牛顿迭代法求解非线性方程组的解
- 格式:pdf
- 大小:726.64 KB
- 文档页数:14
1. 非线性方程组求解1.分别用牛顿法,及基于牛顿算法下的Steffensen 加速法。
(1) 求ln(sin )x x +的根。
初值0x 分别取0.1,1,1.5,2,4进行计算。
(2) 求sin =0x 的根。
初值0x 分别取1,1.4,1.6,1.8,3进行计算。
分析其中遇到的现象与问题。
(1)牛顿法牛顿法实质上是一种线性化方法,其基本思想是将非线性方程()0f x =逐步归结为某种线性方程来求解。
将已知方程()0f x =在近似值k x 附近展开,有()()()()'0k k k f x f x f x f x x ≈+-=,构造迭代公式,则1k x +的计算公式为:()()1',0,1,,k k k k f x x x k f x +=-= (1-1)根据Taylor 级数的几何意义我们可以从几何上形象的看牛顿迭代法的求解()0f x =的过程,第一次迭代()()'1000/x x f x f x =-,其中()()'00/f x f x 的几何意义很明显,就是0x 到1x 的线段长度(这可以从直角三角形的知识得到)。
第二次迭代()()'2111/x x f x f x =-,其中()()'11/f x f x 的几何意义很明显,就是1x 到2x 的线段长度。
同理可以进行第三次迭代第四次迭代,可以明显的看出x 的取值在不断逼近真实解*x 。
如图1-1所示:图1-1○1求ln(sin )=0x x +的根时,迭代公式为()1ln(sin )sin 1cos k k x x x x x x x+++=++,0示。
计算结果见附录1表F.1-1所示。
初值取1.5,2,4进行计算时结果不收敛。
表 1-1 牛顿法计算结果○2求sin =0x 的根时,迭代公式为1cos k k x x x+=+,初值0x 分别取1、1.4、1.6、1.8、3计算时结果收敛,误差小于510-时,近似解如表1-2所示。
非线性方程组的求解方法及其应用非线性方程组是数学中一类非常重要的问题,其中每个方程都不是线性的。
与线性方程组不同,非线性方程组的求解通常需要借助于数值方法。
本文将讨论一些常见的非线性方程组求解方法,并介绍它们在实际应用中的一些应用。
1. 牛顿法牛顿法是一种非常常见的非线性方程组求解方法。
该方法基于牛顿迭代法原理,将非线性方程组转化为一系列的线性问题。
牛顿法的基本思想是:通过不断地使用一阶导数和二阶导数的信息来逼近方程组的解。
具体地说,在每一轮迭代中,求解一个方程组:$$F(x^{k})+J(x^{k})\Delta x^{k} =0$$其中$F(x)$表示非线性方程组,$x^k$表示第$k$轮迭代的解,$J(x^k)$表示$F(x)$在$x^k$处的雅可比矩阵,$\Delta x^k$表示下降方向,满足$\|\Delta x^k\|\rightarrow 0$。
值得注意的是,牛顿法在每轮迭代中都需要求解一次雅可比矩阵,这需要大量的计算资源。
因此,在实际应用中,牛顿法通常只适用于相对较小的方程组。
2. 信赖域方法相比于牛顿法,信赖域方法更具有通用性。
信赖域方法的基本思想是:在每轮迭代中,通过构造二次模型来逼近目标函数,并在一个信赖域内搜索下降方向。
具体地说,我们在每轮迭代中将非线性方程组$F(x)$在$x^k$处转化为二次模型:$$m_k(\Delta x)=F(x^k)+\nabla F(x^k)^\top \Deltax+\frac{1}{2}\Delta x^\top B_k\Delta x$$其中,$\nabla F(x^k)$是$F(x)$在$x^k$处的梯度,$B_k$是二阶导数信息。
在这里我们假设$B_k$为正定矩阵。
显然,我们希望在$m_k(\Delta x)$的取值范围内找到一个适当的$\Delta x$,使得$m_k(\Delta x)$最小。
因此,我们需要设定一个信赖域半径$\Delta_k$,并在$B_k$所定义的椭圆范围内查找最优的$\Delta x$。
非线性方程组(简单)非线性方程组(简单)非线性方程组是指其中包含非线性方程的一组方程。
与线性方程组不同,非线性方程组的解不一定满足线性性质,因此求解非线性方程组需要采用特定的方法和策略。
1. 概述非线性方程组的一般形式如下:$$\begin{align*}f_1(x_1, x_2, \ldots, x_n) &= 0 \\f_2(x_1, x_2, \ldots, x_n) &= 0 \\&\ldots \\f_m(x_1, x_2, \ldots, x_n) &= 0 \\\end{align*}$$其中,$f_1, f_2, \ldots, f_m$ 是非线性函数,$x_1, x_2, \ldots,x_n$ 是方程组的未知数。
2. 求解方法求解非线性方程组的方法有多种,下面列举了常用的两种方法。
2.1. 牛顿迭代法牛顿迭代法是一种迭代求解非线性方程组的方法,其基本思想是利用导数来逐步逼近方程组的解。
该方法的迭代公式如下:$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$其中,$x_k$ 是第$k$次迭代的近似解,$f(x_k)$ 是方程组在$x_k$处的函数值,$f'(x_k)$ 是方程组在$x_k$处的导数值。
牛顿迭代法需要选择一个初始解$x_0$,然后通过迭代计算,逐步逼近方程组的解。
当迭代次数足够多时,求得的解可接近方程组的实际解。
2.2. 拉盖尔-加普列森方法拉盖尔-加普列森方法是一种逐次迭代的方法,适用于任意不适合牛顿迭代法的非线性方程组。
该方法的迭代公式如下:$$x_{k+1} = x_k - (J_k)^{-1} \cdot f(x_k)$$其中,$x_k$ 是第$k$次迭代的近似解,$f(x_k)$ 是方程组在$x_k$处的函数值,$J_k$ 是方程组在$x_k$处的雅可比矩阵。
拉盖尔-加普列森方法需要选择一个初始解$x_0$,然后通过迭代计算,逐步逼近方程组的解。
一、求根方法原理把非线性函数f(x)=0在x0处展开成泰勒级数取其线性部分,作为非线性方程的近似方程,则有 , 设,则其解为,再把f(x)在x1处展开为泰勒级数,取其线性部分为的近似方程,若,则得,如此继续下去,得到牛顿法的迭代公式:,通过迭代,这个式子必然在的时候收敛。
整个过程如下图:牛顿法收敛很快,而且可求复根,缺点是对重根收敛较慢,要求函数的一阶导数存在。
二、求解步骤1. 选取一个接近函数零点的自变量 x 值作为起始点。
2. 使用如下的迭代公式更新近似解。
3. 如果得出的解满足误差要求,终止迭代,所得的值即视为方根根的近似解。
三、自定的非线性方程使用牛顿迭代法近似求解如下方程在[-1, 1]之间的根:四、源程序代码clear, close allclcf = @(x) cos(x) -x.^3;f_prime = @(x) -sin(x) -3*x.^2;error = 1; %初始化误差变量iter = 0; %初始化迭代次数变量max_iter = 5000; %定义最大允许迭代次数tol = 1e-8; %定义循环终止误差x0 = 0.5; %初始值while error > tol && iter <= max_iterx = x0 - f(x0)/f_prime(x0); %更新x的值error = abs((x-x0)/x0); %计算相对误差iter = iter +1; %更新迭代次数x0 = x; %计算出的x赋值给x0,继续迭代,直到达到误差条件。
end五、上机运行结果截图六、结论1.迭代法是求解非线性方程组的一种很好的方法,它可以反复校验根的近似值,直到得出符合精度的解。
从几何角度上来解释可以解释为两个函数的无限逼近2.我们为了加快迭代的速度,引入了牛顿法,牛顿法的收敛速度很快,但是其收敛性取决于牛顿法的取值。
3.。
matlab实现牛顿迭代法求解非线性方程组已知非线性方程组如下3*x1-cos(x2*x3)-1/2=0x1^2-81*(x2+0.1)^2+sin(x3)+1.06=0exp(-x1*x2)+20*x3+(10*pi-3)/3=0求解要求精度达到0.00001 ————————————————————————————————首先建立函数fun储存方程组编程如下将fun.m保存到工作路径中:function f=fun(x);%定义非线性方程组如下%变量x1 x2 x3%函数f1 f2 f3syms x1 x2 x3f1=3*x1-cos(x2*x3)-1/2;f2=x1^2-81*(x2+0.1)^2+sin(x3)+1.06;f3=exp(-x1*x2)+20*x3+(10*pi-3)/3;f=[f1 f2 f3]; ————————————————————————————————建立函数dfun用来求方程组的雅克比矩阵将dfun.m保存到工作路径中:function df=dfun(x);%用来求解方程组的雅克比矩阵储存在dfun中f=fun(x);df=[diff(f,'x1');diff(f,'x2');diff(f,'x3')];df=conj(df'); ————————————————————————————————编程牛顿法求解非线性方程组将newton.m保存到工作路径中:function x=newton(x0,eps,N);con=0;%其中x0为迭代初值eps为精度要求N为最大迭代步数con用来记录结果是否收敛for i=1:N;f=subs(fun(x0),{'x1' 'x2' 'x3'},{x0(1) x0(2) x0(3)});df=subs(dfun(x0),{'x1' 'x2' 'x3'},{x0(1) x0(2) x0(3)});x=x0-f/df;for j=1: length(x0);il(i,j)=x(j);endif norm(x-x0)<epscon=1;break;endx0=x;end%以下是将迭代过程写入txt文档文件名为iteration.txtfid=fopen('iteration.txt','w');fprintf(fid,'iteration');for j=1:length(x0)fprintf(fid,' x%d',j);endfor j=1:ifprintf(fid,'\n%6d ',j);for k=1:length(x0)fprintf(fid,' %10.6f',il(j,k));endendif con==1fprintf(fid,'\n计算结果收敛!');endif con==0fprintf(fid,'\n迭代步数过多可能不收敛!');endfclose(fid); ————————————————————————————————运行程序在matlab中输入以下内容newton([0.1 0.1 -0.1],0.00001,20) ————————————————————————————————输出结果——————————————————————————————————————————在iteration中查看迭代过程 iteration x1 x2 x3.mulStablePoint用不动点迭代法求非线性方程组的一个根function [r,n]=mulStablePoint(F,x0,eps)%非线性方程组:f%初始解:a%解的精度:eps%求得的一组解:r%迭代步数:nif nargin==2eps=1.0e-6;endx0 = transpose(x0);n=1;tol=1;while tol>epsr= subs(F,findsym(F),x0); %迭代公式tol=norm(r-x0); %注意矩阵的误差求法,norm为矩阵的欧几里德范数n=n+1;x0=r;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endendx0=[0 0 0];[r,n,data]=budong(x0);disp('不动点计算结果为')x1=[1 1 1];x2=[2 2 2];[x,n,data]=new_ton(x0);disp(’初始值为0,牛顿法计算结果为:’)[x,n,data]=new_ton(x1);disp('初始值为1,牛顿法计算结果为:')[x,n,data]=new_ton(x2);disp ('初始值为2,牛顿法计算结果为:')budong.mfunction[r,n,data]=budong(x0, tol)if nargin=-1tol=1e-3:endx1=budong fun(x0);n=1;while(norm(x1-x0))tol)&(n500)x0=x1;x1=budong_fun(x0);n=n+1:data(:,n)=x1;endr=x1:new_ton.mfunction [x,n,data]=new_ton(x0, tol)if nargin=-1tol=1e-8;endx1=x0-budong_fun(x0)/df1(x0);n=1;while (norm(x1-x0))tol)x0=x1;x1=x0-budong_fun(x0)/df1(x0);n=n+1;data(:,n)=x1;endx=x1;budong_fun.mfunction f=budong_fun(x)f(1)=3* x(1)-cos(x(2)*x(3))-1/2;f(2)=x(1)^2-81*(x(2)+0.1)^2+sin(x(3))+1.06; f(3)=exp(-x(1)*x(2))+20* x(3)+10* pi/3-1;f=[f(1)*f(2)*f(3)];df1.mfunction f=df1(x)f=[3sin(x(2)*x(3))*x(3) sin(x(2)*x(3))*x(2) 2* x(1)-162*(x(2)+0.1)cos(x(3))exp(-x(1)*x(2))*(-x(2))exp(-x(1)*x(2))*(-x(1))20]; 结果:不动点计算结果为r=1.0e+012*NaN -Inf 5.6541初始值为0,牛顿法计算结果为:x=0.5000 -0.0000 -0.5236初始值为1,牛顿法计算结果为:x=0.5000 0.0000 -0.5236初始值为2,牛顿法计算结果为:x=0.5000 0.0000 -0.5236。
c语言牛顿迭代法牛顿迭代法(Newton-Raphson法)是一种求解方程近似解的方法,它是利用泰勒级数展开函数在某点的值,然后用一阶泰勒展开式的根近似表示函数的零点,因此也被称为牛顿拉弗森法。
它可以高效地解决复杂的非线性方程组,是科学计算领域中最为常用和基础的方法之一。
牛顿迭代法的基本思想是:在第k次迭代时,求出曲线f(x)在点xk的一次导数斜率,以此确定x轴上的一个点xk+1,和该点处曲线的一次切线。
这条切线和x轴交点的横坐标就是极值点的估计值。
这个过程可以迭代多次,直到达到满足一定的误差精度或者迭代次数的要求。
C语言实现牛顿迭代法需要先定义一个函数,这个函数就是需要求解方程的函数。
定义完函数之后,需要实现牛顿迭代公式来求出下一次迭代的估计值,然后不断迭代。
具体实现过程如下:1. 定义函数f(x),即需要求解方程的函数。
2. 定义函数f_prime(x),即f(x)的一次导数。
3. 定义变量x和x_next,初始化它们的值。
4. 在循环中,首先计算f(x)和f_prime(x),然后计算下一个迭代点的估计值x_next = x - f(x) / f_prime(x)。
5. 如果x_next和x的差异满足预设的精度要求,则退出循环。
6. 否则,将x_next的值赋值给x,并重复执行第4步。
C语言实现牛顿迭代法的代码如下:#include <stdio.h>#include <math.h>定义函数f(x)double f(double x) {return x * x - 2;}定义函数f_prime(x)double f_prime(double x) {return 2 * x;}int main() {定义变量double x, x_next, epsilon;int iter;初始化变量x = 1.0;epsilon = 1e-6;iter = 0;迭代求解do {x_next = x - f(x) / f_prime(x);iter++;printf("Iteration %d: x = %lf\n", iter, x_next);x = x_next;} while (fabs(x_next - x) >= epsilon);输出结果printf("Final result: x = %lf\n", x);return 0;}在这个代码中,我们使用了do-while循环来不断执行迭代过程,直到达到预设的精度要求。
关于牛顿迭代法的课程设计实验指导非线性方程(或方程组)问题可以描述为求 x 使得f (x ) = 0。
在求解非线性方程的方法中,牛顿迭代法是求非线性方程(非线性方程组)数值解的一种重要的方法。
牛顿是微积分创立者之一,微积分理论本质上是立足于对世界的这种认识:很多物理规律在微观上是线性的。
近几百年来,这种局部线性化方法取得了辉煌成功,大到行星轨道计算,小到机械部件设计。
牛顿迭代法正是将局部线性化的方法用于求解方程。
一、牛顿迭代法及其收敛速度牛顿迭代法又称为牛顿-拉夫逊方法(Newton-Raphson method ),是一种在实数域和复数域上通过迭代计算求出非线性方程的数值解方法。
方法的基本思路是利用一个根的猜测值x 0做初始近似值,使用函数f (x )在x 0处的泰勒级数展式的前两项做为函数f (x )的近似表达式。
由于该表达式是一个线性函数,通过线性表达式替代方程中的求得近似解x 1。
即将方程f (x ) = 0在x 0处局部线性化计算出近似解x 1,重复这一过程,将方程f (x ) = 0在x 1处局部线性化计算出x 2,求得近似解x 2,……。
详细叙述如下:假设方程的解x *在x 0附近(x 0是方程解x *的近似),函数f (x )在点x 0处的局部线化表达式为)()()()(000x f x x x f x f '-+≈由此得一次方程 0)()()(000='-+x f x x x f求解,得 )()(0001x f x f x x '-= 如图1所示,x 1比x 0更接近于x *。
该方法的几何意义是:用曲线上某点(x 0,y 0)的切线代替曲线,以该切线与x 轴的交点(x 1,0)作为曲线与x 轴的交点(x *,0)的近似(所以牛顿迭代法又称为切线法)。
设x n 是方程解x *的近似,迭代格式)()(1n n n n x f x f x x '-=+ ( n = 0,1,2,……) 就是著名的牛顿迭代公式,通过迭代计算实现逐次逼近方程的解。
非线性代数的基本概念和应用非线性代数是线性代数的拓展和推广,它将线性代数中的理论和方法推广到非线性系统中,有着广泛的应用和重要意义。
本文将详细介绍非线性代数的基本概念、重要定理和应用领域。
一、基本概念非线性代数包括非线性方程、非线性函数、非线性方程组、非线性空间等。
其中,非线性方程是指含有非线性项的方程,与线性方程不同的是,它们的解无法用求解线性方程的方法得到。
而非线性函数则是指输入和输出之间的关系不是简单的线性关系,而是更加复杂。
非线性方程组的一般形式为:F(x)=0,其中x是n维向量,F是一个向量值函数。
非线性方程组的求解问题是在给定的精度下求出解向量x。
二、重要定理1、牛顿迭代法牛顿迭代法是解非线性方程和非线性方程组的基本算法之一。
它是一种迭代算法,通过不断逼近使得误差逐步减小,并最终得到解。
具体地,对于非线性方程f(x)=0,牛顿迭代法的迭代公式为:x_{k+1}=x_k-\frac{f(x_k)}{f’(x_k)},其中x_k是第k次迭代的近似解,f’(x_k)表示f在x_k处的导数。
牛顿迭代法收敛的速度很快,但需要满足一定的收敛条件才能保证正确性。
2、Banach不动点定理Banach不动点定理是非线性空间中的重要定理之一,它指出如果一个映射从一个完备的度量空间到自身,且满足某些条件,则该映射至少有一个不动点(即映射的一个输入与输出相同)。
具体地,设X是一个完备的度量空间,f是X到X的一个连续映射。
如果存在一个常数K,使得对所有x∈X,有d(f(x),f(y))\leq Kd(x,y),其中d表示X中的距离,则f至少存在一个不动点。
三、应用领域非线性代数在科学技术领域有着广泛的应用。
以下是其几个主要应用领域的介绍。
1、物理学非线性代数在物理学中的应用主要集中在研究复杂动力学系统的行为。
许多物理学领域的研究中涉及到非线性方程和非线性动力学模型,例如混沌理论和非线性波动理论等。
2、金融学非线性代数在金融学中的应用主要集中在风险控制和金融工程领域。