取环保志愿者.求下列事件的概率:(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.21.(8分)为了了解某市120000名初中学生的视力情况,某校数学兴趣小组收集有关数据,并进行整理分析.(1)小明在眼镜店调查了1000名初中学生的视力,小刚在邻居中调查了20名初中学生的视力.他们的抽样是否合理?请说明理由;(2)该校数学兴趣小组从该市七、八、九年级各随机抽取了1000名学生进行调查,整理他们的视力情况数据,得到如下的折线统计图.请你根据抽样调查的结果,估计该市120000名初中学生视力不良的人数是多少.22.(8分)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长.已知该养殖户第1年的可变成本为2.6万元.设可变成本平均每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为万元;(2)如果该养殖户第3年的养殖成本....为7.146万元,求可变成本平均每年增长的百分率x.23.(8分)如图,梯子斜靠在与地面垂直(垂足为O)的墙上.当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18'.求梯子的长.(参考数据:sin51°18'≈0.780,cos51°18'≈0.625,tan51°18'≈1.248)24.(8分)已知二次函数y=x2-2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?25.(9分)从甲地到乙地,先是一段平路,然后是一段上坡路.小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间.假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y 与x之间的函数关系.(1)小明骑车在平路上的速度为km/h;他途中休息了h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?26.(8分)如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,☉O为△ABC的内切圆.(1)求☉O的半径;(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆.设点P运动的时间为t s.若☉P与☉O相切,求t的值.27.(11分)【问题提出】学习了三角形全等的判定方法(即“SAS”“ASA”“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.然后,对∠B 进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角.求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接填写结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若,则△ABC≌△DEF.答案全解全析:一、选择题1.C 选项A、D是轴对称图形,不是中心对称图形,B是中心对称图形,不是轴对称图形,只有C符合题意.故选C.2.D (-a2)3=-a2×3=-a6,故选D.3.C 相似三角形的面积比等于相似比的平方,故选C.4.B 因为-<-2,>>1,-2<-<1,故选B.5.D 一个正数a有两个平方根,是±,所以8的平方根是±=±2,故选D.6.B 过点A作AA1⊥x轴于点A1,过点B作BB1⊥x轴于点B1,过点C作B1B的垂线,交B1B的延长线于点D,如图所示,易知△AOA1≌△BCD,故点B的纵坐标是4-1=3,从而由△AOA1∽△OBB1得=,解得OB1=,所以B,故点C的横坐标为-2=-,即C-,故选B.二、填空题7.答案2;2解析a的相反数是-a,负数a的绝对值是-a.8.答案 1.1×104解析由科学记数法的定义知11000=1.1×104.9.答案x≥0解析要使式子1+有意义,需满足x≥0.10.答案168;3解析因为168出现了3次,次数最多,故众数是168cm,极差是169-166=3cm.11.答案2解析把A(-2,3)代入y=,得k=-2×3=-6,所以y=-,当x=-3时,y=2.12.答案72解析正五边形的每一个内角都为108°,∴∠EAD=-=36°,故∠BAD=∠EAB-∠EAD=108°-36°=72°.13.答案2解析连结AC、AO、OB,∵AB⊥CD,∴∠ACB=2∠BCD=45°,∠AOB=2∠ACB=90°,又OA=OB,由勾股定理知OA2+OB2=AB2,得OA=OB=2cm,∴☉O的半径为2cm.14.答案6解析由题意得2π×2=πl,故l=6cm.15.答案78解析设行李箱的长、宽分别为3x cm、2x cm,则由条件得3x+2x+30≤160,解得x≤26,故3x≤78.即行李箱的长的最大值是78cm.16.答案0<x<4解析由抛物线的对称性及题中表格可知,当x=0或4时,y=5,又抛物线开口向上,故当0<x<4时,y<5.三、解答题17.解析解不等式3x≥x+2,得x≥1.解不等式4x-2<x+4,得x<2.所以不等式组的解集是1≤x<2.(6分)18.解析---=---=--=--=---=-.当a=1时,原式=-=-.(6分)19.解析(1)证明:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC.又∵EF∥AB,∴四边形DBFE是平行四边形.(4分)(2)答案不唯一,下列解法供参考.当AB=BC时,四边形DBFE是菱形.理由:∵D是AB的中点,∴BD=AB.∵DE是△ABC的中位线,∴DE=BC.∵AB=BC,∴BD=DE.又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形.(8分)20.解析(1)从甲、乙、丙3名同学中随机抽取1名环保志愿者,每1名同学被抽到的机会相等,故恰好是甲的概率是.(3分)(2)从甲、乙、丙3名同学中随机抽取2名环保志愿者,所有可能出现的结果有(甲,乙)、(甲,丙)、(乙,丙),共3种,它们出现的可能性相同.所有的结果中,满足“甲在其中”(记为事件A)的结果有2种,所以P(A)=.(8分)21.解析(1)他们的抽样都不合理.因为如果这1000名初中学生全部在眼镜店抽取,那么该市每名初中学生被抽到的机会不相等,样本不具有代表性;如果只抽取20名初中学生,那么样本容量过小,样本不具有广泛性.(4分)(2)×120000=72000(名).答:估计该市120000名初中学生视力不良的人数是72000名.(8分)22.解析(1)2.6(1+x)2.(4分)(2)根据题意得4+2.6(1+x)2=7.146.解这个方程得x1=0.1,x2=-2.1(不合题意,舍去).答:可变成本平均每年增长的百分率是10%.(8分)23.解析设梯子的长为x m.在Rt△ABO中,cos∠ABO=,∴OB=AB·cos∠ABO=x·cos60°=x.在Rt△CDO中,cos∠CDO=,∴OD=CD·cos∠CDO=x·cos51°18'≈0.625x.∵BD=OD-OB,∴0.625x-x=1.解得x=8.答:梯子的长约为8m.(8分)24.解析(1)证法一:因为(-2m)2-4(m2+3)=-12<0,所以方程x2-2mx+m2+3=0没有实数根.所以不论m为何值,函数y=x2-2mx+m2+3的图象与x轴没有公共点.(4分)证法二:因为a=1>0,所以该函数的图象开口向上.又因为y=x2-2mx+m2+3=(x-m)2+3≥3,所以该函数的图象在x轴的上方.所以不论m为何值,该函数的图象与x轴没有公共点.(4分)(2)y=x2-2mx+m2+3=(x-m)2+3.把函数y=(x-m)2+3的图象沿y轴向下平移3个单位长度后,得到函数y=(x-m)2的图象,它的顶点坐标是(m,0),因此,这个函数的图象与x轴只有一个公共点.所以把函数y=x2-2mx+m2+3的图象沿y轴向下平移3个单位长度后,得到的函数的图象与x 轴只有一个公共点.(8分)25.解析(1)15;0.1.(2分)(2)因为小明骑车在平路上的速度为15km/h,所以小明骑车上坡的速度为10km/h,下坡的速度为20km/h.由题图可知,小明骑车上坡所用的时间是-=0.2(h),下坡所用的时间是-=0.1(h).所以B、C两点的坐标分别是(0.5,6.5)、(0.6,4.5).当x=0.3时,y=4.5,所以线段AB所表示的y与x之间的函数关系式为y=4.5+10(x-0.3),即y=10x+1.5(0.3≤x≤0.5);当x=0.5时,y=6.5,所以线段BC所表示的y与x之间的函数关系式为y=6.5-20(x-0.5),即y=-20x+16.5(0.5≤x≤0.6).(6分)(3)小明两次经过途中某一地点的时间间隔为0.15h,根据题意,这个地点只能在坡路上.设小明第一次经过该地点的时间为t h,则第二次经过该地点的时间为(t+0.15)h.根据题意,得10t+1.5=-20(t+0.15)+16.5.解得t=0.4.所以y=10×0.4+1.5=5.5.答:该地点离甲地5.5km.(9分)26.解析(1)如图①,设☉O与AB、BC、CA的切点分别是D、E、F,连结OD、OE、OF.则AD=AF,BD=BE,CE=CF,OF⊥AC,OE⊥BC,即∠OFC=∠OEC=90°.又∵∠C=90°,∴四边形CEOF是矩形.又∵OE=OF,∴四边形CEOF是正方形.设☉O的半径为r cm,则FC=EC=OE=r cm.在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,∴AB==5cm.∵AD=AF=AC-FC=(4-r)cm,BD=BE=BC-EC=(3-r)cm,∴4-r+3-r=5.解得r=1,即☉O的半径为1cm.(3分)图①图②(2)过点P作PG⊥BC,垂足为G.∵∠PGB=∠C=90°,∴PG∥AC.∴△PBG∽△ABC.∴==.又∵BP=t,∴PG=t,BG=t.若☉P与☉O相切,则可分为两种情况:☉P与☉O外切,☉P与☉O内切.如图②,当☉P与☉O外切时,连结OP,则OP=1+t.过点P作PH⊥OE,垂足为H.∵∠PHE=∠HEG=∠PGE=90°,∴四边形PHEG是矩形.∴HE=PG,PH=GE.∴OH=OE-HE=1-t,PH=GE=BC-EC-BG=3-1-t=2-t.在Rt△OPH中,由勾股定理,得-+-=(1+t)2.解得t=.如图③,当☉P与☉O内切时,连结OP,则OP=t-1.过点O作OM⊥PG,垂足为M.∵∠MGE=∠OEG=∠OMG=90°,∴四边形OEGM是矩形.∴MG=OE,OM=EG.∴PM=PG-MG=t-1,OM=EG=BC-EC-BG=3-1-t=2-t.在Rt△OPM中,由勾股定理,得-+-=(t-1)2,解得t=2.图③综上,若☉P与☉O相切,则t=或2.(8分)27.解析(1)HL.(2分)(2)证明:如图①,分别过点C、F作对边AB、DE上的高CG、FH,其中G、H为垂足.∵∠ABC、∠DEF都是钝角,∴G、H分别在AB、DE的延长线上.∵CG⊥AG,FH⊥DH,∴∠CGA=∠FHD=90°.∵∠CBG=180°-∠ABC,∠FEH=180°-∠DEF,∠ABC=∠DEF,∴∠CBG=∠FEH.在△BCG和△EFH中,∵∠CGB=∠FHE,∠CBG=∠FEH,BC=EF,∴△BCG≌△EFH.∴CG=FH.又∵AC=DF,∴Rt△ACG≌Rt△DFH.∴∠A=∠D.在△ABC和△DEF中,∵∠ABC=∠DEF,∠A=∠D,AC=DF,∴△ABC≌△DEF.(6分)图①(3)如图②,△DEF就是所求作的三角形.图②(9分) (4)本题答案不唯一,下列解法供参考.∠B≥∠A.(11分)。
2020年江苏省南京市中考数学复习模拟试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下面四个图形中,是三棱柱的平面展开图的是()2.如图,扇形 OAB 的圆心角为 90°,分别以 OA、OB为直径在扇形内作半圆,P和Q 分别表示两个阴影部分的面积,那么 P 和Q 的大小关系是()A.P=Q B.P>Q C.P<Q D.无法确定3.下列说法中,正确的是()A.命题就是定理B.每一个定理都有逆定理C.原命题是真命题,那么它的逆命题也是真命题D.定理和逆定理都是命题4.已知a,b,C是同一平面内三条直线,下列命题中,属于假命题的是()A.若a⊥c,b⊥c,则a⊥bB.若a∥b,b⊥c,则a⊥cC.若a⊥c,b⊥c,则a∥bD.若a⊥c,b∥a,则b⊥c5.如图是某人骑自行车的行驶路程s(km)与行驶时间t(h)的函数图象,下列说法不正确的是()A.从0 h到3 h,行驶了30 kmB.从l h到2 h匀速前进C.从l h到2 h在原地不动D.从0 h到l h与从2 h到3 h的行驶速度相同6.下列不在函数y=-2x+3的图象上的点是 ( )A .(-5,13)B .(0.5,2)C .(3,0)D .(1,1) 7.不等式2x -7<5-2x 的正整数解有 ( ) A .1个B .2个C .3个D .4个 8.能够刻画一组数据离散程度的统计量是( ) A .平均数B .众数C .中位数D .方差 9.下列各式中,能用平方差公式分解因式的是( ) A .321x -B .21x --C .21x +D .21x -+ 10.已知线段AB ,在BA 的延长线上取一点C ,使CA=3AB ,则线段CA 与线段CB 之比为( )A .3:4B .2:3C .3:5D .1:2 11.当2x =时,代数式2ax -的值是4;那么当2x =-时,这个代数式的值是( ) A . -4B . -8C .8D . 2 12.用代数式表示“a 的3倍与b 的差的平方”,正确的是( ) A .2(3)a b - B .23()a b - C .23a b - D .2(3)a b -13.下列各组中的两项为同类项的是( ) A . 23a b 与223ab B .2x y 与2x z C .2mnp 与2mn D .12pq 与qp 14.当 a=-3,b= 0,c=-4,d=9时,(a-b )×(c+d )的值是( ) A .10 B .13 C .-14 D .-15二、填空题15. 在数学活动课上. 老师带领学生去测量河两岸 A .B 两处之间的距离,先从A 处出发与 AB 成 90°方向,向前走了lOm 到 C 处,在 C 处测得∠ACB=60°(如图所示),那么AB 之间的距离为 m . (精确到1m)16.如图,E ,G ,F ,H 分别是矩形ABCD 四条边上的点,EF ⊥GH ,若AB =2,BC =3,则EF ︰GH =____________.17.观察分析,然后填空:- 2 , 2, - 6 ,2 2 ,-10 ,…, (第n 个数).18.请给假命题“两个锐角的和是锐角”举出一个反例: .19.如图,一个机器人从0点出发,向正东方向走3 m 到达A 1点,再向正北方向走6 m 到达A 2点,再向正西方向走9 m 到达A 3点,再向正南方向走l2 m 到达A 4点,再向正东方向走15而到达A 5点.按如此规律走下去,当机器人走到A 6点时,离O 点的距离是 .20.已知a 、b 、c 是同一平面内的三条直线.(1)若a ⊥_b ,c ⊥_b ,则a c ; (2)若a ∥b ,a ⊥c ,则b c .21.6的平方根是 ,它的算术平方根是 .22.若2a a =-,则实数a 是 .23.若一年期的存款年利率为%p ,利息税的税率为5%. 某人存入本金为a 元,则到期支出时实得本利和为 元.三、解答题24.求出抛物线225y x x =-++的对称轴和顶点坐标.25.三明市某工厂2006年捐款1万元给希望工程,以后每年都捐款,计划到2008年共捐款4.75万元,问该厂捐款的平均增长率是多少?26.用不等式表示下列语句,并写出解集.(1)x 与 3 的差不大于 2;(2)y 的 3倍与 2 的和大于5.27.如图,DC ∥AB ,∠ADC=∠ABC ,BE ,DF 分别平分∠ABC 和∠ADC ,请判断BE 和DF 是否平行,并说明理由.28.解下列方程(组):(1)23 435x yx y+=⎧⎨-=⎩;(2)21233xx x-=---.29.某县教育局专门对该县2004年初中毕业生毕业去向做了详细调查,将数据整理后,绘制成统计图,根据图中信息回答:(1)已知上非达标高中的毕业生有2328人,求该县2004年共有初中毕业生多少人?(2)上职业高中和赋闲在家的毕业生各有多少人?(3)今年被该县政府确定为教育发展年,比较各组的百分率,你对该县教育发展有何积极建议?请写出一条建议.30.工商部门抽查了一批标准质量为每袋500克的味精,检查是否够秤. 检查记录如下(单位:克):1.0, -1.5, 1.3 , -2.0, -1.8, 1.5 , -3.1 ,2.4, -2.5, -0.5, -1.4,-0.9. 这里的正、负数分别表示什么?这些数据,你能获得哪些信息?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.A3.D4.A5.B6.C7.B8.D9.D10.A11.BA13.D14.D二、填空题15.1716.3:217.(-1)n 2n18.如50α=,60β=,90αβ+>(答案不惟一)19.15 m20.(1)11 (2)⊥21.22.非正数23.192000ap a +三、解答题24.顶点坐标(1,6),对称轴为直线x=1.25.50%(1)x-3≤2,x≤5;(2)3y+2>5,y>1 27.BE∥DF,理由略28.(1)7515xy⎧=⎪⎪⎨⎪=⎪⎩;(2)3x=,经检验是增根,所以原方程无解29.(1)7760人 (2)1017人;923人 (3)如“赋闲在家的学生比例大,而职高发展不足,建议发展职高以吸纳赋闲在家的学生.”又如“普通高中之中,达标高中所占比例偏低,建议把更多的非达标高中发展为达标高中.”30.正数表示超过标准质量(500克)的克数,负数表示少于标准质量的克数.由这些数据,可以得到以下信息:一共抽查了12袋味精,其中不足500克的有8袋,足秤的只有4袋,个别不足秤达到 3.1 克,说明这批味精包装不合格.。
南京市中考数学模拟预测试题一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的) 1.|-2|的值是( ▲ )A .2B .﹣2C .12D .-122.已知某种纸一张的厚度约为0.0089cm ,用科学记数法表示这个数为( ▲ )A .8.9×10-5B .8.9×10-4C .8.9×10-3D .8.9×10-23.计算a 3·(-a )2的结果是( ▲ )A .a 5B .-a 5C .a 6D .-a 64.如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则点E 表示的实数是( ▲ ) A . 5 +1 B . 5 -1C . 5D . 1- 55.已知一次函数y =ax -x -a +1(a 为常数),则其函数图象一定过象限 ( ▲ )A .一、二B .二、三C .三、四D .一、四6. 在△ABC 中, AB =3,AC =2.当∠B 最大时,BC 的长是 ( ▲ ) A .1B .5C .13D .5二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在试卷相应位置......上) 7.计算:=++-02)13()31( ▲ .8.因式分解:a 3-4a = ▲ . 9.计算:3-33= ▲ .10.函数y =x -12中,自变量x 的取值范围是 ▲ . 11.则这段时间内这两种品牌冰箱月销售量较稳定的是 ▲ (填“A”或“B”).(第4题)12.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为 ▲ °.13.已知m 、n 是一元二次方程ax 2–2x +3=0的两个根,若m +n =2,则mn = ▲ . 14.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个;如果每人做4个,那么比计划少7个.设计划做x 个中国结,可列方程 ▲ .15. 如图所示的“六芒星”图标是由圆的六等分点连接而成,若圆的半径为23,则图中阴影部分的面积为 ▲ .16.已知二次函数y =ax 2+bx +c 与自变量x 的部分对应值如下表:现给出下列说法:①该函数开口向下. ②该函数图象的对称轴为过点(1,0)且平行于y 轴的直线. ③当x =2时,y =3. ④方程ax 2+bx +c =﹣2的正根在3与4之间. 其中正确的说法为 ▲ .(只需写出序号)三、解答题(本大题共12小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17. (6分)解不等式:1-2x -13 ≥ 1-x2,并写出它的所有正整数解.....18.(6分)化简:x -3x -2 ÷( x +2-5x -2 ).19.(8分)(1)解方程组 ⎩⎨⎧y =x +1,3x -2y =-1;(2)请运用解二元一次方程组的思想方法解方程组⎩⎨⎧x +y =1,x +y 2=3.(第12题)(第15题)20.(8分)网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出以下两幅统计图.请根据图中的信息,回答下列问题:(1)这次抽样调查中共调查了 ▲ 人,并请补全条形统计图; (2)扇形统计图中18﹣23岁部分的圆心角的度数是 ▲ 度;(3)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数.21.(8分)初三(1)班要从甲、乙、丙、丁这4名同学中随机选取2名同学参加学校毕业生代表座谈会,求下列事件的概率.(1)已确定甲参加,另外1人恰好选中乙; (2)随机选取2名同学,恰好选中甲和乙.22.(8分)将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D '处,折痕为EF .(1)求证:ABE AD F '△≌△;(2)连结CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.全国12-35岁的网瘾人群分布条形统计图人数全国12-35岁的网瘾人群分布扇形统计图ADBE CD 'F(第22题)23.(8分)如图,两棵大树AB 、CD ,它们根部的距离AC =4m ,小强沿着正对这两棵树的方向前进. 如果小强的眼睛与地面的距离为1.6m ,小强在P 处时测得B 的仰角为20.3°,当小强前进5m 达到Q 处时,视线恰好经过两棵树的顶端B 和D ,此时仰角为36.42°. (1) 求大树AB 的高度; (2) 求大树CD 的高度.(参考数据:sin20.3°≈0.35,cos20.3°≈0.94,tan20.3°≈0.37;sin36.42°≈0.59,cos36.42°≈0.80,tan36.42°≈0.74)24.(10分)把一根长80cm 的铁丝分成两个部分,分别围成两个正方形. (1)能否使所围的两个正方形的面积和为250cm 2,并说明理由; (2)能否使所围的两个正方形的面积和为180cm 2,并说明理由; (3)怎么分,使围成两个正方形的面积和最小?25. (9分)如图,正比例函数y =2x 的图象与反比例函数y =kx 的图象交于点A 、B , AB=2 5 .(1)求k 的值;(2)若反比例函数y =kx 的图象上存在一点C ,则当△ABC 为直角三角形,请直接写出点C 的坐标.(第23题)ABPEDQFHGxyO AB(第25题)26.(9分)如图,在⊙O 的内接四边形ACDB 中,AB 为直径,AC :BC =1:2,点D 为弧AB 的中点,BE ⊥CD 垂足为E. (1)求∠BCE 的度数;(2)求证:D 为CE 的中点;(3)连接OE 交BC 于点F ,若AB =10 ,求OE27.(8分)在△ABC 中,用直尺和圆规.....作图(保留作图痕迹). (1)如图①,在AC 上作点D ,使DB +DC =AC .(2)如图②,作△BCE ,使∠BEC =∠BAC ,CE =BE ;(3)如图③,已知线段a ,作△BCF ,使∠BFC =∠A ,BF +CF =a .(图1) A C (图2) A C B(图3)ACB(第26题)Ba参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.10 8.a (a +2)(a -2) 9.3-1 10.x ≥ 1 11.A12. 35° 13. 3 14.x +96 = x —7415.123 16.①③④ 三、解答题(本大题共12小题,共计88分) 17. (6分)解:去分母,得:6-2(2x +1)≥3(1-x )……………………………2分去括号,得:6-4x +2≥3-3 x ……………………………3分移项,合并同类项得:-x ≥-5 ……………………………4分 系数化成1得:x ≤5. ……………………………5分 它的所有正整数解1,2,3,4,5. ……………………………6分18.(6分)解:原式=x -3x -2 ÷( x 2-4x -2-5x -2 )……………………………………………………2分=x -3x -2 ÷ x 2-9x -2……………………………………………3分=x -3x -2 × x -2x 2-9 ……………………………………………4分 =x -3x -2 × x -2(x -3)(x +3) ……………………………………………5分 =1x +3……………………………………………6分 19.(8分)解:(1)将①代入②,得 3x -2(x +1)=-1.解这个方程,得x =1. ………………………………………………………1分 将x =1代入①,得y =2 . ……………………………………………………2分所以原方程组的解是⎩⎨⎧x =1,y =2.…………………………………………………3分(2)由①,得x =1-y .③将③代入②,得1-y +y 2=3. ……………………………………………5分 解这个方程,得y 1=2,y 2=-1. …………………………………………7分 将y 1=2,y 2=-1分别代入③,得x 1=-1,x 2=2.所以原方程组的解是⎩⎨⎧x 1=-1,y 1=2,⎩⎨⎧x 2=2,y 2=-1.……………………………8分20.(8分)解:(1)1500,(图略); ……………………………4分(2)108° ……………………………6分 (3)万人1000%502000=⨯ ……………………………8分 21.(8分)解:(1)从乙、丙、丁这三种等可能出现的结果中随机选1人,恰好选中乙的概率是13;……………………………………………………………………………………………3分 (2)恰好选中甲和乙的概率是16.……………………………………………8分(树状图或列表或枚举列出所有等可能结果3分,强调等可能1分,得出概率1分) 22. (8分)(1)三角形全等的条件一个1分,结论1分 …………………4分 (2)四边形AECF 是菱形 …………………5分证明: …………………8分 (证出平行四边形1分,证出邻边相等1分,结论1分 ) 23. (8分)(1)解:在Rt △BEG 中,BG =EG ×tan ∠BEG ……………………1分在Rt △BFG 中,BG =FG ×tan ∠BFG ……………………2分 设FG =x 米,(x +5)0.37=0.74x ,解得x =5, ……………………3分 BG =FG ×tan ∠BFG =0.74×5=3.7 ……………………4分 AB =AG +BG =3.7+1.6=5.3米 ……………………5分 答:大树AB 的高度为5.3米.(2)在Rt △DFG 中,DH =FH ×tan ∠DFG =(5+4)×0.74=6.66米 ………………7分 CD =DH +HC =6.66+1.6=8.26米 ……………………8分 答:大树CD 的高度为8.26米.24. (10分)解:(1)设其中一个正方形的边长为x cm ,则另一个正方形的边长为(20-x )cm ,由题意得: x 2+(20-x )2=250 ………2分 解得x 1=5,x 2=15. ………3分 当x =5时,4x =20,4(20-x )=60;当x =15时,4x =60,4(20-x )=20.答:能,长度分别为20cm 与60cm. ………4分(2)x 2+(20-x )2=180整理:x 2-20x +110=0, ………5分 ∵b 2-4ac =400-440=﹣40<0, ………6分 ∴此方程无解,即不能围成两个正方形的面积和为180cm 2 ………7分 (3)设所围面积和为y cm 2,y =x 2+(20-x )2 ………8分=2 x 2-40x +400=2( x -10)2+200 …………………9分 当x =10时,y 最小为200. 4x =40,4(20-x )=40.答:分成40cm 与40cm ,使围成两个正方形的面积和最小为200 cm 2. …10分 25. (9分)解:(1)过点A 作AD ⊥x 轴,垂足为D ,由题意可知点A 与点B 关于点O 中心对称,且AB =2 5 …………………1分 ∴OA =OB = 5 , ………………2分 设点A 的坐标为(a ,2a ),在Rt △OAD 中,∠ADO =90°,由勾股定理得:a 2+(2a )2=( 5 )2解得a =1 ………………4分∴点A 的坐标为(1,2),把A (1,2)代入y =kx ,解得k =2,………………5分(2) (2,1)(﹣2,﹣1)(4,12)(﹣4,﹣12)………………9分(反比例函数对称性、用相似或勾股定理)26. (9分)(1)连接AD , ∵D 为弧AB 的中点, ∴AD =BD , ∵AB 为直径,∴∠ADB =90°,∴∠DAB =∠DBA =45°, ∴∠DCB =∠DAB =45°.3分 (2)∵BE ⊥CD ,又∵∠ECB =45° ∴∠CBE =45°,∴CE =BE ,∵四边形ACDB 是圆O 的内接四边形,∴∠A +∠BDC =180°,又∵∠BDE +∠B D C =180°∴∠A =∠BDE , …………………4分 又∵∠ACB =∠BED =90°,∴△ABC ∽△DBE , …………………5分 ∴DE :AC =BE :BC ,∴D E:B E =AC :BC =1:2, 又∵CE =BE ,∴DE :CE =1:2,B (第26题)∴D 为CE 的中点. …………………6分 (3)连接CO ,∵CO =BO ,CE =BE , ∴OE 垂直平分BC , ∴F 为OE 中点,又∵O 为BC 中点,∴OF 为△ABC 的中位线,∴OF =12AC , …………………7分∵∠BEC =90°,EF 为中线,∴EF =12BC , …………………8分在Rt △ACB 中,AC 2+BC 2=AB 2, ∵AC :BC =1:2,AB =10 , ∴AC = 2 ,BC =2 2 ,∴OE =OF +EF =1.5 2 …………………9分 27.(8分)(1)作图正确 …………………3分(2)作图正确…………………6分(3)作图正确 (只要做出一个即可)…………………8分。